TABLE OF CONTENTS

	Section	on Subject	Page Number	Page Date
G.1	INTRO	ODUCTION	G-5	August 1999
u.1	G.1.1	Guidelines for Initial Review	G-7	August 1999
	G.1.2	Minimum Lane and Shoulder Widths	G-7	August 1999
	G.1.3	Grade Widening/Reconstruction Versus Overlay	G-8	August 1999
	G.1.4	Acceptable Curb Heights on Existing Roadways	G-8	August 1999
G.2		ZONTAL CURVATURE	G-10	April 1995
G.3		ICAL CURVATURE	G-11	August 1999
all	G.3.1	Crests	G-11	August 1999
	G.3.2	Sags	G-12	August 1999
G.4		RSECTIONS	G-14	August 1999
G.5		NG OPPORTUNITY (CLIMBING, PASSING LANES)	G-15	August 1999
G.6		SIDE DESIGN	G-15	August 1999
	G.6.1	Definition of Clear Zone	G-15	August 1999
	G.6.2	Shoulder Rumble Strips	G-15	August 1999
	G.6.3	Improvement to Sideslopes, Ditch and Backslopes	G-16	August 1999
	G.6.4	Treatment of Approaches on Highways	G-16	August 1999
	G.6.5	Guardrail	G-18	August 1999
G.7	SUPER	RELEVATION	G-19	April 1995
Appe	ndix A	Economic Analysis for Grade-widening	G-21	April 1995
11	G.A.1	Background Information: Basis of Economic Analysis	G-22	June 1996
	G.A.2	Calculation of Costs	G-23	April 1995
	G.A.3	Calculation of Benefits	G-24	April 1995
	G.A.4	Summary of Results	G-28	April 1995
	G.A.5	Rationale for Figure G-1.1	G-37	April 1995
Appe	ndix B	Example of Economic Analysis for Horizontal Alignment		•
••		Improvements.	G-39	June 1996
	G.B.1	Data Collected for the Analysis	G-40	June 1996
	G.B.2	Construction and Maintenance Costs for Both Alternatives	G-45	June 1996
	G.B.3	Calculation of Collision Rates for Both Alternatives	G-45	June 1996
	G.B.4	Calculation of Road User Costs for Existing and Proposed		
		Alignment	G-47	June 1996
	G.B.5	Economic Analysis using Lotus Module Benefit-Cost	G-56	April 1995
Appe	ndix C	Summary of Economic Analysis for Sideslope Flattening	G-58	April 1995
	ndix D	Rationale for Table G.7	G-64	April 1995

LIST OF FIGURES

Figure	Description	Page Number
rigaro	Decemption	Hambol
G-1	Geometric Assessment Process Flowchart	G-6
G-1.1	Suggested Minimum Roadway Width for Rural Highways in Alberta	G-9
G-A.3	Typical Collision Rates on Alberta Two-Lane Undivided Highways	G-25
G-A.5.1	Cost-Effectiveness of Grade-Widening to 10.0m vs Overlay on Existing Paved Roadways	
	(existing sideslope = 3:1 or steeper)	G-30
G-A.5.2	Cost-Effectiveness of Grade-Widening to 10.0m vs Overlay on Existing Paved Roadways	
	(existing sideslope = 4:1 or flatter)	G-31
G-A.5.3	Cost-Effectiveness of Grade-Widening to 11.8m vs Overlay and Sideslope Improvement	
	on Existing Paved Roadways (existing sideslope = 3:1 or steeper)	G-32
G-A.5.4	Cost-Effectiveness of Grade-Widening to 11.8m vs Overlay on Existing Paved Roadways	
	(existing sideslope = 4:1 or flatter)	G-33
G-A.5.5	Cost-Effectiveness of Grade-Widening to 13.4m vs Overlay on Existing Roadways	
	(existing sideslope = 4:1 or flatter)	G-34
G-B.1	Data Collected for Analysis: Hwy. 2 at McLennan, Alberta	G-40
G-B.4.1	Road User Cost Evaluation	
G-B.4.2	Road User Cost Evaluation	G-49
G-B.4.3	Road User Cost Evaluation	G-50
G-B.4.4	Road User Cost Evaluation	G-51
G-B.4.5	Road User Cost Evaluation	G-52
G-B.4.6	Road User Cost Evaluation	G-53
G-B.4.7	Road User Cost Evaluation	G-54
G-B.4.8	Road User Cost Evaluation	G-55

LIST OF TABLES

		Page
Table	Description	Number
G.1.4	Minimum Acceptable Curb Heights on Existing Roadways	
G.3.1	Suggested Minimum Vertical Crest Curve K Values for 3R/4R Projects	
G.3.2	Suggested Minimum Vertical Sag Curve K Values for 3R/4R Projects	
G.4	Suggested Minimum Sight Distances for At-Grade Intersections on 3R/4R Projects	G-14
G.6.3a	Sideslope Improvement Warrants	G-17
G.6.3b	Suggested Approach Sideslopes	G-18
G.7	Suggested Minimum Radii for Superelevation Rates on 3R/4R Projects	
G.A.3.a	Alberta Severity Indices for Run-off-Road Collisions	G-24
G.A.3.b	Percentage Reduction of Run-off-Road Collision Cost Resulting from Sideslope Flattening .	
G.A.5.1	Existing AADT Required to Justify Grade-Widening	
G.A.5.2	Economic Analysis - Grade-Widening vs Overlay	
G.A.5.3	Economic Analysis - Grade-Widening vs Overlay	
G.B.1.a	Proposed Alignment Information for Project	
G.B.1.b	Existing Alignment Information for Project	
G.B.1.c	Conversion Chart	
G.B.4	Input Parameters for Analysis	
G.B.5	Economic Analysis - Horizontal Alignment Improvements	G-57
G.C.1	Economic Analysis - Roadside Improvement	
G.C.2	Economic Analysis - Roadside Improvement	
G.C.3	Economic Analysis - Roadside Improvement	G-62
G.C.4	Economic Analysis - Roadside Improvement	G-63
	v A	

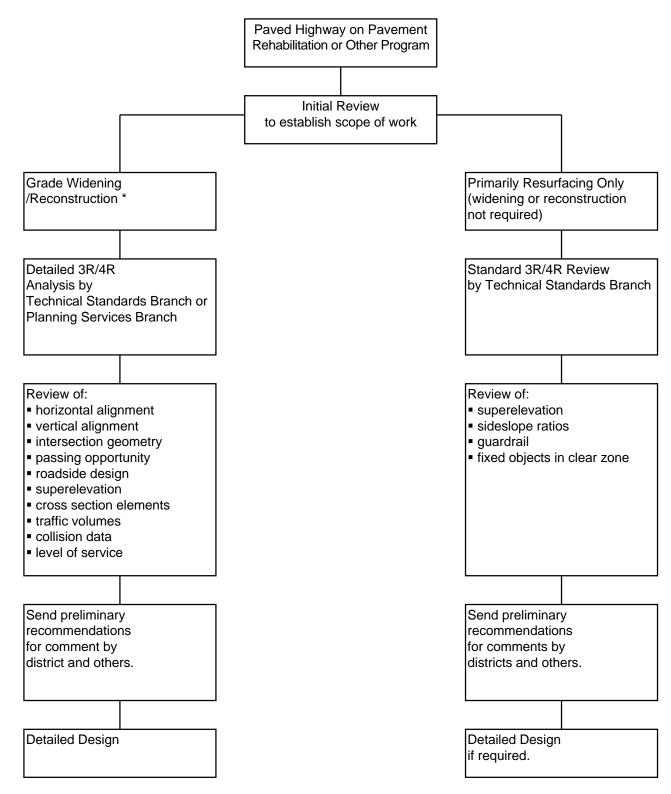
This page left blank intentionally.

G.1 INTRODUCTION

3R projects generally include resurfacing, restoration or rehabilitation of existing paved roads. 4R projects include some reconstruction of existing paved roads, which generally takes place in conjunction with resurfacing, restoration or rehabilitation of the existing pavement. The purpose of the 3R/4R guidelines is to extend the service life of existing paved highways and enhance highway safety on a network basis. To accomplish this objective, the standards focus on the most safety-cost effective improvements and also encourage the use of low-cost opportunities to improve safety where major reconstruction is not cost-effective. The guidelines contained in this document are general in nature and are not a substitute for engineering judgement.

The process used to review the geometric design standards on existing paved highways under Alberta Infrastructure' jurisdiction is described below:

Pavements are designed with an intended life of 20 vears and therefore, the first and subsequent rehabilitation will generally occur in 20-year cycles. This pattern establishes a logical timetable for the review of geometric design standards on existing paved roads. If geometric improvements are required it is generally most cost-effective to construct at the time of rehabilitation. Projects that are scheduled for pavement rehabilitation are listed on a construction program. This list is based on pavement condition and other considerations. Because approximately 15,000 km (total two-lane equivalent length as of March 1994) of Alberta's primary highway system are paved and because those pavements generally require rehabilitation every 20 years, approximately 750 km of pavement will require rehabilitation each year. An assessment of geometric design standards is


made on each section of highway prior to pavement rehabilitation. It is desirable that this assessment take place several years before the scheduled rehabilitation to allow all improvement options to be considered. The first step in the geometric assessment process is an initial screening of all the projects to determine the general scope of work. This initial screening is done by a small group of experts representing the design, planning and programming functions with special input, if required, from other areas; for example, the Regional Offices (Regional Services), the Maintenance, Specifications and Traffic Engineering Section, the Highway Engineering Section of Technical Standards Branch (Planning and Technical Services) etc.

The general scope-of-work determination includes deciding whether or not grade-widening is required and deciding if selective geometric improvements or general reconstruction (perhaps to new construction standards) is appropriate.

The initial technical review is based on a summary of geometric, traffic and collision data that is readily available for each project. Generally, as part of the initial review, projects will be identified for planning study, preliminary engineering or detailed engineering work. This type of technical review may also be applied to projects listed on the Primary Highway Construction Program. This process allows projects which previously may have been unsupported by technical data to gain some technical credibility, or conversely, projects without technical merit can be identified.

The Geometric Assessment Process Flowchart (Figure G-1) shows an outline of the sequence of activities involved on a typical 3R/4R assessment.

Figure G-1 Geometric Assessment Process Flowchart

* Reconstruction may involve spot alignment improvement only

G.1.1 Guidelines for Initial Review

The following information is required for the initial technical review: project description, AADT, level of service, pavement width, sideslope, backslope, collision rate, and summary of horizontal alignment information noting radii of all curves.

When determining the scope of work for a 3R/4R project, a fundamental parameter that must be considered is pavement width. If the pavement is sufficiently wide to provide the desired service for traffic, then only the other geometric parameters need to be assessed. If grade-widening is necessary, a choice must be made between simple grade-widening (retaining existing horizontal and vertical geometry) or some degree of reconstruction.

If grade-widening is not required, the horizontal curvature should be reviewed together with the collision data to see if selective alignment improvements may be called for. If neither gradewidening or horizontal curve improvements are indicated by the initial review and there are no obvious safety concerns, the project may be given a standard 3R/4R review rather than a detailed 3R/4R analysis. Projects which are labelled as standard 3R/4R review are still reviewed for sideslope ratio, removal of fixed objects in the clear zone (for example, guardrail), etc. but will not need a full detailed geometric assessment. All other projects will undergo a detailed 3R/4R analysis which includes an assessment of horizontal alignment, vertical alignment, roadside area, intersection geometrics, superelevation and passing opportunity.

Sections G.1.2 and G.1.3 provide guidelines for establishing the minimum acceptable width and choosing between grade widening and reconstruction.

G.1.2 Minimum Lane and Shoulder Widths

Undivided Highways

Designers should refer to Figure G-1.1 (Suggested Minimum Standards for Rural Highways in Alberta).

Through reference to this figure, a designer can determine if a given roadway would be sufficiently wide after an overlay according to the existing width, AADT and functional classification. If the roadway would not be sufficiently wide, consideration should be given to grade-widening and/or reconstruction. A designer should then refer to Figure A-3.2i, Desirable Standards for Rural Highways in Alberta to determine the desirable width for the roadway. The Suggested Minimum Standards in Figure G-1.1 are shown in terms of Existing AADT while the Desirable Standards in Figure A-3.2i are shown in terms of Design AADT. A rationale for Figure G-1.1 is provided based on economic analysis and other considerations in Appendix A.

Divided Highways

On existing paved highways that are being twinned or overlaid (divided highways), the suggested minimum roadway width for each road top is 9.5m. This provides sufficient width for shoulders and lanes as follows: 0.3m, 3.7m, 3.7m and 1.8m.

Where the pavement width is greater than 9.9m (0.3m left shoulder, 2.2m right shoulder), the right shoulder should be increased to a 3.0m width before increasing the left shoulder width.

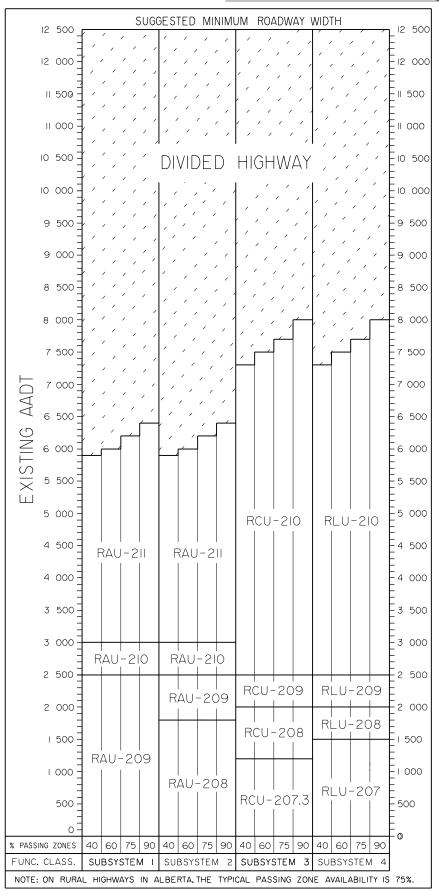
G.1.3 Grade Widening/Reconstruction Versus Overlay

Designers should refer to Section C.8.1 of this document for a discussion on the department's strategy to retain existing pavement widths. All feasible alternatives should be explored to minimize the loss of pavement width while undertaking pavement rehabilitation however inevitably there will be a need to widen or reconstruct some roadways. In choosing between full or partial gradewidening and total reconstruction, many factors must be taken into consideration. Normally, input will be required from Regions and Technical Standards Branch before that decision is made. However, the following guidelines may be useful:

- 1. If width after overlay will be less than that shown in Figure G-1.1, grade-widening is generally costeffective from the point of view of collision cost reduction, assuming a provincial average collision rate for the existing width of roadway.
- 2. Where the existing collision rate is significantly different from the provincial average for this roadway width, this should be considered when assessing the need for grade widening. When assessing the collision history of a particular road, designers should consider the breakdown of collision types and their relationship to geometric features. For example, geometric improvements will usually have very little impact on the number of animal collisions. However, roadside improvements can significantly reduce the severity of run-off-the-road type collisions.
- 3. Existing geometrics should also be considered. Substandard geometrics would provide more support for grade widening or reconstruction rather than overlay.
- 4. Where grade-widening and horizontal or vertical alignment improvements are warranted, a designer should carefully assess the impact of doing selective alignment improvements only. Selective alignment improvements will likely be less costly than applying the desirable new construction standards throughout. However,

they may result in a less balanced design; for example, a wide roadway with minimum alignment standards. Generally on gradewidening projects, improvement of sub-standard horizontal curvature is considered appropriate. However, vertical alignment improvements may be done selectively according to the 3R/4R Geometric Design Guidelines. Vehicle speeds generally increase as a result of lane and shoulder width improvements. These speed increases will offset part of the safety benefit of grade-widening because, other things being equal, collision rates increase with speed. Because the typical driver expects better alignments on wider roads and drives accordingly, it is appropriate to provide better than minimum alignment standards on roadways with wide shoulders.

Where a grade widening project requires alignment improvements over a substantial portion of its length, it is appropriate to adopt the desirable new construction standards for the entire project to ensure design consistency.


G.1.4 Acceptable Curb Heights on Existing Roadways

Acceptable curb heights on existing roadways (after overlay etc.) are dependent of curb locations, taking pedestrian safety into consideration. Table G.1.4 provides a general guideline for selecting minimum curb heights.

Curb Location	Minimum Acceptable Curb Height
Adjacent to sidewalk	75 mm
Adjacent to boulevard	50 mm
On median side	50 mm

Table G.1.4 Minimum Acceptable Curb Heights onExisting Roadways

FIGURE G-I.I SUGGESTED MINIMUM ROADWAY WIDTH FOR RURAL HIGHWAYS IN ALBERTA (shown in terms of existing AADT)

(shown in terms of existing AADT)

<u>NOTE</u>: This chart has been developed as a guideline to assist in deciding whether a particular roadway, which requires pavement rehabilitation, should be widened. The chart should be used as follows:

I. A geometric assessment should be conducted on all pavement rehabilitation projects. The need for, and cost-effectiveness of, grade widening will be considered as part of that assessment. This chart has been prepared to show cost-effectiveness based on generalized assumptions for construction cost, collision rate and collision severity. The collision rates have been based on design designation (roadway width) and traffic volume. Appendix B provides the background information and an example of the economic analysis. The assumptions are based on provincial averages. Where any of the major parameters related to costs or benefits, on a particular project, are significantly different from those assumed, a project specific economic analysis should be undertaken.

2. The chart shows suggested minimum widths for roadways on each subsystem, based on traffic volumes. The ranges have been established based on practical considerations, which limit the minimum widening that can be done, and the results of a life-cycle economic analysis, which includes safety benefits associated with grade widening. The existing AADT values have been obtained from the economic analysis, by determining the current traffic volume required to yield a satisfactory rate of return on construction investment, by the end of the design life. For this purpose, a 20 year design life and an average annual traffic growth rate of 2.5% (not compounded) was used. Generally, this is considered to be a good ballpark growth rate to apply to Alberta's rural, roads based on examination of traffic growth patterns for the period from 1979 to 1989. Where a more accurate 20 year traffic volume projection is available for a specific roadway, a designer may use that information to adjust the ranges shown here or run a special economic analysis to determine the cost-effectiveness of grade-widening on that particular project.

3. If the roadway after being overlayed would have a width less than that shown for the existing AADT and function, then grade widening, reconstruction, or twinning is called for. Desirable standards, as shown on Figure A-3-2ii, should generally be used on all projects which involve a significant amount of grading work.

4. if the overlayed width is greater than, or equal to, the width shown and the accident rate is normal, an overlay is appropriate.

5. Where reconstruction has been selected, it must be decided whether "new construction standards" or special "retrofit design standards" should be used. The geometric and safety record of the existing roadway, the level of access control, the desirable design speed, the design AADT, the passing demand and opportunity should all be considered in that decision.

6. The maximum AADT volumes shown for two lane roadways in each subsystem, and for each percentage of passing zone availability, have been set according to the limit of level-of-service 'D', which could be achieved at the end of the design life (20 years). If higher volumes were allowed, level-of-service 'E' would result in the design hour (30th highest hour) assuming normal traffic composition and characteristics. It has been assumed that subsystems I and 2 are typically rural and subsystems 3 and 4 are typically commuter for the traffic volume ranges where twinning is contemplated. Level-of-service 'E' on two lane roadways is defined as that condition where vehicles experience delay for at least 75% of the time in the design hour. Such a condition is generally considered to be unacceptable for two lane rural roads in Alberta.

3R/4R GEOMETRIC DESIGN GUIDELINES

G.2 HORIZONTAL CURVATURE

Improvements should be considered at all horizontal curves on pavement rehabilitation projects. Improvements will generally be warranted only on curves which do not meet the minimum radius for new construction. Curves that exceed the minimum radius should also be considered for upgrading, based on factors such as superelevation rate, collision rate, intersections or hazards on curve, consistency with highway alignment, horizontal-vertical alignment coordination, road user savings due to lower vehicle running costs, or small deflection angles.

Designers undertaking geometric assessment generally prepare a summary of all horizontal alignment elements that should be considered for improvement for any of the reasons listed above, or for other reasons. The summary includes the curve geometric information (radius, spiral, delta, superelevation, width, length), township diagram, collision records and traffic information (AADT).

Where detailed analysis is required, use of the department's Benefit-Cost Guidelines is recommended as one tool in the analysis, the results of which will be only one of several factors which will bear upon the decision.

Because of the many site specific factors which can affect the outcome of an analysis, a project specific analysis considering all of the alignment alternatives should be undertaken. Where the realignment proposals involve more than one curve on a highway section, it is necessary to include the entire alignment (from common point to common point, which includes all the alternatives) in the analysis. The route to be used should include all expected costs that apply to the specific project. All alternatives considered must be feasible from a route location perspective.

The benefit-cost guidelines include benefits for reductions in vehicle running cost, time savings for shorter alignments or higher speeds, and potential savings in collision costs. Three factors may contribute to savings in collision cost for horizontal alignment improvements. These factors are:

1. Length of Alignment

Where the length of the project is different for different alternatives, this will result in

differences in total vehicle kilometres, or exposure of vehicles to collision risk, over the analysis period.

2. Collision severity.

The collision severity on any particular project could be affected by horizontal alignment improvement. However, there is no data available at the present time to link these two factors. Generally, where horizontal realignment is being considered, if all other geometric features are to remain unchanged, then no change in collision severity should be assumed. The analysis should consider that other improvements (sideslope flattening or removal of obstacles such as approaches), which are often undertaken at the same time as horizontal realignment, could result in lower collision severity. In this case, a reduction in collision severity may be appropriate.

3. Collision rate.

Collision rate (generally expressed as collisions per 100 million vehicle kilometres) is known to be related to the sharpness of horizontal curvature. Many models have been developed to predict the collision rate on horizontal curves and tangents of high speed rural highways. It is recommended that the Glennon Model be used to estimate the future collision rate, as described in Appendix D of the 1987 Transportation Research Board (TRB) publication Special Report 214 entitled Designing Safer Roads - Practices for Resurfacing. Restoration or Rehabilitation. The model should be calibrated using the existing collision experience on the highway section in question. An example showing the use of this model is included in Appendix B of this chapter.

On many projects where horizontal realignment is considered, cost effectiveness can be demonstrated without a significant dollar value for collision cost savings. However, on some projects the collision cost savings are crucial to the overall cost-effectiveness. In these cases, a sensitivity analysis should be performed; that is, an analysis which will show the cost-effectiveness based on a range of collision rates that may result after geometric improvement. The results of the sensitivity analysis will allow an informed decision to be made regarding realignment based on a reasonable prediction of collision rate change. An example of a full economic analysis, including a sensitivity analysis, for horizontal alignment improvement is shown in Appendix B.

Where horizontal realignment of existing paved roads takes place, the new alignment should be projected considering desirable standards. Minimum standards are to be used for critical locations, with better standards encouraged where practical and cost-effective. Desirable standards result in lower superelevation rates, less wear and tear for vehicles and tires on curves, and generally safer and more relaxed driving conditions for all road users.

G.3 VERTICAL CURVATURE

G.3.1 Crests

Vertical crest curve reconstruction should be evaluated if any one of the following conditions exist:

- 1. There is a safety problem, or
- 2. There is a hazard in close proximity to the crest, or
- 3. The AADT exceeds 3000 and there is limited sight distance (that is, stopping sight distance available is substantially less than what would normally be provided under new construction standards for vehicles travelling at the average running speed of vehicles on the crest).

Although evaluation of vertical crest curves is appropriate where any of the above conditions exist, reconstruction may not be the most desirable action, due to low cost-effectiveness, physical constraints, or other reasons.

The use of traffic control devices to advise motorists of the sharp crest may be considered where a decision has been made <u>not</u> to improve a vertical alignment due to low cost-effectiveness, although the existing alignment is substantially below current standards. Additional low-cost measures to be considered are fixed hazard removal, shoulder widening and relocation of minor intersection.

Generally, a substantial sight distance restriction is one where the minimum stopping sight distance available is more than 20 km/h less than the 85th percentile running speed of vehicles on the crest. In Alberta, the 85th percentile running speed on twolane highways is frequently 109 km/h. Therefore, the suggested minimum vertical crest curvature is generally based on the minimum stopping sight distance for 89 km/h.

Using current object height, eye height, perceptionreaction time and friction factor, this gives a minimum stopping sight distance of 165.76 m (rounded to 166 m) or a crest K value of 51.0 (rounded to 50) for a running speed of 109 km/h. Therefore a K value of 50 is considered acceptable on existing paved undivided highways with design speed up to 110 km/h. This same value is used for divided highways which may have a higher design speed (up to 130 km/h), a higher posted speed of 110 km/h and a higher 85th percentile running speed (estimated a 116 km/h). The reason for accepting the K of 50 on divided highways is because stopping sight distance is not as critical on a roadway serving just one direction of travel. Additionally, experience from other agencies especially in the United States¹ indicates that a speed differential between running speed and stopping sight distance speed of 32.2 km/h (20 mph) is generally acceptable on existing crest curves that are under consideration for reconstruction.

Table G.3.1 shows suggested minimum vertical crest curve K values for 3R projects in Alberta based on the above criteria.

¹ Reference: Special Report 214, Practices for Resurfacing, Restoration and Rehabilitation, Transportation Research Board, National Research Council 1987.

Design Speed (Km/h)	85th Percentile Running Speed Minimum Vertical Crest Curves		Stopping Sight Distance		e if SSD < LVC* ect = 0.38 m	K Value if SSD > LVC*
	V ₈₅ (Km/h)	V ₈₅ -20 (Km/h)	m	Exact	Rounded for Design	
110 - 130	109	89	165.75	51.00	50	Depends on the
100	100	80	136.84	34.76	35	A value (refer to formulae on
90	90	70	108.90	22.02	25	following page)
80	80	60	83.35	12.90	15	

Table G.3.1 Suggested Minimum Vertical Crest Curve K Values for 3R/4R Projects

SSD = Stopping Sight Distance

A = Algebraic Difference of Grades

* LVC = Length of Vertical Curve

Where the 85th percentile running speed is different from that shown in Table G.3.1, the formulae below can be used to determine minimum crest K values.

Use of the formulae below may also be required to determine the suggested minimum K value where the stopping sight distance exceeds the length of vertical curve (SSD > LVC).

$$SSD = \frac{Vt}{3.6} + \frac{V^2}{254.f} \qquad t = 2.5 \text{ seconds}$$

$$K = \frac{SSD^2}{200(\sqrt{h_1} + \sqrt{h_2})^2} = \frac{SSD^2}{538.666} \qquad \text{if } SSD < LVC$$

$$K = \frac{2(SSD)}{A} - \frac{200(\sqrt{h_1} + \sqrt{h_2})^2}{A^2} \qquad \text{if } SSD > LVC$$

$$K = \frac{2(SSD)}{A} - \frac{538.666}{A^2}$$

$$h_1 = 1.05m \text{ (eye)}$$

$$h_2 = 0.38m \text{ (object)}$$

$$V = Speed (km / h)$$

$$f = friction factor for stopping (Table B.2.3)$$

Reference: AASHTO, A Policy on Geometric Design of Highways and Streets, 1990 (Page 283)

G.3.2 Sags

It is generally not cost effective to improve vertical sag curves unless accident records indicate that the vertical curvature is causing collisions. If the existing vertical sag K value is so low that it is uncomfortable for occupants of vehicles travelling at the 85th percentile speed, consideration should be given to improvement. Where the 85th percentile running speed is 110 km/h, a sag vertical curve K value of 30 should be considered minimum. Sharper sags would be uncomfortable at this speed¹. Table G.3.2 shows minimum sag curve K values which are suggested for various speeds.

¹ TAC Manual of Geometric Design Standards for Canadian Roads (1986), Appendix A.

Design Speed	85th Percentile Running Speed	Suggested Min	mum Sag Curve K Value		
km/h	km/h	Exact	Rounded for Design		
60	60	9.2	10		
80	80	16.4	20		
100	100	25.7	25		
110	109	30.6	31		
120	112	32.3	33		
130	116	34.6	35		

Table G.3.2 Suggested Minimum Vertical Sag Curve K Values for 3R/4R Projects

The above table is based on the following:

- 1. Radial acceleration should not exceed 0.3 m/sec^2
- 2. Radial acceleration = v^2 / R
- 3. R is the rate of change of curvature = 100K

$$0.3 \ge \frac{v^2}{100K}$$
 v in metres per second

$$K \ge \frac{V^2}{100x0.3} \left(\frac{1000}{3600}\right)^2$$
 V in km/h
Therefore $K \ge \frac{V^2}{388.8}$

¹ TAC Manual of Geometric Design Standards for Canadian Roads (1986), Appendix A.

G.4 INTERSECTIONS

Annual traffic collisions statistics compiled over several years in Alberta have shown that approximately 25 percent of all casualty collisions and 28 percent of all fatal collisions occurring on the rural highway system have happened at intersections. Consequently, it is appropriate to review the functional, geometric and operational requirements of all at-grade intersections at the time of pavement rehabilitation. Designers should refer to Chapter D At-Grade Intersections to check all aspects of existing intersections, such as layout, gradients, superelevation and capacity.

To provide safe operations, intersections should be designed to accommodate all vehicles which use them on a regular basis. The available intersection sight distance in both directions for each vehicle type must be measured in the field using the eye and object heights shown in the table. Alternatively, the sight distance available may be measured from the profile if an accurate as built profile is available and there are no restrictions to the sight lines in the horizontal plane. The accident history at each intersection should also be checked before deciding if corrective measures are appropriate.

The available sight distance should be compared to the sight distance required for each design vehicle according to new construction standards and the design speed. Where this sight distance is not available, a designer should compare the available sight distance to the requirement for the posted speed at that location on the major highway.

<u>Note</u>: Intersection sight distance requirements are based on providing sufficient sight distance so that the design vehicle, having come to a stop on the minor road, can safely make a left turn onto the highway without being struck by a vehicle approaching at high speed from the left. A perception-reaction time of two seconds is allowed for this manoeuvre. In the new construction standard, the high speed vehicle is assumed to be approaching at design speed. However, in the 3R standard the posted speed is used.

The sight distances shown on Table G.4 are generally acceptable at existing intersections. However, more stringent criteria (longer sight distances) are generally provided at newly constructed intersections if trucks larger than the WB-15 vehicle are frequently turning at the junction. Designers should assess the turning movements and vehicle composition at an intersection to ensure that an adequate sight distance is provided.

				Sight Distance Requirement for Left Turn onto Highway (m)									
Design	Eye	Object	Nev	v Cons	truction	n Stand	lard	Mini	rnum A	ccepta	ble for	3R Proj	ects
Vehicle	Height	Height		Design Speed (km/h)				Pos	sted sp	eed (kr	n/h)		
	(m)	(m)	80	100	110	120	130	60	70	80	90	100	110
WB-21	2.1	1.3	-	-	-	-	-	307	358	409	460	500	500
WB-15	2.1	1.3	313	392	430	470	510	233	272	313	330	392	430
Bus (SU type)	1.8	1.3	235	295	325	355	385	177	206	235	240	295	325
Passenger Vehicle (P type)	1.05	1.3	160	200	220	235	255	117	136	160	155	200	220

Table G.4 Suggested Minimum Sight Distances for At-Grade Intersections on 3R/4R Projects

G.5 PASSING OPPORTUNITY (CLIMBING, PASSING LANES)

Projects undergoing pavement rehabilitation should be checked for passing opportunity. The passing opportunity available on a highway segment due to pavement markings, together with the passing demand (which is a function of traffic volume and speed distribution), will have a major impact on level-of-service. Designers should use the warrants and guidelines for climbing and passing lanes contained in Chapter B to determine the need for auxiliary lanes.

Care should be exercised in applying the auxiliary lane warrants to existing paved roadways. There may be cases where the addition of an auxiliary lane is not desirable even though the warrant is met. This could be due to the physical constraints of the existing roadway, presence of hazards such as intersections, or the location of no passing zones. For safety reasons on some projects, it may be necessary to include some access control in conjunction with construction of auxiliary lanes. Where this is not feasible, it may be better not to build the auxiliary lane.

G.6 ROADSIDE DESIGN

G.6.1 Definition of Clear Zone

Clear zone is the total roadside border area, starting at the edge of travelled way, available for safe use by errant vehicles. Although the movement of out-ofcontrol vehicles is difficult to predict, a study of runoff-road incidents entitled The General Motors Proving Ground Study⁸ has shown that 50 percent of errant vehicles do not go beyond five metres from the edge of roadway while a full 80 percent stray less than nine metres. Provision of a clear forgiving roadside area for the entire right of way width is desirable. However, for hazards that are located more than nine metres from the travelled way, it is more difficult to justify the cost of mitigation because of the smaller number of crashes that would be eliminated.

To assist designers in deciding which hazards should be mitigated, the clear zone concept has been developed. The clear zone distance, used for design purposes, is a function of the design speed, sideslope and traffic volume. Other factors such as horizontal alignment, hazard type etc. should also be used where applicable. Clear zone width can be determined from Table C-5.2a. For typical Alberta rural highway conditions, the normal clear zone on tangent sections is 9 m. Generally, any hazard located within the clear zone distance should be mitigated. Sometimes major hazards are located outside of the clear zone; for example, large bodies of water which could result in severe collisions. In these cases, designers may still provide protection even though it is generally not required by the clear zone policy. Engineering judgement should be used in applying the clear zone concept, generally providing more protection against, or clearance from severe hazards, especially when volumes and speeds are higher.

G.6.2 Shoulder Rumble Strips

In general on all overlay or grade-widening projects, shoulder rumble strips should be included if the shoulder is wide enough. Generally on undivided highways, the minimum shoulder width required for rumble strips is two metres. This is to ensure that an adequate smooth pavement width is available on the shoulders for bicycle traffic. In the case of onedirection-only roads, such as divided highways or interchange ramps, the minimum shoulder width is two metres on the right hand side and 1.2m on the left hand side to allow for rumble strips. Rumble strips are not placed through urban areas or where shoulder widths are reduced due to turning lanes or for other reasons. The addition of shoulder rumble strips is expected to reduce the number of single vehicle run-off-road collisions by alerting drivers when they veer off the travel lanes.

The typical layout and details for shoulder rumble strips is shown in Figures C-3.1a, C-3.1b and C-3.1c. Some changes to the typical layout may be made in the future to allow for usage on narrower shoulders, intermittent strips or selective rumble strips where run-off-road incidents are likely to occur. Because shoulder rumble strips are a relatively new feature in Alberta, the methods used to install the strips may be modified and improved in the future. Shoulder rumble strip layouts and methods should be consistent with current practice at the time of installation.

⁸ Skeels, P.C., The Role of the Highway in a Safe Transportation System. Presented at 65th annual convention, American Road Builders Association (Feb. 1968).

G.6.3 Improvement to Sideslopes, Ditch and Backslopes

On any roadway where the 85th percentile running speed exceeds 100 km/h, any existing sideslopes of 3:1 or steeper should be identified as candidate locations for improvement. On projects where it is not cost effective to do sideslope improvements on the entire project (due to low traffic volumes), improvements should be considered at locations where run-off-the-road collisions are likely to occur, such as on the outside of sharp horizontal curves. Existing sideslopes of 4:1 or flatter on existing paved roads generally do not warrant improvement.

Where sideslope improvements are being undertaken, a 4:1 slope should be considered as a minimum, 5:1 desirable for moderate volumes (design AADT 1500-4000) and 6:1 desirable for higher volume two-lane roadways (design AADT>4000) and all divided highways. Where the existing ditch width is being reduced to accommodate sideslope improvements, 1.2m should be considered the minimum width. However, the designer must ensure that the ditch is sufficiently wide to provide adequate drainage and snow storage capacity.

Although backslopes are not as critical as sideslopes for an errant vehicle, it is desirable to provide 3:1 or flatter backslopes to improve the traversability of the entire roadside cross section.

The traffic volume ranges in Table G.6.3a are suggested as a guide for determining the extent of roadside improvement that is warranted at the time of pavement rehabilitation. These ranges are based on an economic analysis of the safety cost effectiveness of sideslope improvements and consideration of the new construction standards for roadways with these volumes. The economic analysis is shown in Appendix C.

G.6.4 Treatment of Approaches on

Access management, particularly the assessment of existing approaches for possible elimination, consolidation or improvement should be considered prior to all overlay, rehabilitation or widening projects.

In determining the number, location and spacing of approaches to adjacent properties or roadways serving adjacent lands, the department's Access Management Guidelines (Chpater I of the Design Guide) shall be used. These guidelines may be used as basic requirements on new construction projects and may also be used as a basis for access management plans on pavement rehabilitation projects or for consideration of development applications.

When accesses are to be retained the following guidelines should be used:

- 1. The geometrics of approaches shall typically be as shown in Figure D-3.3a (for main intersecting roadway) or Figure D-3.3b (for minor intersecting roadway). The geometrics of other embankments within or close to the clear zone of a highway right-of-way such as a railway embankments or irrigation canal embankments should be assessed in a similar way to roadway approaches. Because of the additional hazard posed by irrigation canals, there is a greater need to provide protection for the motorist and therefore relocation of accesses in close proximity to canal crossings may be justified in some cases. The purpose of the relocation would be to allow appropriate traffic barriers to be placed to protect highway traffic from the canal hazard and to allow for gentle slopes.
- 2. Where a culvert is required on a new approach or where culvert replacement is needed in an existing approach the culvert should be placed as far away from the highway as possible while still accommodating ditch drainage. Placement near the highway right-of-way boundary is desirable.
- 3. The slope of an approach is a key factor affecting safety. The slopes are generally variable due to the transition from highway embankment to approach embankment and due to the intersection of these slopes and therefore the slope midway between the highway shoulder and basic right-ofway boundary is used here (and illustrated in Figures D-3.3a & D-3.3b) as a criteria. In areas of high fill, the slope should be measured at a location where the slope extends to the bottom of the embankment.

If slope is steeper than 4:1 on undivided highway or 5:1 on divided highway, improvement should be considered. If slope is steeper than 3:1, approach should be given a high priority for improvement or removal. Where condition of existing culverts in approaches indicates that replacement is needed, approach sideslopes should be reviewed and improved to an appropriate standard where warranted.

Where improvements to existing approaches are being made or where new approaches are being installed, the desirable slopes shown in Table 1 are suggested.

4. Under special or site specific circumstances, designers are encouraged to use their engineering judgment to customize the design rather than attempt to apply the typical solution where this is impractical. Judgment could be based on the designer's knowledge of the safety and geometric information on the highway in the vicinity of the existing accesses in question, e.g., poor collision history, substandard geometric parameters, presence of bridges or irrigation canals, aesthetics and so on.

- 5. Accesses on the outside of horizontal curves where run-off-road incidents are more likely to occur should be given higher priority for improvement.
- 6. Engineering judgment should be used to determine the need for and scheduling of improvements to existing accesses. Normally a review of access management in general and access geometrics in particular would be undertaken prior to any construction operations. Minor improvements to accesses may be made in conjunction with pavement rehabilitation works however major access management initiatives are normally only undertaken as part of major upgrading projects.

Design AADT	Sideslope Improvements Warranted	Assumptions
0 - 200	Selective improvement at locations where run-off-road collisions are likely.	1. 85th percentile running speed exceeds 100 km/h.
200-300		2. Existing sideslope is 3:1 or steeper.
Pavement width ≤ 8.2 m	Improve sideslope to 4:1 or flatter.	
Pavement width > 8.2m	Selective improvements warranted only.	
300 - 1500	Improve sideslope to 4:1 (minimum) or flatter.	
1500 - 4000	Improve sideslope to 4:1 minimum or 5:1 (desirable)	
> 4000 (undivided) All Divided Highways	Improve sideslope to 4:1 minimum or 6:1 desirable.	

Table G.6.3a Sideslope Improvement Warrants

Primary Highway Posted >= 100 km/h	Fill Height	Acceptable Slope on Existing Approach – Projects with Minimum Grading (see Note 1)	Acceptable Slope on Existing Approach – Projects with Major Grading Component (see Note 2)	Desirable Slope on New Approach
Undivided Highway	< 4 m fill	3:1	4:1	7:1
AADT < 1,000	>4 m fill	2:1	3:1	4:1
Undivided Highway	< 4 m fill	3:1	5:1	7:1
1,000 < AADT < 3,000	> 4 m fill	2:1	3:1	5:1
Undivided Highway	< 4 m fill	4:1	5:1	7:1
AADT > 3,000	>4 m fill	3:1	4:1	6:1
Divided Highway	< 4 m fill	4:1	5:1	7:1
AADT < 6,000	>4 m fill	3:1	4:1	7:1
Divided Highway	< 4 m fill	4:1	6:1	8:1
6,000 < AADT < 15,000	> 4 m fill	3:1	5:1	7:1
Divided Highway	< 4 m fill	6:1	7:1	10:1
AADT > 15,000	>4 m fill	4:1	5:1	7:1

Table G.6.4 Suggested Approach Sideslopes*

* Approach slope to be measured at a point midway between the highway shoulder and basic right-of-way boundary as illustrated on Figures D-3.3a and D-3.3b.

Note 1: Projects with minimal grading may include pavement rehabilitation projects and projects with isolated grading work such as intersection improvements.

Note 2: Projects with major grading component include sideslope improvement, grade-widening, reconstruction etc.

G.6.5 Guardrail

All existing guardrail installations should be reviewed to determine if replacement is necessary or if some other mitigative measure is more cost effective. Because guardrail on the shoulder is a hazard of moderate severity and generally causes snow drifting when the conditions are right, it is desirable to eliminate guardrail where possible or offset the guardrail from the shoulder. Where guardrail has been installed due to a high embankment or a steep sideslope, it may be more cost effective to flatten the sideslope than to reinstall the guardrail. A design guide based on life-cycle cost-effectiveness, which is summarized in Section C.5.3.1., provides some guidance for choosing between guardrail replacement and sideslope flattening from 3:1 to 4:1. All projects should be checked for hazards in the clear zone or near the clear zone which may need to be mitigated or protected by guardrail. Refer to Section C.5.3. Hazards to be Considered for Mitigation.

G.7 SUPERELEVATION

This section is to be used when it has been determined that horizontal realignment will not take place.

The superelevation rate on an existing road should be compared to what is required by a vehicle travelling at the 85th percentile running speed on that radius according to new construction standards.

Where the existing superelevation is less than what is recommended for new construction for the 85th percentile running speed and the superelevation rate is less than the maximum allowable (0.08 m/m), consideration should be given to increasing the superelevation rate.

To decide whether or not superelevation adjustment is warranted the following steps should be taken:

- 1. Calculate the fdemand that will result on a vehicle travelling on the circular portion of the curve at the 85th percentile running speed. This value should be compared to the maximum safe side friction factor (f_{max}) of the 85th percentile running speed which is based primarily on comfort.
- 2. If fdemand exceeds f_{max} the superelevation rate should be increased to e_{max} (0.08 m/m) or e3R (shown on chart on following page), whichever is lower. Where practical, it is desirable when making adjustments to superelevation to set the new cross slope at edesign; that is, at the recommended superelevation rate according to new construction standards.

$\operatorname{Rmin} = \frac{V^2}{127(e_{\max} + f_{\max})}$
R _{min} = minimum radius (m) for the design speed
V^* = design speed (km/h)
emax = the maximum superelevation rate used
 generally 0.06 for rural roads in Alberta
 0.08 m/m is permitted on 3R projects
fmax* = the maximum allowable safe side friction
factor for the design speed (Table B.3.3)

- 3. If fdemand is less than fmax but eexisting is less than edesign, some improvement to the superelevation should be considered as follows:
 - If fdemand exceeds 0.04 and is less than i) fmax, but eexisting is less than edesign, the superelevation should be set at least as high as indicated in the Superelevation Chart for 3R Projects and can be set as high as indicated by the new construction superelevation standard, which should be considered as the desirable rate. Where the existing curvature is sharper than would be allowed using the 85th percentile running speed and the 0.06 m/m maximum table, an 0.08 absolute maximum m/m superelevation may be used.
 - ii) If fdemand is less than 0.04 (based on the 85th percentile running speed), some flexibility is allowed. Improvement of superelevation is not required even though it may be desirable. This is because it is difficult to justify expenditures on superelevation improvement which only yield a more comfortable curve. When fdemand \leq 0.04, the factor of safety against side slipping is so high that it is not a concern. The adoption of 0.04 as tolerable is supported by the policy of allowing f values up to 0.04 (approximately) on normal crown curves before applying superelevation.

The following formulae may be used to calculate Rmin and fdemand:

fdemand =
$$\frac{V^2}{127R} - e$$

fdemand = the friction demand on a vehicle travelling at speed V (km/h) on a circular curve of radius R (m) with superelevation e

e _{3R}	V85	V85	V85	V85	V85	V85	V85	V85
	60 km/h	70 km/h	80 km/h	90 km/h	100 km/h	110 km/h	120 km/h	130 km/h
	R _{MIN} (m)	R _{MIN} (m)	R _{MIN} (m)	R <u>MIN</u> (m)	R <u>MIN</u> (m)	R _{MIN} (m)	R _{MIN} (m)	R <u>MIN</u> (m)
	^f demand	^f demand	^f demand	^f demand	^f demand	^f demand	^f demand	^f demand
NC	1410	1930	2520	3190	3950	4770	5680	6660
	(0, 0.04)	(0, 0.04)	(0, 0.04)	(0, 0.04)	(0, 0.04)	(0, 0.04)	(0, 0.04)	(0, 0.04)
RC	570	775	1010	1280	1570	1900	2270	2670
	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)
0.03	315	430	560	800	990	1300	1620	1910
	(0.06)	(0.06)	(0.06)	(0.05)	(0.05)	(0.043)	(0.04)	(0.04)
0.04	205	300	390	531	790	1060	1260	1480
	(0.10)	(0.09)	(0.09)	(0.08)	(0.06)	(0.05)	(0.05)	(0.05)
0.05	170	230	315	425	570	800	940	1110
	(0.12)	(0.12)	(0.11)	(0.10)	(0.09)	(0.07)	(0.07)	(0.07)
0.06	130	190	250	340	440	600	750	960
	(0.15)	(0.15)	(0.14)	(0.13)	(0.12)	(0.10)	(0.09)	(0.08)
0.07	130	175	240	320	420	560	710	890
	(0.15)	(0.15)	(0.14)	(0.13)	(0.12)	(0.10)	(0.09)	(0.08)
0.08	125	170	230	305	390	530	670	830
	(0.15)	(0.15)	(0.14)	(0.13)	(0.12)	(0.10)	(0.09)	(0.08)

Table G.7 Suggested Minimum Radii for Superelevation Rates on 3R/4R Projects

Rmin is the suggested minimum radius for the superelevation rate and 85th percentile running speed shown.

V85 is the 85th percentile running speed recorded in daylight and good road conditions.

fdemand is the friction demand on a vehicle travelling on the circular portion of the curve given the speed and superelevation rate shown.

- 1. The desirable superelevation rates are shown in the new construction standards, Table B.3.6a.
- 2. Values shown in this table are the suggested minimum superelevation values that should result from pavement rehabilitation projects.
- 3. Existing superelevation rates which are higher than the design superelevation rate for new construction should normally not be altered unless they are greater than 0.08 m/m (which is the absolute maximum) or more than 0.02 m/m higher than the recommended rate for new construction. In this case they should be lowered.
- 4. The minimum radii for each superelevation rate and running speed as shown in this table have been calculated using an allowable friction demand which is higher than that used for each superelevation rate on new construction projects. The friction demand is, however, always less than the maximum allowable safe side friction factor for each design speed.
- 5. The ball-bank indicator test may be used to determine the need for speed advisory tabs on signs at horizontal curves.
- 6. The rationale used to develop this table is explained in Appendix D.

APPENDIX A

ECONOMIC ANALYSIS FOR GRADE-WIDENING

This appendix presents the economic analysis that is the basis for Figure G.1.1. Suggested Minimum Roadway Width for Rural Highways in Alberta. The appendix is divided into the following sections:

- G.A.1. Background Information: Basis of Economic Analysis
- G.A.2. Calculation of Costs
- G.A.3. Calculation of Benefits
- G.A.4. Summary of Results
- G.A.5. Rationale for Figure G.1.1.

G.A.1 Background Information: Basis of Economic Analysis

The economic analysis used to justify the suggested traffic volumes ranges required to warrant grade-widening as shown on Figure G-1.1, is based on the principles set out in the Benefit-Costs Analysis, Summary, Guide and User Manual prepared by K. E. Howery, P.Eng. and Applications Management Consulting Ltd. for Alberta Infrastructure, distributed in 1992. Because the above document is general in nature, some additional investigation into collision rates, collision severity, construction costs, etc. was required for this economic analysis. The values adopted as a result of the investigation are documented in this appendix.

Alberta Infrastructure' benefit-cost analysis guidelines suggest that an Internal Rate of Return (IRR) of at least four percent must be produced in the design life of an improvement for it to be considered cost effective. The IRR is an indicator of the economic viability of any project. The IRR is the discount rate at which the present value of benefits equals the present value of costs. As in any investment, the higher the rate of return, the better. However, any rate higher than the discount rate (four percent being generally used) shows economic feasibility.

The IRR for any proposed improvement is calculated based on incremental costs and benefits that would result from the improvement. For example, on an existing paved highway which is scheduled for pavement rehabilitation, the very minimum amount of work that may be required could be a pavement overlay. The pavement overlay will result in certain costs and benefits. The proposed improvement may be realignment, gradewidening or something else. The improvement will result in some costs and benefits which should be calculated over the life of the improvement. The costs and benefits that are used in the analysis are the net values resulting from the improvement; that is, the additional construction costs, the reduced road user costs and other additional benefits to society. The stream of costs and benefits used in the analysis may be extended to 50 years. However, the key indicator of economic feasibility is the IRR at the end of the design life of the improvement. This is generally the twentieth year, or sooner in some cases.

G.A.2 Calculation of Costs

The incremental costs for grade-widening on existing paved roads are calculated based on the current practice for treatment of those projects. Current practice is to first determine if grade-widening or other geometric improvements are required. If no major improvements are required, the existing sideslope ratio is checked for adequate slope using the 3R/4R Geometric Design Guidelines. Generally if the existing sideslope is 3:1 or steeper, the slope will be improved to 4:1 if the AADT is at least 300 or flatter where appropriate for higher volumes. On some projects even where the existing slope is 4:1, it may be necessary or desirable to include sideslope improvement in the overlay project to preserve the pavement surface width and provide a flat roadside area that is appropriate for the traffic volume.

Based on the above considerations, the cost of an overlay without grade-widening is calculated. This is the base case or do-nothing alternative (alternative 1) for economic analysis purposes. The cost for grade-widening (alternative 2) which includes overlay, sideslope improvement, etc. is then calculated. An average cost for grade-widening to both sides and one side is used in the analysis.

The costs for each alternative are all inclusive project costs i.e. including engineering, materials, right of way, contract, etc. For each alternative, a stream of capital costs is developed for each year, starting from the year of construction and extending to year 50 (or longer if necessary). This is necessary because the grade-widening may result in higher capital costs in future years due to the wider pavement that will need to be overlayed in 20-year cycles (approximately).

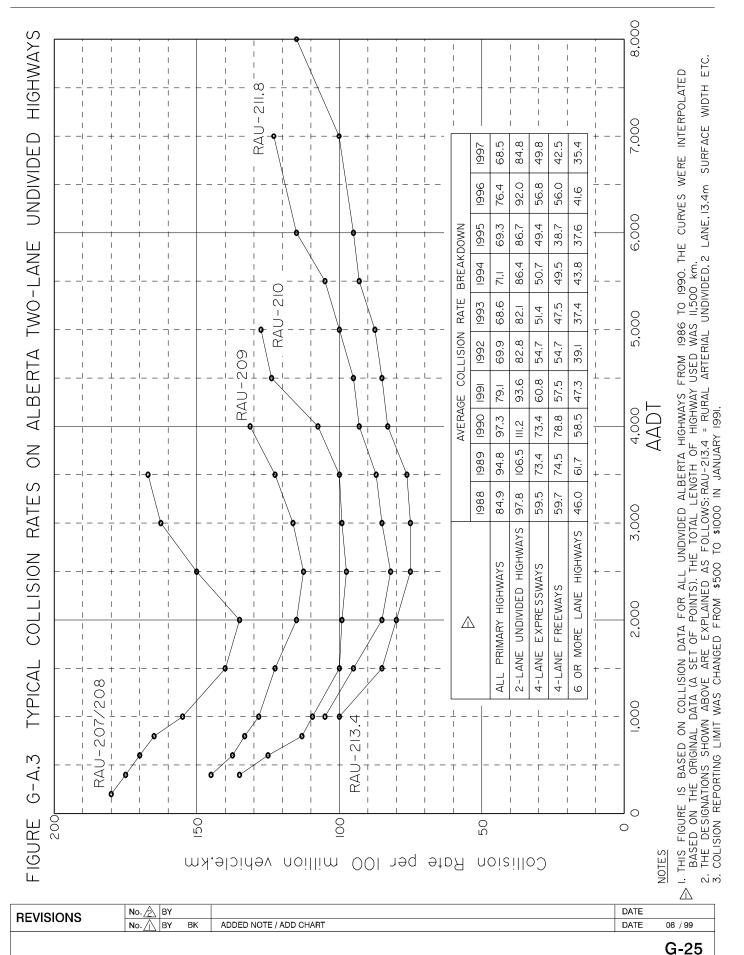
The capital cost difference for each year is calculated by comparing the costs for alternatives 1 and 2. This is easily done using a standardized Lotus spreadsheet, a copy of which is shown in this appendix.

G.A.3 Calculation of Benefits

The benefits used in this economic analysis for grade-widening are based on safety only. In particular the benefits are calculated based on a reduced collision rate that can be expected after widening, and a reduced collision severity for run-off-road collisions that should result due to the flatter sideslope, wider ditch and flatter backslope. The change in collision severity is used only if the sideslope ratio is different in one alternative compared to the other.

Frequently, other geometric improvements such as improvements to horizontal or vertical alignment or intersections, are included with grade-widening. However, because the additional costs associated with those improvements are not included here, the benefits are also not included.

The collision rate for each roadway used in this analysis has been based on the average collision experience on Alberta primary highways from 1986 to 1990. The information has been obtained from collision records compiled by Motor Transport Services and is summarized in Figure G-A.3. The average collision rates computed over the five-year period for each shoulder width were plotted based on traffic volumes. The initial plots for each roadway width produced a set of points. A smooth curve was interpolated to represent each set of points. The interpolation was not strictly scientific, but rather was based on application of engineering judgement to the data available for each volume and width.


A collision severity index scale has been developed for run-off-road collisions in Alberta to determine the benefits that may occur due to the flattening of sideslopes and other improvements to the roadside area that are generally undertaken as part of grade-widening projects.

The typical severity indices have been established using the Alberta Collision History Information and the typical differences between severity indices as published by the U.S. Federal Highway Administration (FHWA) for collisions occurring in 3:1, 4:1 and 5:1 sideslopes at 70 mph. It is assumed that the severity of a typical run-off-road collision in Alberta is representative of a collision occurring on a 4:1 sideslope. Although some slopes are steeper and some are flatter, the average severity is likely a good typical value to use for a 4:1 slope which is very common in Alberta. The severity indices for 3:1, 5:1 and 6:1 slopes were selected based on the typical differences in severity between those slopes and a 4:1 slope as reported by FHWA; that is, the Alberta severity indices are not the same as FHWAs (because it was found that Alberta's run-off-road collisions are generally less severe than predicted by FHWA). However, the scale developed by Alberta and shown in Table G.A.3.a is consistent with FHWA in terms of the relative severity of various slopes.

			Breakdown of Collision Types (% of Total)						
Embankment Sideslope	Severity Index (name)	Severity Index (value)	Fatal	Injury	Property Damage Only				
3:1	SA _{3:1}	4.8	3.2	45.0	51.8				
4:1	SA _{4:1}	4.0	1.585	34.315	64.100				
5:1	SA _{5:1}	3.8	1.385	32.095	66.520				
6:1	SA _{6:1}	3.0	0.5283	23.2717	76.2000				

Table G.A.3.a Alberta Severity Indices for Run-off-Road Collisions

Using the severity indices to predict the breakdown of collision type after grade-widening and the average cost per collision of each type, the net benefits may be calculated.

Alberta Infrastructure HIGHWAY GEOMETRIC DESIGN GUIDE

GRAPHICS FILE: debga3.man

The total societal cost of fatalities, injuries and property damage resulting from collisions in Alberta has been tabulated as follows (in the Benefit-Cost Analysis Guide):

Fatality	770,465	\$/Death *
Serious Injury	515,721	\$/Injury
Moderate Injury	5,042	\$/Injury
Property Damage	2,011	\$/Collision

* 1992 dollars

The costs per fatal and injury collision are calculated as follows:

Fatal Collision

For each crash that includes a fatality, on average:

- 1.35 people die
- 0.57 are seriously injured
- 0.69 are moderately injured.

Including property damage, an average cost per fatal collision is valued at:

1.35 x 770,465 + 0.57 x 515,721 + 0.69 x 5,042 + 2,011 = **\$1,339,578 per fatal collision**

Injury Collision

For an average non-fatal crash that includes an injury:

- 0.26 victims are seriously injured and
- 1.43 receive moderate injury.

The average cost per injury collision, including property damage, is as follows:

515,721 x 0.26 + 5,042 x 1.43 + 2,011 = **\$143,309 per injury collision**

Therefore, the average cost per collision is as follows:

Fatal Collision	\$ 1,339,535
Injury Collision	\$ 143,309
Property Damage Only Collision	\$ 2,011

Based on the above, and knowing that, of all accident types in Alberta, two percent are fatal, 25 percent are injury and 73 percent are property damage only, an average cost for all collisions (C_p) may be calculated:

$$\begin{split} C_p &= 0.02 \ x \ 1,339,578 + 0.25 \ x \ 143,309 + 0.73 \ x \ 2,011 \\ &= 26,792 + 35,827 + 1,468 = \textbf{$64,087 per collision} \ (\text{this is an average for all collision types}) \end{split}$$

Similarly the average cost per run-off-road collision on various sideslopes may be calculated using the information in Table G.A.3.a:

Sideslope	Average Cost per Collision	\$ (1992)
3:1	0.032 (1,339,578) + 0.450 (143,309) + 0.518 (2011) =	108,397
4:1	0.01585(1,339,578) + 0.34315(143,309) + 0.64100(2011) =	71,698
5:1	0.01385 (1,339,578) + 0.32095 (143,309) + 0.66520 (2011) =	65,886
6:1	0.005283 (1,339,578) + 0.232717 (143,309) + 0.762000 (2011) =	41,960

Therefore the percentage reduction of run-off-road collision cost resulting from sideslope flattening is shown in Table G.A.3.b.

Table G.A.3.b Percentage Reduction of Run-off-Road Collision Cost Resulting from Sideslope Flattening

Sideslope	Unit coll. cost	% Reduction in cost as	% Reduction in cost	% Reduction in cost
ratio on	\$ per accident	a result of sideslope	as a result of	as a result of
existing road	(C _{ssl})	flattening to 4:1	sideslope flattening	sideslope flattening
			to 5:1	to 6:1
3:1	C 3:1 = 108,399	33.9	39.2	61.3
4:1	C 4:1 = 71,698	-	8.1	41.5
5:1	C 5:1 = 65,886	-	-	36.3
6:1	C 6:1 = 41,960	-	_	-

The total number of accidents per km of highway per year (A_t) can be calculated from the following formula:

 $A_{t} = (CR \times AADT \times 365.25 \times 1 \text{ km}) / (100 \times 10^{6})$

Where

re A_t = total number of accidents/km/year

AADT = average annual daily traffic

CR = existing collision rate expressed in collisions per 100 million vehicle km.

The provincial average percentage of total collisions that are run-off-road type, based on the records from 1987 to 1991, is used to establish a reasonable breakdown.

Percent of all collisions that are run-off road type

1991	34.07
1990	32.40
1989	34.60
1988	33.50
1987	36.10
5 Year Average	34.13

The average distribution of collisions may be expressed as follows:

$$A_{t} = 0.659 \times A_{t} + 0.341 \times A_{t}$$

with 0.341 x A_t representing the number of run-off-road collisions.

Total accident cost per km per year on a given roadway is:

 $C_t = C_a \times 0.659 \times A_t + C_{ssl} \times 0.341 \times A_t$

Where C_t = collision cost/km/year C_{ssl} = average cost per run-off-road collision on a given sideslope C_a = provincial average cost per accident

 $C_{t} = \left[(CR \times AADT \times 365.25 \times 1) / (100 \times 10^{6}) \right] \times (C_{a} \times 0.659 + C_{ssl} \times 0.341)$

Using the above formula together with information from Figure G-A.3 and Table G.A.3b, the collision-reduction benefits that can be expected from a grade-widening project may be calculated for any value of AADT.

In the case of a project-specific analysis, knowledge of the collision experience on the existing highway may be used to calculate the collision cost without improvement. For this generic economic analysis, the results of which will be used throughout the province, average values are used.

The calculations described above may be done on a Lotus spreadsheet.

G.A.4 Summary of Results

The economic analysis involved a series of calculations using various values for existing pavement width and proposed pavement width together with the costs and benefits defined in previous sections. For each case, (each combination of pavement width before and after) a series of calculations was run using a range of AADT values to determine the lowest traffic volume that would justify grade-widening. The criteria used to justify grade-widening was an internal rate of return of four percent at year 20. In all cases it was assumed that the traffic volume would grow at a rate of two percent for the first 10 years and one percent per annum for future years. These growth rates are not compounded. These estimated growth rates are based on historical records for Alberta.

The proposed pavement widths used in the analysis are the standard design designations used for gradewidening and new construction (10m, 11.8m and 13.4m). For each proposed pavement width, a series of existing pavement widths were used as required for development of Figure G-1.1, Suggested Minimum Roadway Width for Rural Highways in Alberta.

Proposed	10	11.8	13.4
Pavement			
Width (m)			
Existing	7.9, 7.3, 7.0, 6.7	9.8, 9.5, 9.0, 8.5, 7.9, 7.1	11.0, 10.0, 9.0
Pavement			
Width (m)			

The existing and proposed widths used were as follows:

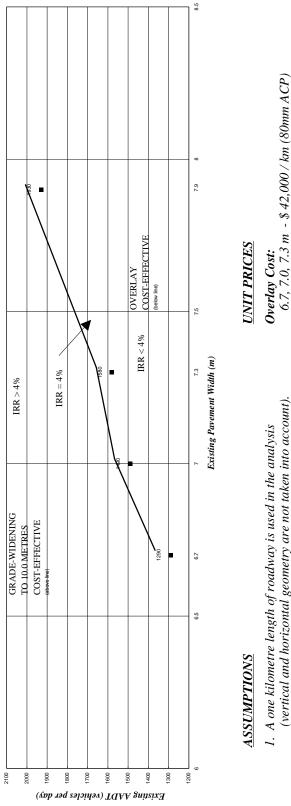
Because many of the existing narrow pavements in the province have 3:1 sideslopes and, therefore, would warrant sideslope improvement which affects construction costs, additional analyses were run for these conditions.

The results of the economic analysis are summarised in Table G.A.5.1 below.

			Prop	osed Pavement Wic	lth (m)
			10.0	11.8	13.4
		6.7	1570		
		7.0	1620		
	Existing	7.1		1782	
		7.3	1780		
	Sideslope	7.9	2080	1925	
		8.5		1980	
	4:1	9.0		2145	2300
		9.5		2420	
		9.8		2500	
Existing		10.0			2670
		11.0			2875
Pavement		6.7	1290		
		7.0	1490		
Width	Existing	7.1		1720	
		7.3	1580		
	Sideslope	7.9	1930	1810	
		8.5		1875	
	3:1	9.0		1980	
		9.5		2210	
		9.8		2370	

Table G.A.5.1Existing AADT Required to Justify Grade-Widening

These results are shown graphically in Figures G-A.5.1 through G-A.5.5. Two sample Lotus spreadsheet summaries are also included to illustrate the computations.


Υ.
ŝ
Å
7
G
ш
r
=
5
GU

Cost-Effectiveness of Grade-Widening to 10.0 m

Overlay on Existing Paved Roadways

Based on life-cycle benefits and costs considering total societal impact

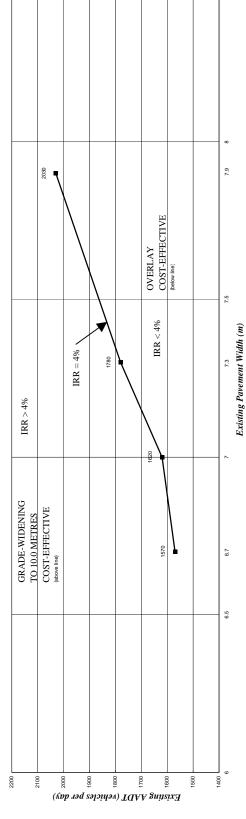
- (vertical and horizontal geometry are not taken into account) Two alternatives are considered in the analysis:
- **Overlay and Sideslope Improvements versus Grade-Widening** d.
 - 20 year pavement cycle is assumed in the analysis, therefore, Calculation of user cost is based on the collision rate and rate of return in the 20 th year is assumed. ς. 4.
- collision cost as a result of a predicted decrease in collision rate. Benefits for grade-widening are derived from the reduction in provincial average cost per collision. 5.

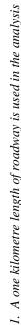
NOTE

Sideslope Improvement Cost: \$ 20,000 / km IRR = Internal Rate of Return for proposed improvement at the end of design life

10.0 m - \$ 78,000 / km (100 mm ACP) $7.9\ m\ -\ \$\ 44,000\ /\ km\ (80\ mm\ ACP)$

6.7 m - \$ 235,043 / km7.0 m - \$ 225,797/km 7.3 m - \$ 216,577/km 7.9 m - \$ 203,792 / km


Grade-Widening Cost:



Cost-Effectiveness of Grade-Widening to 10.0 m

- (vertical and horizontal geometry are not taken into account).
- **Overlay and Sideslope Improvements versus Grade-Widening** Two alternatives are considered in the analysis: c;
 - 20 year pavement cycle is assumed in the analysis, therefore, rate of return in the 20 th year is assumed. $\tilde{\omega}$
- Calculation of user cost is based on the collision rate and provincial average cost per collision. 4.
 - collision cost as a result of a predicted decrease in collision rate. Benefits for grade-widening are derived from the reduction in 5.

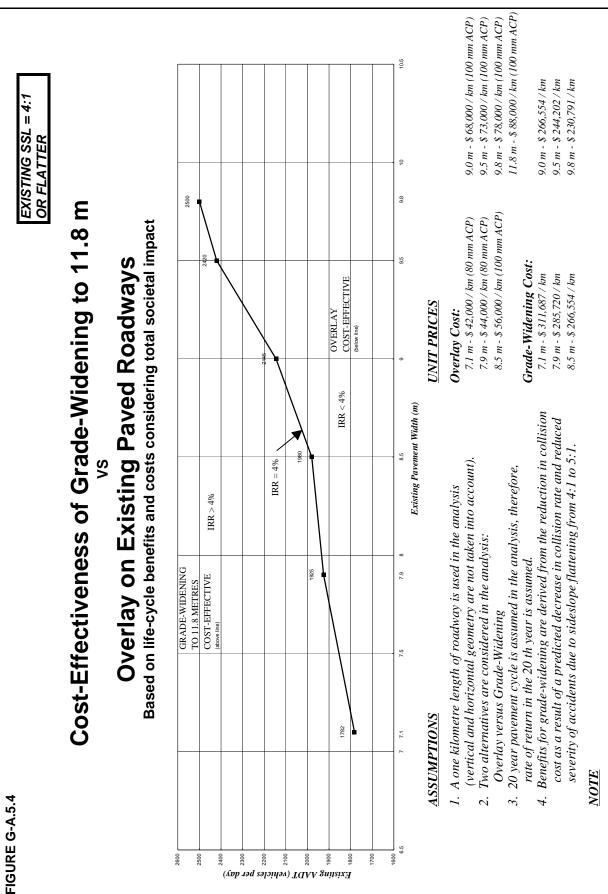
NOTE

IRR = Internal Rate of Return for proposed improvemnets at the end of design life

UNIT PRICES

8.5

6.7, 7.0, 7.3 m - \$42,000 / km (80mm ACP)7.9 m - \$ 44,000 / km (80 mm ACP) **Overlay Cost:**


10.0 m - \$ 78,000 / km (100 mm ACP)

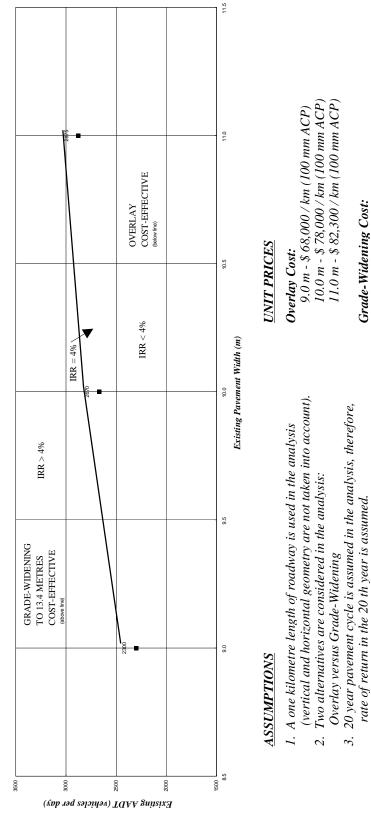
Grade- Widening Cost:

- 6.7 m \$ 235,043 / km 7.0 m - \$ 225,797 / km
 - 7.3 m \$ 216,577 / km 7.9 m \$ 203,792 / km

Cost-Effec rlay and Sidesl Based on lift Based on lift Based on lift (RA (RA TO) (RA TO) (RA (RA TO) (RA (RA (RA TO) (RA (RA (RA (RA (RA (RA (RA (RA (RA (RA	Cost-Effectiveness of Grade-Widening to 11.8 m vs Overlay and Sideslope Improvements on Existing Paved Roadways Based on life-cycle benefits and costs considering total societal impact	GRADE-WIDENING IRR > 4% TO 118 METRES IRR > 4% COST-EFFECTIVE 2210	(above Iree)		1810 IRR < 4%	12	Existing Pavement Width (m) UNIT PRICES	 A one kilometre length of roadway is used in the analysis Vertical and horizontal geometry are not taken into account). T.I m - \$42,000 km (80 mm ACP) 9.0 m - \$68,000 km (100 mm ACP) T.Y was alternatives are considered in the analysis: T.Y was alternatived in the analysis: S.S m - \$56,000 km (100 mm ACP) B.S m - \$56,000 km (100 mm ACP) 	Grade-Widening Cost: 7.1 m - \$ 311,687 km rate and 7.9 m - \$ 285,720 km
--	---	--	--------------	--	------------------	----	--	--	--

FIGURE G-A.5.3

IRR = Internal Rate of Return for proposed improvement at the end of design life


FIGURE G-A.5.5

Cost-Effectiveness of Grade-Widening to 13.4 m S>

Overlay on Existing Paved Roadways

Based on life-cycle benefits and costs considering total societal impact

- Benefits for grade-widening are derived from the reduction in rate of return in the 20 th year is assumed. 4.
- reduced severity of accidents due to sideslope flattening from 4:1 to 6:1. collision cost as a result of a predicted decrease in collision rate and

7.1 m - \$ 311,687 / km 7.9 m - \$ 285,720 / km 8.5 m - \$ 266,554 / km

NOTE

IRR = Internal Rate of Return for proposed improvement at the end of design life

	C ANALYSIS -	GRADE-WIDENII	NG VS OVERLA	Y		22-Jul-96	15:0
EXIST	ING ROADWAY	WIDTH -	7.0 M	3:1 SIDE	SLOPE		
	OVED ROADWA		10.0 M		SLOPE (RA	U-210-1	10)
NOTE:	All costs reporte	ed in thousands of	1993 dollars unl	ess otherwise	e noted		
CAPIT	AL & MAINTEN	ANCE		BE	ENEFITS		
ALTERNAT	TIVE I			IATIVE I - Road Us	er Cost:		
overlay			Collision AADT	Rate, CR			13 149
•	ear (\$/km) -	42000		al average cost per on ng run-off-road type)	collision (\$ per acc.):		6408
	nprovements 1 km (\$/km) -	20000			- d collision (\$ per acc	s.):	0400
Total cost (S overlav eve	\$/km) - ry 20 years -	62000 42000		sideslope - lision cost per km pe	r vear:		7167
					100 x 10^6)] x (64,08	6 x 0.659 + 71	,676 x 0.
ALTERNAT grade-wider	FIVE II ning of the existing highway	,	ALTERN	ATIVE II -Road Use	er Cost:		
(both sides)			Collision AADT	Rate, CR			10 149
Capital Cos grade-wider		225797 \$ per km		al average cost per c	ollision (\$ per acc.):		14
20% conting	gencies al capital cost:	45159 \$ per km 270956 \$ per km		ling run-off-road type	e) - d collision (\$ per acc.)·	6408
overlay eve	ry 20 years -	78000 \$ per km	on a 4	1:1 sideslope -		.).	7167
	ning costs include: GBC, ACP (50 mm), ACP	(80 mm)		lision cost per km pe ADT x 365.25 x 1)/(1	r year: 00 x 10^6)] x (64,08	9 x 0.659 + 71	676 x 0.3
		. ,	-				
		JAL COSTS	NET ANNUAL UNDIS		SUM OF I	D 14/	
No. Veer	ALTERNATIVE I		(IN 1000	\$)	@ 4% DISCOU		IRR (REAL
No. Year	CAP. R.U.C.	ALTERNATIVE II CAP. R.U.C.	CAP. COST R.U.C. DIFF. SAVINGS		CAPITAL	TOTAL	(guess 30.00%
0 1993 1 1994	62,000 0 0 50,437	270,956 0 0 36,648	(208,956) 0 0 13,789	(208,956) 13,789	(208,956) (208,956)	(208,956) (195,698)	-93.40
2 1995 3 1996	0 51,698 0 52,959	0 37,565 0 38,481	0 14,133 0 14,478	14,133 14,478	(208,956) (208,956)	(182,631) (169,760)	-70.49 -50.89
4 1997 5 1998	0 54,220 0 55,481	0 39,397 0 40,313	0 14,823 0 15,167	14,823 15,167	(208,956) (208,956)	(157,090) (144,623)	-36.95 -27.09
6 1999 7 2000	0 56,742 0 58,003	0 41,230 0 42,146	0 15,512 0 15,857	15,512 15,857	(208,956) (208,956)	(132,364) (120,314)	-19.97 -14.69
8 2001 9 2002	0 59,263 0 60,524	0 43,062 0 43,978	0 16,202 0 16,546	16,202 16,546	(208,956) (208,956)	(108,476) (96,851)	-10.68 -7.57
10 2003 11 2004	0 61,785 0 63,046	0 44,894 0 45,811	0 16,891 0 17,236	16,891 17,236	(208,956) (208,956)	(85,440) (74,244)	-5.10 -3.13
12 2005 13 2006	0 64,307 0 65,568	0 46,727 0 47,643	0 17,580 0 17,925	17,580 17,925	(208,956) (208,956)	(63,263) (52,498)	-1.51 -0.19
14 2007 15 2008	0 66,829 0 68,090	0 48,559 0 49,475	0 18,270 0 18,615	18,270 18,615	(208,956) (208,956)	(41,947) (31,611)	0.92 1.85
16 2009 17 2010	0 69,351 0 70,612	0 50,392 0 51,308	0 18,959 0 19,304	18,959 19,304	(208,956) (208,956)	(21,489) (11,579)	2.64
18 2011 19 2012	0 71,873 0 73,134	0 52,224 0 53,140	0 19,649 0 19,993	19,649 19,993	(208,956) (208,956)	(1,880) 7,610	3.90 4.40
20 2013 21 2014	42,000 74,395 0 75,655	78,000 54,056 0 54,973	(36,000) 20,338 0 20,683	(15,662) 20,683	(225,386) (225,386)	462 9,538	4.49
22 2015 23 2016	0 76,916 0 78,177	0 55,889 0 56,805	0 21,028 0 21,372	21,028 21,372	(225,386) (225,386)	18,411 27,082	4.89 5.24
24 2017 25 2018	0 79,438 0 80,699	0 57,721 0 58,638	0 21,717 0 22,062	21,717 22,062	(225,386) (225,386) (225,386)	35,555 43,830	5.54 5.81
26 2019 27 2020	0 81,960 0 83,221	0 59,554 0 60,470	0 22,406 0 22,751	22,406 22,751	(225,386) (225,386)	51,912 59,802	6.05 6.26
21 2020	0 84,482	0 61,386	0 23,096	23,096	(225,386)	67,504	6.44
28 2021	0 85,743	0 62,302 0 63,219	0 23,440 0 23,785	23,440 23,785	(225,386) (225,386)	75,021 82,354	6.61 6.76
29 2022 30 2023	0 87,004			24,130	(225,386)	89,508 96,484	6.89 7.01
29 2022 30 2023 31 2024 32 2025	0 88,265 0 89,526	0 64,135 0 65,051	0 24,130 0 24,475	24,475	(225,386)		7.12
29 2022 30 2023 31 2024 32 2025 33 2026 34 2027	0 88,265 0 89,526 0 90,787 0 92,047	0 65,051 0 65,967 0 66,883	0 24,475 0 24,819 0 25,164	24,819 25,164	(225,386) (225,386)	103,287 109,919	7.22
29 2022 30 2023 31 2024 32 2025 33 2026 34 2027 35 2028 36 2029	0 88,265 0 89,526 0 90,787 0 92,047 0 93,308 0 94,569	0 65,051 0 65,967 0 66,883 0 67,800 0 68,716	0 24,475 0 24,819 0 25,164 0 25,509 0 25,853	24,819 25,164 25,509 25,853	(225,386) (225,386) (225,386) (225,386)	109,919 116,383 122,683	7.22 7.31 7.39
29 2022 30 2023 31 2024 32 2025 33 2026 34 2027 35 2028	0 88,265 0 89,526 0 90,787 0 92,047 0 93,308	0 65,051 0 65,967 0 66,883 0 67,800	0 24,475 0 24,819 0 25,164 0 25,509	24,819 25,164 25,509	(225,386) (225,386) (225,386)	109,919 116,383	7.22 7.31 7.39 7.46 7.53
29 2022 30 2023 31 2024 32 2025 33 2026 34 2027 35 2028 36 2029 37 2030 38 2031 39 2032	0 88,265 0 90,787 0 92,047 0 93,308 0 94,569 0 95,830 0 97,091 0 98,352	0 65,051 0 65,967 0 66,883 0 67,800 0 68,716 0 69,632 0 70,548 0 71,464	$\begin{array}{cccc} 0 & 24,475 \\ 0 & 24,819 \\ 0 & 25,164 \\ 0 & 25,509 \\ 0 & 25,853 \\ 0 & 26,198 \\ 0 & 26,543 \\ 0 & 26,688 \end{array}$	24,819 25,164 25,509 25,853 26,198 26,543 26,888	(225,386) (225,386) (225,386) (225,386) (225,386) (225,386) (225,386) (225,386)	109,919 116,383 122,683 128,821 134,801 140,625	7.22 7.31 7.39 7.46 7.53 7.59
29 2022 30 2023 31 2024 32 2025 33 2026 34 2027 35 2028 36 2029 37 2030 38 2031 39 2032 40 2033 41 2034	0 88,265 0 90,787 0 92,047 0 93,308 0 94,569 0 95,830 0 97,091 0 98,352 42,000 99,613 0 100,874	0 65,051 0 65,967 0 66,883 0 67,800 0 68,716 0 69,632 0 70,548 0 71,464 78,000 72,381 0 73,297	$ \begin{array}{ccccc} 0 & 24,475 \\ 0 & 24,819 \\ 0 & 25,164 \\ 0 & 25,509 \\ 0 & 25,853 \\ 0 & 26,198 \\ 0 & 26,543 \\ 0 & 26,848 \\ (36,000) & 27,232 \\ 0 & 27,577 \end{array} $	24,819 25,164 25,509 25,853 26,198 26,543 26,888 (8,768) 27,577	(225,386) (225,386) (225,386) (225,386) (225,386) (225,386) (225,386) (232,885) (232,885)	109,919 116,383 122,683 128,821 134,801 140,625 138,799 144,322	7.22 7.31 7.39 7.46 7.53 7.59 7.57 7.63
29 2022 30 2023 31 2024 32 2025 33 2026 34 2027 35 2028 36 2029 37 2030 38 2031 39 2032 40 2033 41 2034 42 2035 43 2036		0 65,051 0 65,967 0 66,883 0 67,800 0 68,716 0 69,632 0 70,548 0 71,464 78,000 72,381 0 73,297 0 74,213 0 75,129	$ \begin{array}{cccc} 0 & 24,475 \\ 0 & 24,819 \\ 0 & 25,164 \\ 0 & 25,503 \\ 0 & 26,583 \\ 0 & 26,543 \\ 0 & 26,543 \\ 0 & 26,543 \\ 0 & 27,577 \\ 0 & 27,922 \\ 0 & 28,266 \end{array} $	24,819 25,164 25,509 25,853 26,198 26,543 26,888 (8,768) 27,577 27,922 28,266	(225,386) (225,386) (225,386) (225,386) (225,386) (225,386) (225,386) (232,885) (232,885) (232,885) (232,885)	109,919 116,383 122,683 128,821 134,801 140,625 138,799 144,322 149,699 154,933	7.22 7.31 7.39 7.46 7.53 7.59 7.57 7.63 7.68 7.72
29 2022 30 2023 31 2024 32 2025 33 2026 34 2027 35 2028 36 2029 37 2030 38 2031 39 2032 40 2033 41 2034 42 2035 43 2036 44 2037 45 2038	0 88,265 0 90,787 0 92,047 0 92,047 0 93,308 0 94,569 0 95,830 0 97,091 0 98,352 42,000 99,613 0 100,874 0 102,135 0 104,657 0 105,918	$ \begin{smallmatrix} 0 & 65,051 \\ 0 & 65,967 \\ 0 & 66,883 \\ 0 & 67,800 \\ 0 & 68,716 \\ 0 & 69,632 \\ 0 & 70,548 \\ 0 & 71,464 \\ 78,000 & 72,381 \\ 0 & 73,297 \\ 0 & 74,213 \\ 0 & 75,129 \\ 0 & 76,046 \\ 0 & 76,962 \\ \end{smallmatrix} $	$ \begin{array}{c} 0 & 24,475 \\ 0 & 24,819 \\ 0 & 25,164 \\ 0 & 25,509 \\ 0 & 26,853 \\ 0 & 26,543 \\ 0 & 26,543 \\ 0 & 26,543 \\ 0 & 26,888 \\ (36,000) & 27,232 \\ 0 & 27,577 \\ 0 & 27,922 \\ 0 & 28,266 \\ 0 & 28,056 \\ \end{array} $	24,819 25,164 25,509 25,853 26,198 26,543 26,888 (8,768) 27,577 27,922 28,266 28,611 28,956	(225,386) (225,386) (225,386) (225,386) (225,386) (225,386) (232,885) (232,885) (232,885) (232,885) (232,885) (232,885) (232,885) (232,885)	109,919 116,383 122,683 128,821 134,801 140,625 138,799 144,322 149,699 154,933 160,027 164,985	7.22 7.31 7.39 7.46 7.53 7.59 7.57 7.63 7.68 7.72 7.76 7.80
29 2022 30 2023 31 2024 32 2025 33 2026 34 2027 35 2028 36 2029 37 2030 38 2031 39 2032 40 2033 41 2034 42 2035 43 2036 44 2037	0 88,265 0 90,787 0 92,047 0 93,308 0 94,569 0 97,091 0 98,352 42,000 99,613 0 100,874 0 102,135 0 103,396 0 104,657	$ \begin{smallmatrix} 0 & 65,051 \\ 0 & 65,967 \\ 0 & 66,883 \\ 0 & 67,800 \\ 0 & 68,716 \\ 0 & 69,632 \\ 0 & 70,548 \\ 0 & 71,464 \\ 78,000 & 72,381 \\ 0 & 73,297 \\ 0 & 74,213 \\ 0 & 75,129 \\ 0 & 76,046 \\ \end{smallmatrix} $	$ \begin{array}{ccccc} 0 & 24,475 \\ 0 & 24,819 \\ 0 & 25,164 \\ 0 & 25,509 \\ 0 & 25,853 \\ 0 & 26,198 \\ 0 & 26,543 \\ 0 & 26,848 \\ (36,000) & 27,232 \\ 0 & 27,577 \\ 0 & 27,922 \\ 0 & 28,266 \\ 0 & 28,611 \end{array} $	24,819 25,164 25,509 25,853 26,198 26,543 26,888 (8,768) 27,577 27,922 28,266 28,611	(225,386) (225,386) (225,386) (225,386) (225,386) (225,386) (232,885) (232,885) (232,885) (232,885) (232,885) (232,885)	109,919 116,383 122,683 128,821 134,801 140,625 138,799 144,322 149,699 154,933 160,027	7.22 7.31 7.39 7.46 7.53 7.59 7.57 7.63 7.68 7.72 7.76

3R/4R GEOMETRIC DESIGN GUIDELINES

CC		C ANAL	YSIS -	GRADE	-WIDE	NING vs O	VERL	AY		22-Jul-96	15:11
1	EXISTI	ING RO	ADWAY	Y WIDTH	r.	11.0 M		4:1 SIDESI	OPF		
				AY WIDT		13.4 M				-213 4)	
								ess otherwise		213.4)	
					isanus u	1 1 <i>775</i> uona					
		AL & MA	INTEN	ANCE				BL ATIVE I - Road Us	ENEFITS		
							Collision F				91
	overlay				00000		AADT				2875
		ear (\$/km) -			82300			ng run-off-road type	ollision (\$ per acc.):		64086
		1 km (\$/km) -			<u>0</u>		Average c	cost per run-off-road	collision (\$ per acc	.):	
	Fotal cost (\$ overlav ever	s/km) - ry 20 years -			82300 82300			sideslope - sion cost per km pe	r vear:		71676
	svenay ever	y 20 yours			02000				00 x 10^6)] x (64,08	9 x 0.659 + 71,	676 x 0.341
		TVE II ning of the exist	sting highwov	,				ATIVE II -Road Use	or Cost:		
	both sides)	ing of the exis	sang nigriwa)	7			Collision F		. 0031.		75
	Capital Cost			346040	norla		AADT		alligion (* and and)		2875
-	grade-wider 20% conting	-		316040 \$ 63208 \$	•			average cost per c ng run-off-road type	ollision (\$ per acc.):		64086
	Tota	al capital cost	: -	379248 \$	Sper km		Average c	cost per run-off-road	l collision (\$ per acc	.):	
c	overlay ever	ry 20 years -		120000 \$	i per km			sideslope - sion cost per km pe	r vear:		42000
									00 x 10^6)] x (64,08	9 x 0.659 + 42,	000 x 0.341
			ANNU	JAL COSTS		NET ANNU	AL UNDISC	OUNTED VALUES	SUM OF	P.W.	IRR
lo.	Year	ALTERN		ALTER	NATIVE II	CAP. COST	(IN 1000		@ 4% DISCOL		(REAL) (guess)
0	1993	CAP. 82,300	R.U.C. 0	CAP. 379,248	R.U.C. 0	DIFF. (296,948)	SAVINGS 0	VALUES (296,948)	CAPITAL (296,948)	TOTAL (296,948)	30.00%
1	1994	0	63,713	0	44,541	0	19,172	19,172	(296,948)	(278,513)	-93.54%
2 3	1995 1996	0 0	65,306 66,899	0 0	45,654 46,768	0 0	19,651 20,131	19,651 20,131	(296,948) (296,948)	(260,344) (242,448)	-70.84% -51.33%
4 5	1997 1998	0 0	68,491 70,084	0 0	47,881 48,995	0	20,610 21,089	20,610 21,089	(296,948) (296,948)	(224,831) (207,497)	-37.39% -27.53%
6 7	1999 2000	0	71,677 73,270	0	50,108 51,222	0	21,569 22,048	21,569 22,048	(296,948) (296,948)	(190,451) (173,696)	-20.39% -15.09%
8	2001	0	74,863	0	52,335	Ō	22,527	22,527	(296,948)	(157,236)	-11.05%
9 10	2002 2003	0 0	76,455 78,048	0 0	53,449 54,562	0 0	23,007 23,486	23,007 23,486	(296,948) (296,948)	(141,072) (125,206)	-7.92% -5.44%
11 12	2004 2005	0 0	79,641 81,234	0 0	55,676 56,789	0 0	23,965 24,444	23,965 24,444	(296,948) (296,948)	(109,638) (94,371)	-3.45% -1.82%
13 14	2006 2007	0	82,827 84,420	0	57,903 59,017	0	24,924 25,403	24,924 25,403	(296,948) (296,948)	(79,402) (64,732)	-0.48% 0.64%
15	2008	0	86,012	0	60,130	Ō	25,882	25,882	(296,948)	(50,361)	1.58%
16 17	2009 2010	0 0	87,605 89,198	0 0	61,244 62,357	0 0	26,362 26,841	26,362 26,841	(296,948) (296,948)	(36,286) (22,507)	2.38% 3.06%
18 19	2011 2012	0 0	90,791 92,384	0 0	63,471 64,584	0 0	27,320 27,800	27,320 27,800	(296,948) (296,948)	(9,021) 4,174	3.65% 4.15%
20 21	2013 2014	82,300 0	93,976 95,569	120,000 0	65,698 66,811	(37,700)	28,279 28,758	(9,421) 28,758	(314,154) (314,154)	(126) 12,494	4.00% 4.44%
22	2015	0	97,162	0	67,925	Ō	29,237	29,237	(314,154)	24,831	4.83%
23 24	2016 2017	0	98,755 100,348	0	69,038 70,152	0	29,717 30,196	29,717 30,196	(314,154) (314,154)	36,888 48,668	5.17% 5.47%
25 26	2018 2019	0 0	101,941 103,533	0 0	71,265 72,379	0 0	30,675 31,155	30,675 31,155	(314,154) (314,154)	60,175 71,412	5.73% 5.96%
27 28	2020 2021	0 0	105,126 106,719	0	73,492 74,606	0	31,634 32,113	31,634 32,113	(314,154) (314,154)	82,384 93,093	6.17% 6.35%
29 30	2022 2023	0	108,312 109,905	0	75,719 76,833	0	32,593 33,072	32,593 33,072	(314,154) (314,154)	103,543 113,740	6.52% 6.67%
31	2024	0	111,498	0	77,946	0	33 551	33,551	(314,154)	123,687	6.80%
32	2025 2026	0 0	113,090 114,683	0 0	79,060 80,173	0 0	34,030 34,510	34,030 34,510	(314,154) (314,154)	133,387 142,846	6.92% 7.03%
	2027 2028	0	116,276 117,869	0 0	81,287 82,400	0	34,989 35,468	34,989 35,468	(314,154) (314,154)	152,068 161,056	7.12% 7.21%
34	2029 2030	0 0	119,462 121,054	0 0	83,514 84,627	0	35,948 36,427	35,948 36,427	(314,154) (314,154)	169,815 178,350	7.29% 7.37%
34 35 36	2030	0	122,647	0	85,741	0	36,906	36,906	(314,154)	186,664	7.44%
34 35 36 37 38		0 82,300	124,240 125,833	0 120,000	86,855 87,968	0 (37,700)	37,386 37,865	37,386 165	(314,154) (322,006)	194,763 194,797	7.50% 7.50%
34 35 36 37 38 39 40	2032 2033		127,426 129,019	0 0	89,082 90,195	0	38,344 38,823	38,344 38,823	(322,006) (322,006)	202,477 209,953	7.55% 7.60%
34 35 36 37 38 39 40 41	2032 2033 2034	0		Ő	91,309	0	39,303 39,782	39,303 39,782	(322,006) (322,006)	217,231 224,314	7.64% 7.68%
34 35 36 37 38 39 40 41 42 43	2032 2033 2034 2035 2036	0 0	130,611			• 0					
34 35 36 37 38 39 40 41 42 43 44 45	2032 2033 2034 2035 2036 2037 2038	0 0 0 0	130,611 132,204 133,797	0 0	92,422 93,536	0	40,261	40,261	(322,006)	231,207	7.72%
34 35 36 37 38 39 40 41 42 43 44 45 46	2032 2033 2034 2035 2036 2037	0 0 0	130,611 132,204 133,797 135,390 136,983	0	93,536 94,649 95,763		40,741 41,220	40,741 41,220	(322,006) (322,006)	237,913 244,437	7.75% 7.78%
33 34 35 36 37 38 39 40 41 42 43 44 5 6 47 48 49	2032 2033 2034 2035 2036 2037 2038 2039	0 0 0 0 0	130,611 132,204 133,797 135,390	0 0 0	93,536 94,649	0 0	40,741	40,741	(322,006)	237,913	7.75%

3R/4R GEOMETRIC DESIGN GUIDELINES

G-36

G.A.5 Rationale for Figure G-1.1 Minimum Roadway Width for Rural Highways in Alberta Economic Analysis, November 1994)

Suggested (Based on updated,

Subsystem 1:

Because of the function of Subsystem 1, a minimum acceptable shoulder of 1.0m is considered reasonable. If the roadway width is less than nine metres, grade widening is required regardless of economic analysis. To consider the cost effectiveness of widening roadways that are in the nine metre range, it is reasonable to use 8.5m as a benchmark as roadways within 0.5m of the suggested minimum are not significantly different from the minimum. The economic analysis shows that:

- widening of an 8.5m roadway to 11.8m is justified at AADT 1980
- widening of an 8.5m roadway to 13.4m is justified at AADT 2100.

Consequently (because the desirable standard width is 13.4m for AADT exceeding 2400 and 11.8 for lower volumes), it is appropriate to use nine metres as the suggested minimum width for AADT up to 2400, 10m for AADT 2400-2900, and 11m for AADT exceeding 2900. It is feasible to construct a widening project that increases the width from nine metres to 11.8m, or from 10m to 13.4m. However, widening from 10m to 11.8m is generally impractical. Widening from 11m to 13.4m is justified by safety benefits for AADT's exceeding 2900.

Subsystem 2:

Based on function, a minimum acceptable shoulder of 0.5m is considered reasonable. If the roadway is less than eight metre, grade widening is required regardless of economic analysis. To consider the cost-effectiveness of widening roadways that are in the eight metre range, widening to 10m, 11.8m or 13.4m may be considered. The economic analysis shows:

- widening of an eight metre roadway to 10m is justified at AADT 2000
- widening of an eight metre roadway to 11.8m is justified at AADT 1930 (existing 4:1 slope), or 1820 (existing 3:1 slope)
- widening of an eight metre roadway to 13.4m is justified at AADT 2100.

Based on the above, it is appropriate to use nine metres as the suggested minimum roadway width for AADT above 1800 (where 11.8 is the desirable width), 10m for AADT above 2700 (where 13.4 is the desirable width), and 11m for AADT above 2900. This will ensure cost effectiveness and practicality in this zone.

Subsystem 3:

Based on the knowledge that grade widening of two metres or less is impractical and that the desirable standard on Subsystem 3 is nine metres or less for AADT of 700 or less (for 75 percent passing zones), the minimum acceptable width in this zone is 7.3m. This will allow for two, 3.5m lanes plus an additional 0.15m on each side to provide some lateral support for the shoulder and reduce damage to the pavement edge by heavy vehicles.

For volumes from 700-1300 AADT where RCU-210 is the desirable standard, although it is possible to widen to 10m, the volume is too low to justify the cost. Therefore, 7.3m should be the suggested minimum. For volumes greater than 1300, it is reasonable to adopt eight metres as a suggested minimum width, even though widening of a 7.3m roadway cannot be justified based on the economic analysis, because of the typically high running speeds and high percentage of trucks experienced in Alberta. For AADT greater than 2000, a suggested minimum of nine metres is supported by economic analysis. Similarly for AADT greater than 2500, the suggested minimum is 10m.

Subsystem 4:

Because of the lower function on Subsystem 4, and therefore the probability of less truck traffic and shorter trip length, a minimum acceptable pavement width of seven metres is suggested. This value applies to the zone where the desirable width is nine metres; that is, up to AADT 1000 for 75 percent passing zones.

For the zone where RLU-210 is the desirable standard (AADT 1000-1700) and for volumes up to 2000, gradewidening cannot be justified based on the general economic analysis. However, it is generally believed that a seven metre road is inadequate to carry high volumes. Therefore 1500 AADT is suggested as a compromise value, based on a combination of engineering judgement and economic analysis, where seven metres is the minimum acceptable for volumes up to 1500 and 8.0m is the minimum for volumes between 1500-2000 in general in Subsystem 4.

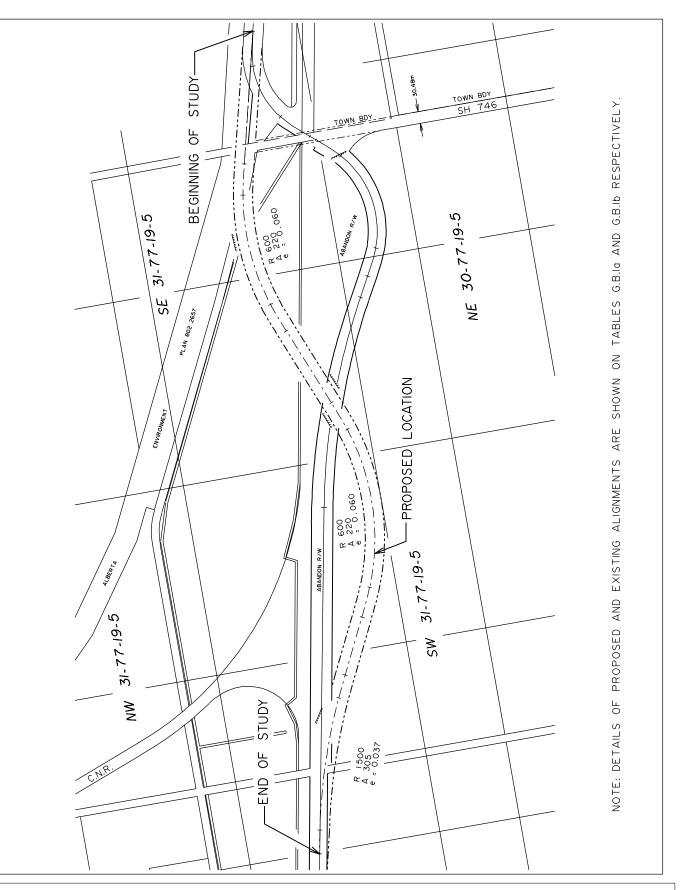
For volumes between 2000-2500, the suggested minimum is 9m and for volumes above 2500, the suggested minimum is 10m based on economic analysis and practical considerations for grade-widening.

The rationale above is strictly based on the results of the economic analysis. For design purposes an AADT of 2500 for widening of nine metre roads and 3000 for widening of 10m roads have been adopted. This decision provides greater consistency across the subsystems and ensures a higher economic return on widening projects.

<u>Note:</u> Traffic volumes above are shown in terms of existing AADT.

APPENDIX B

EXAMPLE OF ECONOMIC ANALYSIS FOR HORIZONTAL CURVE IMPROVEMENTS


This appendix presents an example of an economic analysis for a horizontal curve improvement on a particular project. The 3R/4R Geometric Design Guidelines suggest that a project specific analysis be undertaken to determine the cost effectiveness of any proposed horizontal realignments. This example is provided to illustrate the process required.

This appendix is divided into the following sections:

- G.B.1. Data Collected for the Analysis
- G.B.2. Construction and Maintenance Costs for Both Alternatives (do nothing versus alignment improvement)
- G.B.3. Calculation of Collision Rates for Both Alternatives
- G.B.4. Calculation of Road User Costs for Existing and Proposed Alignment
- G.B.5. Economic Analysis using Lotus Module Benefit-Cost.

G-B.I DATA COLLECTED FOR THE ANALYSIS

The existing highway is paved and has an alignment as shown in Figure G-B.I which is lower than current standards for the design speed.

GUIDELINES FOR GEOMETRIC DESIGN OF 3R/4R STANDARDS

FIGURE

Proposed Alignment (Metric Stations)			Glennon's For	mula Length *	
	Station	Length (m)	Tangent Length (m)	Curve Length (m)	NOTES
START	0+000				$\Delta = 35^{\circ}57'45"$
T.S.	0 + 346.026		346.026		R = 600
		80.667		80.667	A = 220
S.C.	0+426.693				
~~~		295.932		295.932	
C.S.	0+722.625	00.007	00.007		
ст	0.000.000	80.667	80.667		
S.T.	0+803.292	219.689	219.689		
		219.009	219.009		
T.S.	1+022.981				
		80.667		80.667	$\Delta = 48^{\circ}04'30''$
S.C.	1+103.648				R = 600
		422.773		422.773	A = 220
C.S.	1 + 526.421				
		80.667	80.667		
S.T.	1+607.088				
		155.838	155.838		
T.S.	1 + 762.926				
1.5.	1+702.320	62.118		62.118	$\Delta = 15^{\circ}37'35"$
S.C.	1+825.044	00110		00.110	R = 1500
5.0.	1+0201011	346.980		346.979	A = 305
C.S.	2+172.023				
		62.118	62.118		
S.T. (END)	2 + 234.1416				
				880.039 @ R = 600	
			945.005	409.097 @ \$ = 1500	
		Total Lengths	945.005 (tangent)	1289.136 (curves)	
		Grand Total		= 2,234.141 m	

### Table G.B.1.a Proposed Alignment Information for Project

					Glennon's F	ormula Length*	
Existing Alignment			T .1		Tangent	Curved	NOTES
(Imperial Stations) (ft)			Length (ft)	(m)	Length (m)	Length (m)	Curve Info etc.
START	Sta. T.S.	391+82.9	(11)				Curve #1
		00110410	300'	91.44	_	91.44	$\Delta = 64^{\circ}03'00''$
	S.C.	388+82.9					D _c = 8°00'
Curve #1			500.7'	152.61	—	152.61	R = 218.297m
	C.S.	383+82.2	300'	91.44	91.44		$L_{s} = 91.44m$ $e = 8\%$
	S.T.	380+82.2	300	51.44	51.44		e = 070
			63.1'	19.23	19.23		
	T.S.	380+19.1					
	1.5.	000110.1	250'	76.2			Curve #2
	S.C.	377+69.1					$\Delta = 79^{\circ}20'00"$
Curve #2		000 05 0	883.3'	269.23		70.0	$D_c = 7^\circ$
	C.S.	368+85.8	250'	76.2		76.2 269.23	R = 249.482m $L_s = 76.2m$
	S.T.	366+35.8	200	10.2		200.20	e = 8%
			158.2'	48.22	48.22		
	T.C.	364+77.6					Curve #3
Curve #3			1888.3'	575.55		575.55	$\Delta = 18^{\circ}53'00"$
	C.T	345+89.3					$D_c = 1^{\circ}$
			2818.4'	889.528	889.528		R = 1746.376m
Common		316+70.9				Summary	
Point						R = 218.3m	
(END)						L = 244.05	
						R = 249.48m	
						L = 345.43m	
						D 1740 970	
						R = 1746.376m L = 575.55	
						L = 010.00	
				otal	1,124.618m	1,165.03m	
			Grand	l Total	2,28	9.648m	

 Table G.B.1.b Existing Alignment Information for Project

### * Glennon's Formula Length

In the case of spiral curves, the  $L_c$  value used in the Glennon Formula (see Section G.B.3) is based on the length of the circular position plus one spiral length. To compensate, the length of tangent is considered to include one spiral. The degree of curve (as used in the Glennon Formula) is based on the controlling radius i.e. the circular curve radius in the case of both simple and spiral curves.

Degree of Currie	Dedius (m)
Degree of Curve	Radius (m)
per 100 feet	0.701.05
0.2	8,731.85
0.4	4,365.92
0.6	2,910.62
0.8	2,182.96
1	1,746.37
1.2	1,455.31
1.4	1,247.41
1.5	1,164.00
1.6	1,091.48
1.8	970.21
2	873.19
2.2	793.80
2.4	727.65
2.6	671.68
2.8	623.70
3.0	582.13
3.2	545.74
3.4	513.64
3.6	485.10
3.8	459.57
4.0	436.59
4.2	415.80
4.4	396.90
4.5	388.08
4.6	379.65
4.8	363.83
5.0	349.27
6.0	291.06
8.0	218.30
10.0	174.64
11.0	158.76
12.0	145.53
14.0	124.74
16.0	109.15
20.0	87.32
40.0	43.66

### Table G.B.1.c Conversion Chart

This chart may be used to convert from Degree of Curve per 100 feet to radius in metres.

1. 
$$R(ft) = \frac{100 \times 360}{D(ft) \times 2\pi}$$
  
2.  $R(m) = \frac{R(ft)}{3.28084}$ 

Where D(ft) = Degree of Curve per 100 ft. length

The following additional geometric, traffic and road user cost information is compiled:

- Pavement width is 8.5 metres
- Vertical grades are between 0 and one percent
- Traffic Information: (information is obtained from the Highway Network Planning, Land and Aggregates, Planning Services Branch)
  - Existing AADT = 1670 vehicles per day
  - Growth Factor (GF) is 1.55 over a period of 20 years (2.75% per annum, not compounded)
  - Traffic Composition:

Passenger Vehicles	91.7%	1531 vehicles per day
Recreational Vehicles	1.9%	32 vehicles per day
Buses	0.2%	4 vehicles per day
Single Unit Trucks	3.0%	50 vehicles per day
Tractor-Trailer Combinations	3.2%	53 vehicles per day

-	percentage of automobiles with drivers on business trips:	62.5%
-	percentage of automobiles with drivers on pleasure/other trips:	37.5%

- occupancy rate for automobiles on:

<ul> <li>business trips</li> </ul>	1.81 passengers/vehicle
- pleasure/other trips	2.25 passengers/vehicle

occupancy rate for:

-	recreational vehicles	2.25 passengers/vehicle
-	trucks	1.13 passengers/vehicle

The following values for time are assumed: (as indicated in the Benefit-Cost Analysis Summary)

-	truck drivers	MTR	24.25/person/hour
-	business people	MAB	13.25/person/hour

-	busiliess people	MAD	15.257 person/ noui
-	all others	MAP, MRV	6.00/person/hour

The weighted average cost per accident is estimated based on the distribution of accident types and their unit costs as follows:

In Alberta, of all accidents, two percent are fatal, 25 percent cause injury, and 73 percent cause property damage only.

A fatal collision involves on average:	<ul> <li>1.35 people who die*,</li> <li>0.57 people who are seriously injured*, and</li> <li>0.69 people who are moderately injured*</li> <li>total cost per fatal collision - \$1,339,578</li> </ul>
An injury collision involves on average:	0.26 people who are seriously injured* 1.43 people who are moderately injured* total cost per injury collision - \$143,309

Average cost per property damage collision is \$2,011

Average cost of all collisions = 0.02(1,339,578) + 0.25(143,309) + 0.73(2,011) = \$64,087

### G.B.2 Construction and Maintenance Costs for Both Alternatives

a.	Do-Nothing scenario: Alternative I It is assumed that an overlay will be required in the first year and every 20 years.					
	Overlay cost: \$68,000/km x 2.36 km	ar an Ş	160,480	years.		
b.	<ul> <li>Proposed Alignment: Alternative II</li> <li>Right of way (50m basic) 25 acres - 13 acres (return for existing) = 12 acres at \$500/acre including severance</li> <li>Subtotal</li> </ul>	\$ <u>\$</u> \$	6,000 <u>15,000</u> 21,000	$\rightarrow$	\$	21,000
	- Construction (RAU 211.8)					
	Grading: $2.3 \text{ km} \times \$140,000/\text{ km}$	Ş	322,000			
	Granular base course (320mm): $2.3 \text{ km} \times \$130,000/\text{ km}$	Ş	299,000			
	Double seal coat (34mm): $2.3 \text{ km} \times \$22,000/\text{ km}$	Ş	51,000			
	Pavement (ACP 100mm): 2.3 km $\times$ \$90,000/km	Ş	207,000			
	Reclamation of Highway 2: 2.7 km × \$10,000/km	<u>\$</u>	27,000			
	Subtotal	\$	906,000	$\rightarrow$	\$	906,000
	- S.H. 746 extension (RAU 209) 0.35 km×\$175,000/km	\$	60,000	$\rightarrow$	\$	60,000
	<ul> <li>Railway crossing cost (Highway 2)</li> </ul>	Ŝ	170,000	$\rightarrow$	<u>\$</u>	170,000
	Total	Ŷ	170,000		<u>\$</u>	1,157,000
	Contingencies (10 percent)				Š	116,000
	Grand Total				\$	1,273,000
				= 1.3	millio	on (rounded)
	Overlay cost $88,000/\text{km} \times 2.3 \text{ km}$	\$	202,400	every	20 y	ears

### G.B.3 Calculation of Collision Rates for Both Alternatives

Accident rates for each horizontal curve are calculated using the Glennon Formula, as indicated in the FHWA Special Report 214, Appendix D. According to the Glennon Formula, below, the number of accidents on a curve per year is calculated as follows:

$$A_{c} = AADT \times 10^{-8} \times 365 \left[ CR_{T} (L_{c}) + 33.6D \right]$$

(Glennon Formula)

Where  $A_c$  = number of accidents per year on a curve

 $CR_T$  = collision rate per 100 million vehicle kilometres

 $L_c$  = length of curve in km

D = degree of curve per 100 feet

The table on page G-43 should be used to find a degree of curve for a particular radius.

Using number of accidents obtained from the Glennon Formula, collision rate on a curve can be calculated using the following equation:

 $CR_{c} = \frac{\text{number of accidents on curve}}{\text{total veh.km on curve}} = \frac{A_{c} \times 10^{8}}{\text{AADT} \times 365 \times L_{c}}$ 

Where	CR _c	=	a collision rate per 100 million vehicle kilometres on a curve
	A _c	=	number of accidents on a curve per year
	AADT	=	annual average daily traffic volume
	L _c	=	length of curve in km

The final formula that should be used for horizontal alignment improvement projects combines the two equations into one as follows:

$$CR_{c} = \frac{AADT \times 10^{-8} \times 365 \left[ CR_{T} (L_{c}) + 3.36D \right] \times 10^{8}}{AADT \times 365 \times L_{c}} \Rightarrow CR_{c} = CR_{T} + \left[ \frac{3.36D}{L_{c}} \right]$$

Note: The collision rate, rather than number of accidents, is used in the Lotus spreadsheet module RUC.

Collision rates are calculated as follows:

Existing Alignment (Alternative 1)

Posted speed on curve is 60 km/h

Because the Glennon Formula does not apply to urban conditions, it is assumed that the collision rate on the curve will be the same as elsewhere on the alignment; that is, 59 accidents per 100 million vehicle.km.

Spiral Curve #1 (C_{e1}) R = 218m, L = 244.05m, D = 8/100 feet

 $CR_{e1} = 59 + \left[\frac{3.36 \times 8}{0.24405}\right] = 169 \text{ accidents } / 10^8 \text{ vehicle. km}$ 

Spiral Curve #2 (C_{e2}) R = 250m, L = 345.43m, D = 7/100 feet

$$CR_{e2} = 59 + \left[\frac{3.36 \times 7}{0.34545}\right] = 127 \text{ accidents } / 10^8 \text{ vehicle. km}$$

Simple Curve #3 R = 1746m, L= 575.6, D = 1/100 feet

$$CR_{e3} = 59 + \left[\frac{3.36 \times 1}{.5756}\right] = 65 \text{ accidents } / 10^8 \text{ vehicle. km}$$

**Tangent Section** 

 $CR_T = 59 \text{ acc.}/10^8 \text{ vehicle. km}$ 

This is based on records of the collision rate on tangent sections of the adjacent highway.

<u>Proposed Alignment</u> (Alternative 2)

Spiral Curve #1 (C_{p1}) R = 600m, L = 376.6m, D = 2.91/100 feet

$$CR_{p1} = 59 + \left[\frac{3.36 \times 2.91}{0.3766}\right] = 85 \text{ accidents } / 10^8 \text{ vehicle. km}$$

Spiral Curve #2 (C_{p2}) R = 600m,  $L_c = 503.44m$ , D = 2.91/100 feet

$$CR_{p2} = 59 + \left[\frac{3.36 + 2.91}{0.50344}\right] = 78 \text{ accidents } / 10^8 \text{ vehicle. km}$$

Spiral Curve #3 (C_{p3}) R = 1500m,  $L_c = 409.1m$ , D = 1.16/100 feet

 $CR_{p3} = 59 + \left[\frac{3.36 + 1.16}{0.4091}\right] = 70 \text{ accidents } / 10^8 \text{ vehicle. km}$ 

**Tangent Portion** 

 $CR_T = 59$  accidents / 10⁸ vehicle. km — based on the collision rate on the adjacent tangent.

The above collision rates are required as input in the road user cost evaluation.

### G.B.4 Calculation of Road User Costs for Existing and Proposed Alignment

This calculation is done on a Lotus spreadsheet using a pre-prepared module known as RUC. The module is available from Planning Services Branch, AI. Figures G-B.4.1 through G-B.4.8 show printouts from that module. Eight calculations are required for this project because of different speeds and collision rates that are used for portions of the project on the existing and proposed alignment.

The input parameters are identified on the printout by a shaded background. Whenever a parameter such as AADT, speed or collision rate changes, an additional calculation must be run. The road user costs include costs for collisions, time, and vehicle operation. A full explanation of the considerations and instructions for use of the RUC module are included in AIs Benefit-Cost Analysis User Manual.

The parameters that varied in this analysis are listed below in Table G.B.4.

	Proposed Alignment									
	Design Speed									
Collision Rate	Surface Type	Length (m)								
85	97.3 paved	376.6								
78.5	97.3 paved	503.44								
70	97.3 paved	409.1								
59	945.0									
	Total	2234.14 m								

Table G.B.4 Input Parameters for Ana	lysis
--------------------------------------	-------

	Existing Alignment	
	Design Speed	
Collision Rate	Surface Type	Length (m)
59	60 paved	244.05
127.1	85 paved	345.43
65	97.3 paved	575.6
59	97.3 paved	1124.62
	Total	2289.7 m

In this example, the Road User Costs for each alignment are calculated as a sum of four RUC calculations representing each segment.

PROJECT:	CURVE FLATT	ENING PROJEC	T - SIMPLE CU	JRVE 0.3 KM W	OF McLennan	ALT:	ALT II	06-Apr-95			
ROAD USER COS	T INPUT DATA:										
AADT 1670	%PV 91.7	%RV 1.9	%BUS 0.2	%SU 3	%TRT 3.2		SUR. TYPE paved				
TIME \$:	TRK DRVR 24.25	TRK PASS 13.25	WK/BUS 13.25	OTHER 6.00		I					
TRIP PURPOSE:		PASSENGER % W/B 62.5	VEHS. % OTHER 37.5	REC. VEHS % W/B 0	6. % OTHER 100		% OTHER 0				
VEH.OCC. FACTORS	PV W/B 1.81	PV OTH 2.25	RV W/B 0.00	RV OTH 2.25	TRUCKS 1.13	BUS W/B 1.00	BUS OTHER 0.00				
COLLISION DATA:		RATE 85	%FATAL 2	%INJURY 25	%PDO 73	I					
	FATAL COLLIS		#FATALS 1.35 -	#SER.INJ 0.57 0.26	#MOD.INJ 0.69 1.43						
	SOC.+DIR.COS PROPERTY DA		FATALS 691800 7500	SER.INJ 459800 6750	MOD.INJ 1495 6750	300					
GRADIENT COSTS	S:										
grade 0		unit cost for g PV 100.14	SU 297.67	TRT 274.89	running costs PV 58.95	SU 5.99	TRT 5.53	total cost for grades 70.47			
1 2 3 4 5 6 7	0.00 0.00 0.00 0.00	100.68 102.02 103.14 104.75 104.99 109.28 117.57	301.93 278.34 317.23 347.55 379.59 414.28 450.79	251.40 246.62 290.60 334.09 384.49 437.69 499.79	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00			
7 8 TOT. LEN.		128.54	490.22	572.86	0.00	0.00 0.00	0.00	0.00			
CURVATURE COS											
radius 250 600 748 600 873 1500	superelev 0.080 0.060 0.058 0.060 0.047 0.049	length 0.00 0.00 0.00 0.38 0.00 0.00	unit cost for 0 PV 196.5 13.1 3.0 13.1 1.9 0.0	Curves SU 2183.2 179.7 69.7 179.7 57.8 0.0	TRT 4141.8 344.3 135.8 344.3 113.3 0.0	running costs PV 0.00 0.00 0.00 7.71 0.00 0.00	on curves SU 0.00 0.00 0.00 3.62 0.00 0.00	TRT 0.00 0.00 0.00 6.93 0.00 0.00	total cost for curves 0.00 0.00 0.00 18.25 0.00 0.00		
				TOTAL DAILY F	RUNNING COS	T FOR CURVES	6	18.25			
TIME COSTS:											
	trip purpose wrk/bus other	unit cost for PV 23.98 13.50	time RV 0.00 13.50	TRUCK 25.97	BUS 24.25 18.25	vehicle time PV 88.84 30.01	costs RV 0.00 1.66	TRUCK 10.41	BUS 0.31 0.00	total cost	99.57 31.66
COLLISION COST	S:			TOTAL DAILY 1	TIME COSTS F	OR ROUTE		131.23			
25	collision severity % fatal % injury % pdo	unit cost for FATALITY 933930	collision SER. INJ 262086 119548	MOD. INJ 1032 2138	DAMAGE 7500 6750 3900	SUB TOTAL 1204548 128436 3900	% x COST 24090.95 32108.96 2847.00				
				AVERAGE COS AVERAGE # CO TOTAL DAILY (	OLLISIONS PEI	R DAY	59046.91 0.00053	31.57			
				TOTAL DAILY F	ROAD USER C	OSTS		251.52			
				TOTAL ANNUA	L ROAD USER	COSTS		91,867.86			

			ROAD U	SER COS	T EVALU	ATION					
PROJECT:	CURVE FLATT	ENING PROJEC	T - SIMPLE CU	JRVE 0.3 KM W	OF McLennan	ALT:	ALT II	06-Apr-95			
ROAD USER COS	T INPUT DATA:										
AADT 1670	%PV 91.7	%RV 1.9	%BUS 0.2	%SU 3	%TRT 3.2		SUR. TYPE paved				
TIME \$:	TRK DRVR 24.25	TRK PASS 13.25	WK/BUS 13.25	OTHER 6.00							
TRIP PURPOSE:		PASSENGER % W/B 62.5	VEHS. % OTHER 37.5	REC. VEHS % W/B 0	% OTHER 100	BUSES % W/B 100	% OTHER 0				
VEH.OCC. FACTORS	PV W/B 1.81	PV OTH 2.25	RV W/B 0.00	RV OTH 2.25	TRUCKS 1.13	BUS W/B 1.00	BUS OTHER 0.00				
COLLISION DATA:	:	RATE 78.5	%FATAL 2	%INJURY 25	%PDO 73						
	FATAL COLLIS		#FATALS 1.35 -	#SER.INJ 0.57 0.26	#MOD.INJ 0.69 1.43						
	SOC.+DIR.COS PROPERTY DA		FATALS 691800 7500	SER.INJ 459800 6750	MOD.INJ 1495 6750	P.D.O. 300 3600					
GRADIENT COSTS	S:										
grade 0 1 3 3 4 5 6 6	0.00 0.00 0.00 0.00 0.00 0.00	unit cost for g PV 100.14 100.68 102.02 103.14 104.75 104.99 109.28	SU 297.67 301.93 278.34 317.23 347.55 379.59 414.28	TRT 274.89 251.40 246.62 290.60 334.09 384.49 437.69	running costs PV 78.80 0.00 0.00 0.00 0.00 0.00 0.00	SU 8.01 0.00 0.00 0.00 0.00 0.00 0.00	TRT 7.40 0.00 0.00 0.00 0.00 0.00 0.00	total cost for grades 94.21 0.00 0.00 0.00 0.00 0.00 0.00			
7 8 TOT. LEN.		117.57 128.54	450.79 490.22	499.79 572.86 TOTAL DAILY F	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00 94.21			
				TOTAL DAILT P		I FOR GRADE	5	94.21			
CURVATURE COS											
radius 250 600 748 600 873 1500	0.060 0.058 0.060 0.047	length 0.00 0.00 0.50 0.00 0.00	unit cost for 6 PV 196.5 13.1 3.0 13.1 1.9 0.0	SU 2183.2 179.7 69.7 179.7 57.8 0.0	TRT 4141.8 344.3 135.8 344.3 113.3 0.0	running costs PV 0.00 0.00 10.30 0.00 0.00 0.00		TRT 0.00 0.00 9.26 0.00 0.00	total cost for curves 0.00 0.00 24.40 0.00 0.00		
TIME COSTS:				TOTAL DAILY F	RUNNING COS	T FOR CURVES	6	24.40			
	trip purpose wrk/bus other	unit cost for PV 23.98 13.50	RV 0.00 13.50	TRUCK 25.97 TOTAL DAILY 1	BUS 24.25 18.25 TIME COSTS F	vehicle time PV 118.77 40.11 DR ROUTE	costs RV 0.00 2.22	TRUCK 13.91 175.43	BUS 0.42 0.00	total cost	133.10 42.33
COLLISION COST	S:										
25	collision severity % fatal % injury % pdo	unit cost for FATALITY 933930	collision SER. INJ 262086 119548	MOD. INJ 1032 2138	DAMAGE 7500 6750 3900	SUB TOTAL 1204548 128436 3900	% x COST 24090.95 32108.96 2847.00				
				AVERAGE COS AVERAGE # CO TOTAL DAILY (	OLLISIONS PEI	R DAY	59046.91 0.00066	38.97			
				TOTAL DAILY F				333.01			
				TOTAL ANNUA	L ROAD USER	COSTS		121,630.64			

PROJECT:	CURVE FLATT	ENING PROJEC	T - SIMPLE CU	JRVE 0.3 KM W	OF McLennan	ALT:	ALT II	06-Apr-95			
ROAD USER COS	T INPUT DATA:										
AADT 1670	%PV 91.7	%RV 1.9	%BUS 0.2	%SU 3	%TRT 3.2		SUR. TYPE paved				
TIME \$:		TRK PASS 13.25	WK/BUS 13.25	OTHER 6.00							
TRIP PURPOSE:	l	PASSENGER % W/B 62.5	VEHS. % OTHER 37.5	REC. VEHS % W/B 0	% OTHER 100	BUSES % W/B 100	% OTHER 0				
VEH.OCC. FACTORS	PV W/B 1.81	PV OTH 2.25	RV W/B 0.00	RV OTH 2.25	TRUCKS 1.13	BUS W/B 1.00	BUS OTHER 0.00				
COLLISION DATA:	:	RATE 70	%FATAL 2	%INJURY 25	%PDO 73						
	FATAL COLLIS	IONS	#FATALS 1.35 -		#MOD.INJ 0.69 1.43						
	SOC.+DIR.COS PROPERTY DA		FATALS 691800 7500	SER.INJ 459800 6750	MOD.INJ 1495 6750	P.D.O. 300 3600					
GRADIENT COSTS	S:										
grade 0 1 2 3 4 5 6 6	0.00 0.00 0.00 0.00 0.00 0.00	unit cost for g PV 100.14 100.68 102.02 103.14 104.75 104.99 109.28	SU 297.67 301.93 278.34 317.23 347.55 379.59 414.28	TRT 274.89 251.40 246.62 290.60 334.09 384.49 437.69	running costs PV 64.04 0.00 0.00 0.00 0.00 0.00 0.00	SU 6.51 0.00 0.00 0.00 0.00 0.00 0.00	TRT 6.01 0.00 0.00 0.00 0.00 0.00 0.00	total cost for grades 76.55 0.00 0.00 0.00 0.00 0.00 0.00			
7 8 TOT. LEN.		117.57 128.54	450.79 490.22	499.79 572.86	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00			
				TOTAL DAILY F	CONNING COS	I FOR GRADE	5	76.55			
CURVATURE COS	STS:										
radius 250 600 748 600 873 1500	0.060 0.058 0.060 0.047	length 0.00 0.00 0.00 0.00 0.00 0.41	unit cost for c PV 196.5 13.1 3.0 13.1 1.9 0.0	SU 2183.2 179.7 69.7 179.7 57.8 0.0	TRT 4141.8 344.3 135.8 344.3 113.3 0.0	running costs PV 0.00 0.00 0.00 0.00 0.00 0.00	on curves SU 0.00 0.00 0.00 0.00 0.00 0.00	TRT 0.00 0.00 0.00 0.00 0.00 0.00	total cost for curves 0.00 0.00 0.00 0.00 0.00 0.00		
TIME COSTS:				TOTAL DAILY F	RUNNING COS	T FOR CURVES	3	0.00			
	trip purpose wrk/bus other	unit cost for PV 23.98 13.50	RV 0.00 13.50	TRUCK 25.97	BUS 24.25 18.25	vehicle time PV 96.51 32.60	costs RV 0.00 1.80	TRUCK 11.31	BUS 0.34 0.00	total cost	108.16 34.40
COLLISION COST	S:			TOTAL DAILY T	TIME COSTS FO	OR ROUTE		142.56			
25	collision severity % fatal % injury % pdo	unit cost for FATALITY 933930	collision SER. INJ 262086 119548	MOD. INJ 1032 2138	DAMAGE 7500 6750 3900	SUB TOTAL 1204548 128436 3900	% x COST 24090.95 32108.96 2847.00				
				AVERAGE COS AVERAGE # CO TOTAL DAILY C	OLLISIONS PER	R DAY	59046.91 0.00048	28.24			
				TOTAL DAILY F	ROAD USER CO	OSTS		247.35			
				TOTAL ANNUA	L ROAD USER	COSTS		90,343.61			

**3R/4R GEOMETRIC DESIGN GUIDELINES** 

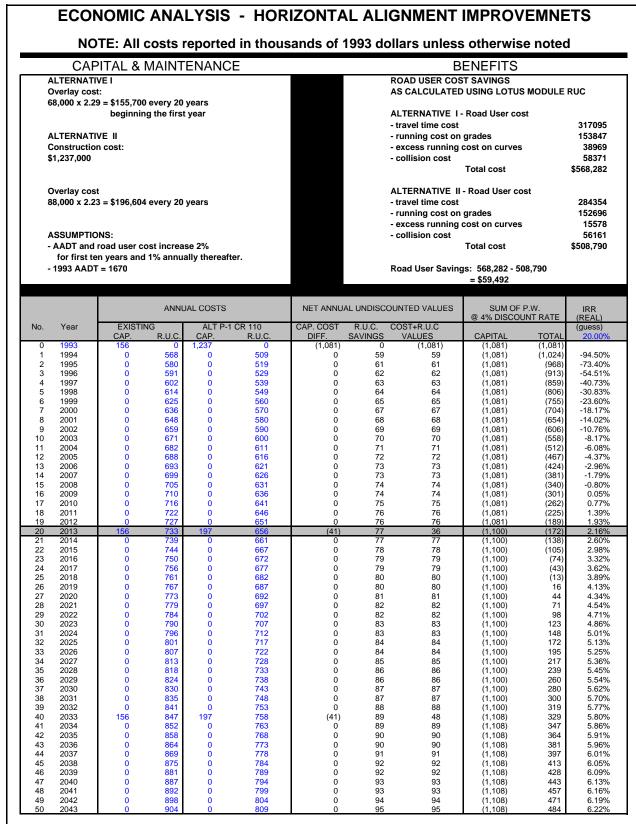
	ROAD USER COST EVALUATION										
PROJECT:	CURVE FLATT	ENING PROJEC	T - SIMPLE CU	JRVE 0.3 KM W	OF McLennan	ALT:	ALT II	06-Apr-95			
ROAD USER COS	T INPUT DATA:										
AADT 1670	%PV 91.7	%RV 1.9	%BUS 0.2	%SU 3	%TRT 3.2		SUR. TYPE paved				
TIME \$:	TRK DRVR 24.25	TRK PASS 13.25	WK/BUS 13.25	OTHER 6.00							
TRIP PURPOSE:		PASSENGER % W/B 62.5	VEHS. % OTHER 37.5	REC. VEHS % W/B 0	% OTHER 100	BUSES % W/B 100	% OTHER 0				
VEH.OCC. FACTORS	PV W/B 1.81	PV OTH 2.25	RV W/B 0.00	RV OTH 2.25	TRUCKS 1.13	BUS W/B 1.00	BUS OTHER 0.00				
COLLISION DATA:		RATE 59	%FATAL 2	%INJURY 25	%PDO 73						
	FATAL COLLIS INJURY COLLI		#FATALS 1.35 -	#SER.INJ 0.57 0.26	#MOD.INJ 0.69 1.43						
	SOC.+DIR.COS PROPERTY DA		FATALS 691800 7500	SER.INJ 459800 6750	MOD.INJ 1495 6750	P.D.O. 300 3600					
GRADIENT COSTS	S:										
grade 0 1 2 3 4 5 6 7	0.00 0.00 0.00 0.00 0.00 0.00	unit cost for g PV 100.14 100.68 102.02 103.14 104.75 104.99 109.28 117.57	rades SU 297.67 301.93 278.34 317.23 347.55 379.59 414.28 450.79	TRT 274.89 251.40 246.62 290.60 334.09 384.49 437.69 499.79	running costs PV 147.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00	on grades SU 15.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00	TRT 13.88 0.00 0.00 0.00 0.00 0.00 0.00	total cost for grades 176.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00			
8 TOT. LEN.		128.54	490.22	572.86	0.00	0.00	0.00	0.00			
				TOTAL DAILY F	UNNING COS	FOR GRADES	5	176.83			
CURVATURE COS	STS:										
radius 250 600 748 600 873 1500	0.060 0.058 0.060 0.047	length 0.00 0.00 0.00 0.00 0.00 0.00	unit cost for o PV 196.5 13.1 3.0 13.1 1.9 0.0	SUV 2183.2 179.7 69.7 179.7 57.8 0.0 TOTAL DAILLY F	TRT 4141.8 344.3 135.8 344.3 113.3 0.0 RUNNING COST	running costs PV 0.00 0.00 0.00 0.00 0.00 0.00 FOR CURVES	SU 0.00 0.00 0.00 0.00 0.00 0.00	TRT 0.00 0.00 0.00 0.00 0.00 0.00 0.00	total cost for curves 0.00 0.00 0.00 0.00 0.00 0.00		
TIME COSTS:							-				
	trip purpose wrk/bus other	unit cost for PV 23.98 13.50	RV 0.00 13.50	TRUCK 25.97 TOTAL DAILY T	BUS 24.25 18.25 TME COSTS FC	vehicle time PV 222.94 75.30 PR ROUTE	costs RV 0.00 4.16	TRUCK 26.12 329.30	BUS 0.79 0.00	total cost	249.84 79.46
COLLISION COSTS	S:										
25	collision severity % fatal % injury % pdo	unit cost for FATALITY 933930	collision SER. INJ 262086 119548	MOD. INJ 1032 2138	DAMAGE 7500 6750 3900	SUB TOTAL 1204548 128436 3900	% x COST 24090.95 32108.96 2847.00				
				AVERAGE COS AVERAGE # CO TOTAL DAILY C	OLLISIONS PER	DAY	59046.91 0.00093	54.98			
				TOTAL DAILY R	ROAD USER CO	STS		561.11			
				TOTAL ANNUA	L ROAD USER	COSTS		204,945.17			

PROJECT:	CURVE FLATT	ENING PROJEC	T - SIMPLE CU	JRVE 0.3 KM W	OF McLennan	ALT:	ALT I	06-Apr-95			
ROAD USER COS	T INPUT DATA:										
AADT 1670	%PV 91.7	%RV 1.9	%BUS 0.2	%SU 3	%TRT 3.2		SUR. TYPE				
TIME \$:	TRK DRVR 24.25	TRK PASS 13.25	WK/BUS 13.25	OTHER 6.00		1					
TRIP PURPOSE:		PASSENGER % W/B 62.5	VEHS. % OTHER 37.5	REC. VEHS % W/B 0	% OTHER 100	BUSES % W/B 100	% OTHER 0				
VEH.OCC. FACTORS	PV W/B 1.81	PV OTH 2.25	RV W/B 0.00	RV OTH 2.25	TRUCKS 1.13	BUS W/B 1.00	BUS OTHER 0.00				
COLLISION DATA	:	RATE 59	%FATAL 2	%INJURY 25	%PDO 73	1					
	FATAL COLLIS		#FATALS 1.35 -	#SER.INJ 0.57 0.26	#MOD.INJ 0.69 1.43						
	SOC.+DIR.COS PROPERTY DA		FATALS 691800 7500	SER.INJ 459800 6750	MOD.INJ 1495 6750						
GRADIENT COST	S:										
grade 0	length	unit cost for g PV 92.20	rades SU 292.43	TRT 247.02	running costs PV 35.17	s on grades SU 3.81	TRT 3.22	total cost for grades 42.21			
1 2 3 4 5 6 7 7	0.00 0.00 0.00 0.00 0.00 0.00	93.20 93.88 95.09 98.21 107.10 109.95 115.27	294.44 299.48 339.83 366.70 395.38 426.59 460.61	234.71 261.21 304.98 345.80 390.90 445.20 508.67	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00			
8 TOT. LEN.	0.00 0.24	120.90	497.16	581.22	0.00	0.00	0.00	0.00			
				TOTAL DAILY F	RUNNING COS	T FOR GRADES	8	42.21			
CURVATURE COS	STS:										
radius	superelev	length	unit cost for o PV	curves SU	TRT	running costs PV	on curves SU	TRT	total cost for curves		
218 600 748 600 873 1500	0.060 0.058 0.060 0.047	0.24 0.00 0.00 0.00 0.00 0.00	6.2 0.0 0.0 0.0 0.0 0.0	104.6 0.0 9.4 0.0 0.3 32.7	202.0 0.1 21.5 0.1 4.3 65.7	2.37 0.00 0.00 0.00 0.00 0.00	1.36 0.00 0.00 0.00 0.00 0.00	2.63 0.00 0.00 0.00 0.00 0.00	6.37 0.00 0.00 0.00 0.00 0.00		
				TOTAL DAILY F	RUNNING COS	T FOR CURVES	3	6.37			
TIME COSTS:											
	trip purpose wrk/bus other	unit cost for PV 23.98 13.50	RV 0.00 13.50	TRUCK 25.97	BUS 24.25 18.25	vehicle time PV 93.37 31.53	costs RV 0.00 1.74	TRUCK 10.94	BUS 0.33 0.00	total cost	104.63 33.28
COLLISION COST	S:			TOTAL DAILY 1		ONNOUTE		137.91			
2 25	collision severity 2 % fatal 5 % injury 5 % pdo	unit cost for FATALITY 933930	collision SER. INJ 262086 119548	MOD. INJ 1032 2138	DAMAGE 7500 6750 3900	SUB TOTAL 1204548 128436 3900	% x COST 24090.95 32108.96 2847.00				
				AVERAGE COS AVERAGE # CO TOTAL DAILY (	ST PER COLLIS	R DAY	59046.91 0.00024	14.20			
				TOTAL DAILY F	ROAD USER C	OSTS		200.69			
				TOTAL ANNUA	L ROAD USER	COSTS		73,301.38			

			ROAD U	SER COS	T EVALU	ATION					
PROJECT:	CURVE FLATT	ENING PROJEC	T - SIMPLE CU	IRVE 0.3 KM W	OF McLennan	ALT:	ALT I	06-Apr-95			
ROAD USER COS	T INPUT DATA:										
AADT 1670	%PV 91.7	%RV 1.9	%BUS 0.2	%SU 3	%TRT 3.2		SUR. TYPE paved				
TIME \$:	TRK DRVR 24.25	TRK PASS 13.25	WK/BUS 13.25	OTHER 6.00							
TRIP PURPOSE:		PASSENGER % W/B 62.5	VEHS. % OTHER 37.5	REC. VEHS % W/B 0	% OTHER 100	BUSES % W/B 100	% OTHER 0				
VEH.OCC. FACTORS	PV W/B 1.81	PV OTH 2.25	RV W/B 0.00	RV OTH 2.25	TRUCKS 1.13	BUS W/B 1.00	BUS OTHER 0.00				
COLLISION DATA:		RATE 127.1	%FATAL 2	%INJURY 25	%PDO 73						
	FATAL COLLIS		#FATALS 1.35 -	#SER.INJ 0.57 0.26	#MOD.INJ 0.69 1.43						
	SOC.+DIR.COS PROPERTY DA		FATALS 691800 7500	SER.INJ 459800 6750	MOD.INJ 1495 6750	P.D.O. 300 3600					
GRADIENT COSTS	S:										
grade 0 1 2 3 4 5 6 7 8	0.00 0.00 0.00 0.00 0.00 0.00 0.00	unit cost for g PV 93.93 94.42 95.39 96.12 98.06 103.14 106.60 113.59 122.23	rades SU 282.70 286.76 277.38 322.47 351.47 382.19 415.49 450.96 489.21	TRT 265.51 240.12 247.82 290.86 332.44 379.54 432.40 493.17 565.05	running costs PV 50.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00	on grades SU 5.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00	TRT 4.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00	total cost for grades 60.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00			
TOT. LEN.	0.35	122.25		TOTAL DAILY F				60.84			
CURVATURE COS		la a ath							1-1-1		
radius 250 600 748 600 873 1500	0.060 0.058 0.060 0.047	0.35 0.00 0.00 0.00 0.00 0.00 0.00	unit cost for c PV 87.5 0.8 0.0 0.8 0.0 0.0 0.0	SU 992.1 45.6 5.0 45.6 5.3 0.0 TOTAL DAILY F	TRT 1884.1 90.2 13.3 90.2 13.7 0.0 RUNNING COST	running costs PV 47.23 0.00 0.00 0.00 0.00 0.00	SU 18.31 0.00 0.00 0.00 0.00 0.00	TRT 34.78 0.00 0.00 0.00 0.00 0.00 100.32	total cost for curves 100.32 0.00 0.00 0.00 0.00 0.00		
TIME COSTS:											
	trip purpose wrk/bus other	unit cost for PV 23.98 13.50	RV 0.00 13.50	TRUCK 25.97	BUS 24.25 18.25	vehicle time PV 93.28 31.51	costs RV 0.00 1.74	TRUCK 10.93	BUS 0.33 0.00	total cost	104.54 33.25
	e.			TOTAL DAILY T	IME COSTS FO	OR ROUTE		137.79			
25	s: collision severity % fatal % injury % pdo	unit cost for FATALITY 933930	SER. INJ 262086 119548	MOD. INJ 1032 2138 AVERAGE COS	DAMAGE 7500 6750 3900 ST PER COLLIS	SUB TOTAL 1204548 128436 3900	% x COST 24090.95 32108.96 2847.00 59046.91				
				AVERAGE # CC TOTAL DAILY C	OLLISIONS PER COLLISION COS	R DAY STS	0.00073	43.29			
								342.24			
				TOTAL ANNUA	L RUAD USER	00313		125,003.30			

PROJECT:	CURVE FLATT	ENING PROJEC	T - SIMPLE CU	JRVE 0.3 KM W	OF McLennan	ALT:	ALT I	06-Apr-95			
ROAD USER COS	ST INPUT DATA:										
AADT 1670	%PV 0 91.7	%RV 1.9	%BUS 0.2	%SU 3	%TRT 3.2		SUR. TYPE paved				
TIME \$:	TRK DRVR 24.25	TRK PASS 13.25	WK/BUS 13.25	OTHER 6.00							
TRIP PURPOSE:		PASSENGER % W/B 62.5	VEHS. % OTHER 37.5	REC. VEHS % W/B 0	6. % OTHER 100	BUSES % W/B 100	% OTHER 0				
VEH.OCC. FACTORS	PV W/B 1.81	PV OTH 2.25	RV W/B 0.00	RV OTH 2.25	TRUCKS 1.13	BUS W/B 1.00	BUS OTHER 0.00				
COLLISION DATA	.:	RATE 65	%FATAL 2	%INJURY 25	%PDO 73						
	FATAL COLLIS		#FATALS 1.35 -	#SER.INJ 0.57 0.26	#MOD.INJ 0.69 1.43						
	SOC.+DIR.COS PROPERTY DA		FATALS 691800 7500	SER.INJ 459800 6750	MOD.INJ 1495 6750						
GRADIENT COST	S:										
grade	length	unit cost for g PV	rades SU	TRT	running costs PV	on grades SU	TRT	total cost for grades			
	0         0.58           1         0.00           2         0.00           3         0.00           4         0.00           5         0.00           6         0.00           7         0.00	100.14 100.68 102.02 103.14 104.75 104.99 109.28 117.57	297.67 301.93 278.34 317.23 347.55 379.59 414.28 450.79	274.89 251.40 246.62 290.60 334.09 384.49 437.69 499.79	90.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00	9.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	107,71 0.00 0.00 0.00 0.00 0.00 0.00 0.00			
TOT. LEN.	8 0.00 0.58	128.54	490.22	572.86	0.00	0.00	0.00	0.00			
				TOTAL DAILY F	RUNNING COS	T FOR GRADES	6	107.71			
CURVATURE CO	STS:										
radius	superelev	length	unit cost for o PV	curves SU	TRT	running costs PV	on curves SU	трт	total cost for curves		
250 600 741 600 873 1744	0 0.060 8 0.058 0 0.060 3 0.047	0.00 0.00 0.00 0.00 0.00 0.58	196.5 13.1 3.0 13.1 1.9 0.0	2183.2 179.7 69.7 179.7 57.8 0.0	4141.8 344.3 135.8 344.3 113.3 0.0	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	) ) )	
TIME COSTS:				TOTAL DAILY F	RUNNING COS	T FOR CURVES	5	0.00			
	trip purpose wrk/bus other	unit cost for PV 23.98 13.50	RV 0.00 13.50	TRUCK 25.97 TOTAL DAILY 1	BUS 24.25 18.25 FIME COSTS F	vehicle time PV 135.79 45.86 OR ROUTE	costs RV 0.00 2.53	TRUCK 15.91 200.57	BUS 0.48 0.00		152.18 48.40
COLLISION COST	S:										
25	collision severity 2 % fatal 5 % injury 3 % pdo	unit cost for FATALITY 933930	collision SER. INJ 262086 119548	MOD. INJ 1032 2138	DAMAGE 7500 6750 3900	SUB TOTAL 1204548 128436 3900	% x COST 24090.95 32108.96 2847.00				
				AVERAGE COS AVERAGE # CO TOTAL DAILY (	OLLISIONS PEI	R DAY	59046.91 0.00062	36.89			
				TOTAL DAILY F	ROAD USER C	OSTS		345.18			
				TOTAL ANNUA	L ROAD USER	COSTS		126,076.08			

			ROAD U	SER COS	T EVALU	ATION					
PROJECT:	CURVE FLATT	ENING PROJEC	T - SIMPLE CU	JRVE 0.3 KM W	OF McLennan	ALT:	ALT I	06-Apr-95			
ROAD USER COS	F INPUT DATA:										
AADT 1670	%PV 91.7	%RV 1.9	%BUS 0.2	%SU 3	%TRT 3.2		SUR. TYPE paved				
TIME \$:	TRK DRVR 24.25	TRK PASS 13.25	WK/BUS 13.25	OTHER 6.00	_						
TRIP PURPOSE:		PASSENGER % W/B 62.5	VEHS. % OTHER 37.5	REC. VEHS % W/B 0	6. % OTHER 100	BUSES % W/B 100	% OTHER 0				
VEH.OCC. FACTORS	PV W/B 1.81	PV OTH 2.25	RV W/B 0.00	RV OTH 2.25	TRUCKS 1.13	BUS W/B 1.00	BUS OTHER 0.00				
COLLISION DATA:		RATE 59	%FATAL 2	%INJURY 25	%PDO 73						
	FATAL COLLIS INJURY COLLI		#FATALS 1.35 -	#SER.INJ 0.57 0.26	#MOD.INJ 0.69 1.43						
	SOC.+DIR.COS PROPERTY DA		FATALS 691800 7500	SER.INJ 459800 6750	MOD.INJ 1495 6750	P.D.O. 300 3600					
GRADIENT COSTS	8:										
grade	length	unit cost for g PV	SU	TRT	running costs PV	SU	TRT	total cost for grades			
0 1 2 3 4 5 6 7	0.00 0.00 0.00 0.00 0.00 0.00 0.00	100.14 100.68 102.02 103.14 104.75 104.99 109.28 117.57	297.67 301.93 278.34 317.23 347.55 379.59 414.28 450.79	274.89 251.40 246.62 290.60 334.09 384.49 437.69 499.79	176.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00	17.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00	16.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00	210.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00			
8 TOT. LEN.	0.00 1.12	128.54	490.22	572.86		0.00	0.00	0.00			
				TOTAL DAILY F	CONTRING COS	I FOR GRADE	5	210.45			
CURVATURE COS	TS:										
radius	superelev	length	unit cost for o PV	curves SU	TRT	running costs PV		TRT	total cost for curves		
250 600 748 600 873 1500		0.00 0.00 0.00 0.00 0.00 0.00	196.5 13.1 3.0 13.1 1.9 0.0	2183.2 179.7 69.7 179.7 57.8 0.0	4141.8 344.3 135.8 344.3 113.3 0.0	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00		
TIME COSTS:				TOTAL DAILY F	RUNNING COS	I FOR CURVES	5	0.00			
	trip purpose	unit cost for PV	RV	TRUCK	BUS	vehicle time PV	RV	TRUCK	BUS	total cost	
	wrk/bus other	23.98 13.50	0.00 13.50	25.97	24.25 18.25	265.31 89.61	0.00 4.95	31.08	0.94 0.00		297.33 94.56
COLLISION COSTS	S.			TOTAL DAILY 1		UK KUUTE		391.89			
	collision severity	unit cost for FATALITY	SER. INJ	MOD. INJ	DAMAGE	SUB TOTAL	% x COST				
25	% fatal % injury % pdo	933930	262086 119548	1032 2138	7500 6750 3900	1204548 128436 3900	24090.95 32108.96 2847.00				
				AVERAGE COS AVERAGE # CO TOTAL DAILY (	OLLISIONS PEI	R DAY	59046.91 0.00111	65.43			
				TOTAL DAILY F	ROAD USER CO	OSTS		667.76			
				TOTAL ANNUA	L ROAD USER	COSTS		243,899.93			


### G.B.5 Economic Analysis using Lotus Module Benefit-Cost

The economic analysis for horizontal alignment improvement is performed using a Lotus module known as Benefit-Cost which is available from Planning Services Branch (AI). A printout for the analysis on the example project is shown in Table G.B.5. The input values and theory used in the Benefit-Cost module are fully explained in the Benefit-Cost Analysis User Manual. A brief description follows:

A stream of costs and benefits for year 0 through to year 50 are input. The costs and benefits include construction, maintenance and road user costs for each alternative. In this case, the do nothing alternative is compared to the alignment improvement alternative. The annual differences in costs and benefits between the two alternatives are compared to yield a net annual undiscounted value for the improvement for each year of the analysis. These values are used to generate a column of figures representing each year entitled sum of present worth @ four percent discount rate. These figures are in turn used to determine the Internal Rate of Return (IRR) for each year of the analysis. The IRR is defined as the discount rate at which the present value of benefits equals the present value of costs. The IRR is the key indicator of economic feasibility for the project. For comparison purposes between various proposals or between various projects, the IRR at the end of the design life of an improvement is generally used. A project should be considered economically feasible if the IRR exceeds four percent at the end of the design life.

In the case of this example, where the IRR is 2.48 percent at year 20, the horizontal alignment improvement should be considered not economically feasible. A detailed treatment on how to assess the feasibility of a proposal is available in the Benefit-Cost Analysis Guide.

#### Table G.B.5



**3R/4R GEOMETRIC DESIGN GUIDELINES** 

G-57

## **APPENDIX C**

### SUMMARY OF ECONOMIC ANALYSIS FOR SIDESLOPE FLATTENING

The effect of slope combinations on safety during traversal by an errant vehicle is an important consideration in designing the roadside. It is this consideration which has been addressed by the following analysis.

The economic analysis was performed to determine the daily traffic volume (AADT) which would justify flattening an existing 3:1 sideslope to 4:1 with standard trapezoidal ditch cross section at the time of overlay, based on the reduction in collision severity (and collision cost) that should result from such an improvement.

Alberta collision history indicates that run-off-road collisions represent approximately 34.1 percent of all collisions on undivided rural highways.

The current proportion of collisions resulting in fatalities, injuries and property damage in Alberta is summarized in the table below:

	Fatal Collisions	Injury Collisions	Property Damage Collisions
Run-off-Road Collisions on 4:1 sideslope *	<b>1.585</b> %	<b>34.3</b> %	<b>64.1</b> %
Run-off-Road Collisions on 3:1 sideslope **	<b>3.2</b> %	<b>45.0</b> %	<b>51.8</b> %
All Collisions including Run-off-Road type ***	<b>2.0</b> %	<b>25.0</b> %	<b>73.0</b> %

* These figures are a 5-year provincial average (1986-1990) for undivided primary highways (it was assumed that the existing sideslope is 4:1)

* These figures were selected based on the typical difference in collision severity for 3:1 slopes versus 4:1 slopes used by FHWA for 70 mph (Roadside Cross-Improvements, January, 1994).

*** These figures are 1990 provincial averages for undivided primary highways included in the Benefit Cost Analysis User Manual, AT&U, 1992.

The severity index concept was introduced in the analysis to provide a means of comparing the relative severity of collisions on various side-slopes. These distributions for run-off-road collisions on 4:1 and 3:1 slopes in Alberta are called Alberta Severity Indices  $SA_{4:1}$  and  $SA_{3:1}$ , respectively.

Based on the above distributions, average costs per run-off-road collisions on 4:1 and 3:1 slopes were calculated using Alberta average costs for each collision type.

A summary of those calculations is shown below.

VALUES OF COLLISIONS IN ALBER	\$ PER COLLISION	
Fatal Collision	1,339,578	
Injury Collision	143,309	
Property Damage		2,011
CALCULATED AVERAGE COST PER	\$ PER COLLISION	
Collision Cost on 4:1 sideslope	$\frac{1.585(1,339,578) + 34.3(143,309) + 64.1(2,011)}{100} =$	71,698
Collision Cost on 3:1 sideslope	$\frac{3.2(1,339,578) + 45.0(143,309) + 51.8(2,011)}{100} =$	108,397
Collision Cost Average (all collisions i		
	$\frac{2.0(1,339,578) + 25(143,309) + 73(2,011)}{100} =$	64,087

The AASHTO Model as presented in the Roadside Design Guide, Appendix A, was used to calculate the number of run-off-road collisions for four pavement widths: 7.3m, 7.9 m, 8.5m and 9.8 metres before and after an overlay.

The capital cost for improving the roadside cross-section was assumed based on the average 1993 cost for one kilometre of roadside cross-section improvement (flattening sideslope to 4:1 and restoration of existing ditch to the standard configuration). The cost included borrow excavation, extension of culverts, and placing of top soil.

The internal rate of return method as described in the Benefit Cost Analysis Summary was used to evaluate the cost effectiveness of the proposed improvement for four pavement widths: 7.3 m, 7.9 m, 8.5 m, and 9.8 metres. See the attached Benefit-Cost analysis calculation sheets, Tables G.C.1 through G.C.4. An internal rate of return of four percent at the end of design life (20 years) of the improvement was considered to be the minimum satisfactory return when flattening to a 4:1 sideslope is recommended. This means that the net present value of costs for the improvement plus discounted benefits, using a four percent discount rate, considering 20 years of operation of the roadway, is equal to zero.

The benefit for each year is the difference in cost for collisions on 3:1 sideslopes versus 4:1 sideslopes. The results of the analysis show that roadside cross-section improvements are cost effective on roadways with 3:1 sideslopes, if the AADT exceeds approximately 200 for pavement widths of 7.3 metres and 7.9 metres and on roadways with AADT exceeding approximately 300 for pavement widths of 8.5 metres and 9.8 metres.

Detailed documentation on the accident prediction models, Alberta collision rates, severity indices, assumptions used in the economic analysis, etc., is available in a report entitled Economic Analysis for Sideslope Flattening, prepared by the Technical Standards Branch.

#### Table G.C.1

### **ECONOMIC ANALYSIS - ROADSIDE IMPROVEMENT**

#### **Existing pavement width = 7.3 metres Reduced** pavement width = 7.0 metres

### **170 AADT**

3:1 sideslope, 3:1 or 2:1 backslope, 3.0 metre ditch 4:1 sideslope, 3:1 backslope, 3.5 metre trapezoidal ditch \$ 20,000 per kilometer (both sides) \$108,396 per accident \$71,676 per accident

SI = 4.3 SI = 3.5

Existing ditch configuration: Improved ditch configuration: Capital cost :

Collision cost (for existing condition):

Collision cost (for improved condition):

Benefits accrued are reduction in collision costs and increase annually at the same rate as traffic ( 2% for first 10 years and 1% thereafter)

		ANNUAL COSTS		NET ANNUAL UNDISC. VALUES			SUM OF P.W. @4% DISCOUNT RATE		IRR
No.	Year	3:1 SSL, 3.5:1 BSL CAP. COLL \$.	4:1 SSL, 3.5:1 BSL CAP. COLL \$.	CAP. COST DIFF.	R.U.C.	COST+RUC VALUES	CAPITAL	TOTAL	(guess) 30.00%
0	1992	CAP. COLL 3.	20.000	(20.000)	0	(20.000)	(20,000)	(20.000)	30.00%
1	1992	2.451	1.145	(20,000)	1,305	1.305	(20,000)	(18,745)	-93.47%
2	1993	2,431	1,143	0	1,305	1,305	(20,000)	(17,514)	-70.73%
3	1995	2,549	1,100	0	1,358	1,358	(20,000)	(16,307)	-51.25%
4	1996	2,598	1,131	0	1,384	1,384	(20,000)	(15,124)	-37.37%
5	1997	2,530	1,214	0	1,304	1,304	(20,000)	(13,965)	-27.56%
6	1998	2,696	1,260	0	1,436	1,436	(20,000)	(12,830)	-20.46%
7	1999	2,745	1,283	0	1,462	1,462	(20,000)	(11,719)	-15.19%
8	2000	2,794	1,306	0	1,488	1,488	(20,000)	(10,632)	-11.19%
9	2000	2.843	1,329	0	1,100	1,100	(20,000)	(9,568)	-8.08%
10	2002	2.892	1,352	0	1,540	1,540	(20,000)	(8,527)	-5.62%
11	2003	2.916	1,363	0	1,553	1,553	(20,000)	(7,518)	-3.65%
12	2004	2,941	1,374	0	1,567	1,567	(20,000)	(6,539)	-2.06%
13	2005	2,966	1,386	0	1,580	1,580	(20,000)	(5,591)	-0.75%
14	2006	2,990	1,397	0	1,593	1,593	(20,000)	(4,671)	0.33%
15	2007	3.015	1,409	0	1.606	1,606	(20,000)	(3,779)	1.25%
16	2008	3,039	1,420	0	1,619	1,619	(20.000)	(2,915)	2.02%
17	2009	3,064	1,432	0	1,632	1,632	(20,000)	(2,077)	2.68%
18	2010	3,088	1,443	0	1,645	1,645	(20,000)	(1,266)	3.24%
19	2011	3,113	1,455	0	1,658	1,658	(20,000)	(479)	3.73%
20	2012	3,137	1,466	0	1,671	1,671	(20,000)	284	4.15%
21	2013	3.162	1.478	0	1.684	1.684	(20.000)	1.023	4.52%
22	2014	3,186	1,489	0	1,697	1,697	(20,000)	1,739	4.85%
23	2015	3,211	1,500	0	1,710	1,710	(20,000)	2,433	5.13%
24	2016	3,235	1,512	0	1,723	1,723	(20,000)	3,105	5.39%
25	2017	3,260	1,523	0	1,736	1,736	(20,000)	3,757	5.61%
26	2018	3,284	1,535	0	1,749	1,749	(20,000)	4,387	5.81%
27	2019	3,309	1,546	0	1,762	1,762	(20,000)	4,999	5.99%
28	2020	3,333	1,558	0	1,775	1,775	(20,000)	5,591	6.15%
29	2021	3,358	1,569	0	1,788	1,788	(20,000)	6,164	6.29%
30	2022	3,382	1,581	0	1,802	1,802	(20,000)	6,720	6.42%
31	2023	3,407	1,592	0	1,815	1,815	(20,000)	7,258	6.54%
32	2024	3,431	1,604	0	1,828	1,828	(20,000)	7,779	6.64%
33	2025	3,456	1,615	0	1,841	1,841	(20,000)	8,283	6.74%
34	2026	3,480	1,626	0	1,854	1,854	(20,000)	8,772	6.82%
35	2027	3,505	1,638	0	1,867	1,867	(20,000)	9,245	6.90%
36	2028	3,529	1,649	0	1,880	1,880	(20,000)	9,703	6.97%
37	2029	3,554	1,661	0	1,893	1,893	(20,000)	10,146	7.03%
38	2030	3,578	1,672	0	1,906	1,906	(20,000)	10,576	7.09%
39	2031	3,603	1,684	0	1,919	1,919	(20,000)	10,991	7.15%
40	2032	3,627	1,695	0	1,932	1,932	(20,000)	11,394	7.20%
41	2033	3,652	1,707	0	1,945	1,945	(20,000)	11,783	7.24%
42	2034	3,676	1,718	0	1,958	1,958	(20,000)	12,160	7.28%
43	2035	3,701	1,730	0	1,971	1,971	(20,000)	12,525	7.32%
44	2036	3,725	1,741	0	1,984	1,984	(20,000)	12,879	7.35%
45	2037	3,750	1,752	0	1,997	1,997	(20,000)	13,221	7.39%
46	2038	3,774	1,764	0	2,010	2,010	(20,000)	13,552	7.42%
47	2039	3,799	1,775	0	2,023	2,023	(20,000)	13,872	7.44%
48	2040	3,823	1,787	0	2,037	2,037	(20,000)	14,182	7.47%
49	2041	3,848	1,798	0	2,050	2,050	(20,000)	14,482	7.49%
50	2042	3,872	1,810	0	2,063	2,063	(20,000)	14,772	7.51%

#### **3R/4R GEOMETRIC DESIGN GUIDELINES**

#### Table G.C.2

#### **ECONOMIC ANALYSIS - ROADSIDE IMPROVEMENT**

#### Existing pavement width = 7.9 metres **Reduced pavement width = 7.3 metres**

Existing ditch configuration: Improved ditch configuration: Capital cost : Collision cost (for existing condition): Collision cost (for improved condition):

Benefits accrued are reduction in collision costs and increase annually at the same rate as traffic ( 2% for first 10 years and 1% thereafter

ANNUAL COSTS					NET ANNUAL UNDISC. VALUES			SUM OF P.W. @ 4% DISCOUNT RATE		IRR
No.	Year	3:1 SSL, 3.5:1 BSI CAP. COLL		SL, 3.5:1 BSL COLL \$.	CAP. COST DIFF.	R.U.C.	COST+RUC VALUES	CAPITAL	TOTAL	(guess) 30.00%
0	1992		20.0		(20,000)	0	(20.000)	(20.000)	(20.000)	00.0070
1	1992	2	558	1,258	(20,000)	1,300	1,300	(20,000)	(18,750)	-93.50%
2	1994		609	1,283	0	1,326	1,326	(20,000)	(17,524)	-70.80%
3	1995		660	1,308	0	1,352	1,352	(20.000)	(16,322)	-51.33%
4	1996		711	1,333	0	1,378	1.378	(20.000)	(15,144)	-37.46%
5	1997		763	1,359	0	1,404	1,404	(20,000)	(13,990)	-27.64%
6	1998	2.	814	1,384	0	1,430	1,430	(20,000)	(12,860)	-20.54%
7	1999		865	1,409	0	1,456	1,456	(20,000)	(11,754)	-15.27%
8	2000		916	1,434	0	1,482	1,482	(20,000)	(10,671)	-11.26%
9	2001		967	1,459	0	1,508	1,508	(20,000)	(9,611)	-8.15%
10	2002	3,	018	1,484	0	1,534	1,534	(20,000)	(8,575)	-5.68%
11	2003	3,	044	1,497	0	1,547	1,547	(20,000)	(7,570)	-3.72%
12	2004	3,	070	1,510	0	1,560	1,560	(20,000)	(6,596)	-2.12%
13	2005	3,	095	1,522	0	1,573	1,573	(20,000)	(5,651)	-0.81%
14	2006	3,	121	1,535	0	1,586	1,586	(20,000)	(4,735)	0.28%
15	2007	3,	146	1,547	0	1,599	1,599	(20,000)	(3,847)	1.19%
16	2008	3,	172	1,560	0	1,612	1,612	(20,000)	(2,987)	1.97%
17	2009	3,	198	1,573	0	1,625	1,625	(20,000)	(2,152)	2.63%
18	2010	3,	223	1,585	0	1,638	1,638	(20,000)	(1,344)	3.19%
19	2011		249	1,598	0	1,651	1,651	(20,000)	(560)	3.68%
20	2012	- /	274	1,610	0	1,664	1,664	(20,000)	199	4.11%
21	2013		300	1,623	0	1,677	1,677	(20,000)	935	4.48%
22	2014		325	1,635	0	1,690	1,690	(20,000)	1,648	4.80%
23	2015		351	1,648	0	1,703	1,703	(20,000)	2,339	5.09%
24	2016		377	1,661	0	1,716	1,716	(20,000)	3,009	5.34%
25	2017		402	1,673	0	1,729	1,729	(20,000)	3,657	5.57%
26	2018		428	1,686	0	1,742	1,742	(20,000)	4,286	5.77%
27	2019		453	1,698	0	1,755	1,755	(20,000)	4,894	5.95%
28	2020		479	1,711	0	1,768	1,768	(20,000)	5,484	6.11%
29	2021		504	1,723	0	1,781	1,781	(20,000)	6,055	6.25%
30	2022		530	1,736	0	1,794	1,794	(20,000)	6,608	6.38%
31	2023		556	1,749	0	1,807	1,807	(20,000)	7,144	6.50%
32	2024		581	1,761	0	1,820	1,820	(20,000)	7,663	6.60%
33	2025		607	1,774	0	1,833	1,833	(20,000)	8,165	6.70%
34 35	2026 2027		632	1,786	0	1,846	1,846	(20,000)	8,652	6.79%
35	2027		658 684	1,799	0	1,859 1,872	1,859 1.872	(20,000)	9,123 9.579	<u>6.86%</u> 6.93%
30	2028		709	1,812	0		1,872	(20,000)	9,579	7.00%
37	2029	- /	709 735	1,824	0	1,885 1.898	,	(20,000)	10,020	
38	2030		735	1,837	0	1,898	1,898 1,911	(20,000)	10,448	<u>7.06%</u> 7.11%
39 40	2031		786	1,849	0	1,911	1,911	(20,000)	11,263	7.11%
40	2032		811	1,874	0	1,924	1,924	(20,000)	11,263	7.16%
41	2033		837	1,874	0	1,937	1,937	(20,000)	12,026	7.21%
42	2034		863	1,887	0	1,950	1,950	(20,000)	12,026	7.25%
43	2035		888	1,900	0	1,903	1,903	(20,000)	12,390	7.32%
44	2030		914	1,912	0	1,989	1,989	(20,000)	13,082	7.35%
45	2037		939	1,923	0	2.002	2.002	(20,000)	13,002	7.38%
40	2038		965	1,950	0	2,002	2,002	(20,000)	13,412	7.41%
47	2039		990	1,950	0	2,015	2,015	(20,000)	14,039	7.41%
40	2040		016	1,902	0	2,020	2,020	(20,000)	14,338	7.46%
50	2041		042	1,988	0	2,041	2,041	(20,000)	14,627	7.48%

### **APRIL 1995**

SI = 4.3

SI = 3.5

#### **195 AADT**

3:1 sideslope, 3:1 or 2:1 backslope, 3.0 metre ditch

\$ 20,000 per kilometer (both sides)

\$108,396 per accident

\$71,676 per accident

4:1 sideslope, 3:1 backslope, 3.5 metre trapezoidal ditch

#### Table G.C.3

### **ECONOMIC ANALYSIS - ROADSIDE IMPROVEMENT**

#### **Existing pavement width = 8.5 metres Reduced pavement width = 7.9 metres**

### **310 AADT**

3:1 sideslope, 3:1 or 2:1 backslope, 3.0 metre ditch 4:1 sideslope, 3:1 backslope, 3.5 metre trapezoidal ditch

SI = 4.3 SI = 3.5

> IRR (guess)

> 30.00%

-93 50% -70.78% -51.32% -37.44% -27.62% -20.52% -15.26% -11.25% -8.13% -5.67% -3.70% -2.11% -0.80% 0.29% 1.20% 1.98% 2.64% 3.20% 3.69% 4.12% 4.49% 4.81% 5.10% 5.35% 5.58% 5.78% 5.96% 6.12% 6.26% 6.39% 6.51% 6.61% 6.71% 6.79% 6.87% 6.94% 7.01% 7.07% 7.12% 7.17%

7.21%

7.26% 7.29%

7.33%

7.36%

7.39%

7.42%

7.44%

7.46%

7.49%

12.051

12,415

12,767

13,107

13,437

13,756

14,065

14,364

14,654

Improved ditch configuration:

Existing ditch configuration:

Capital cost :       20,000 \$ per kilometer (both sides)         Collision cost (for existing condition):       \$108,396 per accident         Collision cost (for improved condition)       \$71,676 per accident         Benefits accrued are reduction in collision costs and increase annually       at the same rate as traffic ( 2% for first 10 years and 1% thereafter)									
		ANNUAL COSTS	NET ANN	UAL UNDISC	SUM C @ 4% DISCC	OF P.W. DUNT RATE			
No.	Year	3:1 SSL, 3.5:1 BSL CAP. COLL \$.	4:1 SSL, 3.5:1 BSL CAP. COLL \$.	CAP. COST DIFF.	R.U.C.	COST+RUC VALUES	CAPITAL	TOTAL	(9
0	1992		20,000	(20,000)	0	(20,000)	(20,000)	(20,000)	
1	1993	3,256	1,955	0	1,301	1,301	(20,000)	(18,749)	1
2	1994	3,321	1,994	0	1,327	1,327	(20,000)	(17,522)	
3	1995	3,386	2,033	0	1,353	1,353	(20,000)	(16,319)	1
4	1996	3,451	2,072	0	1,379	1,379	(20,000)	(15,140)	1
5	1997	3,516	2,111	0	1,405	1,405	(20,000)	(13,986)	1
6	1998	3,582	2,151	ů 0	1,431	1,431	(20,000)	(12,855)	
7	1999	3,647	2,190	0	1,457	1,457	(20,000)	(11,747)	
8	2000	3,712	2,229	0	1,483	1,483	(20,000)	(10,664)	
9	2001	3,777	2,268	0	1,509	1,509	(20,000)	(9,603)	1
10	2002	3,842	2,307	0	1,535	1,535	(20,000)	(8,566)	
11	2003	3,875	2,326	0	1,548	1,548	(20,000)	(7,560)	
12	2004	3,907	2,346	0	1,561	1,561	(20,000)	(6,585)	
13	2005	3,940	2,366	0	1,574	1,574	(20,000)	(5,640)	
14	2006	3,972	2,385	0	1,587	1,587	(20,000)	(4,723)	
15	2007	4,005	2,405	0	1,600	1,600	(20,000)	(3,835)	
16	2008	4,037	2,424	0	1,613	1,613	(20,000)	(2,973)	
17	2009	4,070	2,444	0	1,626	1,626	(20,000)	(2,139)	
18	2010	4,103	2,463	0	1,639	1,639	(20,000)	(1,329)	
19	2011	4,135	2,483	0	1,652	1,652	(20,000)	(545)	
20	2012	4,168	2,502	0	1,665	1,665	(20,000)	215	
21	2013	4,200	2,522	0	1,678	1,678	(20,000)	951	
22	2014	4,233	2,542	0	1,691	1,691	(20,000)	1,665	
23	2015	4,265	2,561	0	1,704	1,704	(20,000)	2,356	
24	2016	4,298	2,581	0	1,717	1,717	(20,000)	3,026	
25	2017	4,330	2,600	0	1,730	1,730	(20,000)	3,676	
26 27	2018 2019	4,363 4,396	2,620 2,639	0	<u>1,743</u> 1,756	<u>1,743</u> 1,756	(20,000) (20,000)	4,304 4,913	
28	2019	4,390	2,659	0	1,756	1,756	(20,000)	5,503	
20	2020	4,420	2,639	0	1,782	1,789	(20,000)	6,075	
30	2021	4,401	2,698	0	1,782	1,795	(20,000)	6,629	
31	2022	4,433	2,030	0	1,808	1,808	(20,000)	7,165	
32	2024	4,558	2,737	0	1,821	1,821	(20,000)	7,684	
33	2025	4,591	2,757	0	1,834	1,834	(20,000)	8,187	
34	2026	4,624	2,776	0	1,847	1,847	(20,000)	8,674	t
35	2027	4,656	2,796	0	1,860	1,860	(20,000)	9,145	<b>F</b>
36	2028	4,689	2,815	0	1,873	1,873	(20,000)	9,602	İ
37	2029	4,721	2,835	0	1,886	1,886	(20,000)	10,044	1
38	2030	4,754	2,854	0	1,899	1,899	(20,000)	10,471	
39	2031	4,786	2,874	0	1,912	1,912	(20,000)	10,886	
40	2032	4,819	2,893	0	1,925	1,925	(20,000)	11,287	
41	2033	4,851	2,913	0	1,938	1,938	(20,000)	11,675	
40	0004	4 00 4	0.000	0	4 050	4.050	(00,000)	40.054	

2.933

2,952

2,972

2.991

3,011

3,030

3,050

3,069

3,089

0

0

0

0

0

0

0

0

0

1,952

1.965

1.978

1.991

2,004

2,017

2,030

2,043

2,056

**3R/4R GEOMETRIC DESIGN GUIDELINES** 

(20.000)

(20.000)

(20,000)

(20,000)

(20,000)

(20,000

(20,000)

(20,000

(20,000)

1.952

1,965

1.978

1,991

2,004

2,017

2,030

2,043

2,056

42

43

44

45

46

47

48

49

50

2034 2035

2036

2037

2038

2039

2040

2041

2042

4 884

4 9 1 7

4,949

4,982

5,014

5,047

5,079

5,112

5,144

#### Table G.C.4

#### **ECONOMIC ANALYSIS - ROADSIDE IMPROVEMENT**

#### Existing pavement width = 9.8 metres **Reduced pavement width = 9.2 metres**

Existing ditch configuration: Improved ditch configuration: Capital cost : Collision cost (for existing condition): Collision cost (for improved condition) Benefits accrued are reduction in collision costs and increase annually

at the same rate as traffic ( 2% for first 10 years and 1% thereafter

ANNUAL COSTS					NET ANN	UAL UNDISC	. VALUES	SUM OF P.W. @ 4% DISCOUNT RATE		IRR	
No.	Year	3:1 SSL, CAP.	3.5:1 BSL COLL \$.	4:1 SSL, 3 CAP.	3.5:1 BSL COLL \$.	CAP. COST DIFF.	R.U.C.	COST+RUC VALUES	CAPITAL	TOTAL	(guess) 30.00%
0	1992			20,000		(20,000)	0	(20,000)	(20,000)	(20,000)	
1	1993		3,206		1,901	0	1,305	1,305	(20,000)	(18,745)	-93.48%
2	1994		3,270		1,939	0	1,331	1,331	(20,000)	(17,515)	-70.73%
3	1995		3,334		1,977	0	1,357	1,357	(20,000)	(16,308)	-51.26%
4	1996		3,398		2,015	0	1,383	1,383	(20,000)	(15,126)	-37.38%
5	1997		3,462		2,053	0	1,409	1,409	(20,000)	(13,967)	-27.56%
6	1998		3,527		2,091	0	1,436	1,436	(20,000)	(12,833)	-20.47%
7	1999		3,591		2,129	0	1,462	1,462	(20,000)	(11,722)	-15.20%
8 9	2000 2001		3,655		2,167	0	1,488	1,488	(20,000)	(10,635)	-11.20%
9 10	2001		3,719 3,783		2,205 2,243	0	<u>1,514</u> 1,540	1,514 1,540	(20,000)	(9,571) (8,531)	<u>-8.08%</u> -5.62%
11	2002		3,783		2,243	0	1,540	1,540	(20,000)	(7,522)	-3.66%
12	2003		3,815		2,262	0	1,553	1,553	(20,000)	(7,522)	-3.06%
12	2004		3,847		2,281	0	1,500	1,500	(20,000)	(5,596)	-2.07%
14	2005		3,911		2,300	0	1,579	1,579	(20,000)	(4,676)	0.33%
15	2000		3,943		2,313	0	1,605	1,605	(20,000)	(3,785)	1.24%
16	2007		3,975		2,357	0	1,618	1,618	(20,000)	(2,921)	2.01%
17	2000		4.008		2,376	0	1,631	1,631	(20,000)	(2,084)	2.67%
18	2003		4,000		2,370	0	1,644	1,644	(20,000)	(1.272)	3.24%
19	2010		4.072		2,000	0	1,657	1.657	(20,000)	(485)	3.72%
20	2012		4,104		2.433	0	1,670	1.670	(20,000)	277	4.15%
21	2012		4,136		2,452	0	1,683	1,683	(20,000)	1,016	4.52%
22	2014		4,168		2,471	0	1,697	1,697	(20,000)	1,732	4.84%
23	2015		4,200		2,490	0	1,710	1,710	(20,000)	2,425	5.13%
24	2016		4,232		2,509	0	1,723	1,723	(20,000)	3,097	5.38%
25	2017		4.264		2,528	0	1,736	1.736	(20.000)	3,748	5.61%
26	2018		4,296		2,547	0	1,749	1.749	(20,000)	4,379	5.81%
27	2019		4,328		2,566	0	1,762	1,762	(20,000)	4,990	5.99%
28	2020		4,360		2,585	0	1,775	1,775	(20,000)	5,582	6.14%
29	2021		4,392		2,604	0	1,788	1,788	(20,000)	6,155	6.29%
30	2022		4,424		2,623	0	1,801	1,801	(20,000)	6,710	6.42%
31	2023		4,456		2,642	0	1,814	1,814	(20,000)	7,248	6.53%
32	2024		4,488		2,661	0	1,827	1,827	(20,000)	7,769	6.64%
33	2025		4,520		2,680	0	1,840	1,840	(20,000)	8,273	6.73%
34	2026		4,553		2,699	0	1,853	1,853	(20,000)	8,762	6.82%
35	2027		4,585		2,718	0	1,866	1,866	(20,000)	9,235	6.90%
36	2028		4,617		2,737	0	1,879	1,879	(20,000)	9,693	6.97%
37	2029		4,649		2,756	0	1,892	1,892	(20,000)	10,136	7.03%
38	2030		4,681		2,775	0	1,905	1,905	(20,000)	10,565	7.09%
39	2031		4,713		2,794	0	1,918	1,918	(20,000)	10,981	7.14%
40	2032		4,745		2,813	0	1,931	1,931	(20,000)	11,383	7.19%
41	2033		4,777		2,832	0	1,944	1,944	(20,000)	11,772	7.24%
42	2034		4,809		2,852	0	1,958	1,958	(20,000)	12,149	7.28%
43	2035		4,841		2,871	0	1,971	1,971	(20,000)	12,514	7.32%
44	2036		4,873		2,890	0	1,984	1,984	(20,000)	12,867	7.35%
45	2037		4,905		2,909	0	1,997	1,997	(20,000)	13,209	7.38%
46	2038		4,937		2,928	0	2,010	2,010	(20,000)	13,540	7.41%
47	2039		4,969		2,947	0	2,023	2,023	(20,000)	13,860	7.44%
48	2040		5,001		2,966	0	2,036	2,036	(20,000)	14,170	7.46%
49	2041		5,033		2,985	0	2,049	2,049	(20,000)	14,470	7.49%
50	2042		5,065		3,004	0	2,062	2,062	(20,000)	14,760	7.51%

**340 AADT** 

3:1 sideslope, 3:1 or 2:1 backslope, 3.0 metre ditch

20,000 \$ per kilometer (both sides)

\$108,396 per accident

\$71,676 per accident

4:1 sideslope, 3:1 backslope, 3.5 metre trapezoidal ditch

SI = 4.3 SI = 3.5

G-63

### APPENDIX D

### RATIONALE FOR TABLE G.7 SUGGESTED MINIMUM RADII FOR SUPERELEVATION RATES ON 3R/4R PROJECTS

This table was developed based on the following principles:

- 1. On flatter curves and curves of medium radius; that is, where the superelevation rate for new construction is less than 0.04m/m, the factor of safety against side-slip is high and fdemand at design speed is relatively low. Therefore, a 0.02m/m tolerance in the superelevation rate is allowed.
- 2. On sharper curves, where the superelevation rate for new construction is between 0.04m/m and 0.06m/m, the allowable variance from design superelevation is gradually reduced as the radius is decreased. At e=0.06m/m (which is the minimum radius for new construction) the superelevation rate suggested on 3R projects is the same as that required on new construction. This is because fdemand at this radius is equal to the theoretical maximum safe-side friction factor for this speed (based primarily on comfort considerations).
- 3. On curves that are sharper than the R_{min} used for new construction, it is important to restrict the fdemand to f_{max} (the maximum safe-side friction factor) where possible. Therefore, the superelevation rate is increased up to 0.08m/m as required for sharper curves.
- Because 0.08m/m is considered a practical maximum for superelevation on Alberta highways, e is not increased beyond this point. However, because it is recognized that existing curves with radii below the Rmin for new construction can provide good service and have reasonable safety records, a lower Rmin is suggested for existing paved roads. Even the Rmin suggested for 3R projects should not be interpreted as an absolute minimum radius but rather as a benchmark value. Radii below the benchmark value should routinely be evaluated for realignment. However, in many cases especially on lower volume highways, realignment may not be cost effective. Overlay of the existing alignment even with curves sharper than Rmin, possibly with the addition of speed advisory signs where warranted should not be ruled out. This may be the most viable alternative in some cases when all factors, including construction costs, road user costs and collision costs are considered. The following recommendation is published in the U.S. Transportation Research Board's (TRB) Special Report 214 Highway agencies should evaluate reconstruction of horizontal curves when the design speed of the existing curve is more than 15 m.p.h. (24 km/h) below the running speed of approaching vehicles (assuming improved superelevation cannot reduce this difference to less than 15 m.p.h.) and the average daily traffic volume is greater than 750 vehicles per day. Alberta's guideline differs from TRBs in that no speed differential is used and because all highways with sharp curvature are recommended for evaluation, not just those with volumes exceeding 750 vehicles per day.

The following summary lists the rules used to set up the values for  $R_{min}$  for each superelevation rate for V85 = 110 km/h. Similar rules were used for the other speeds.

### e_{3R} for V85 = 110 km/h (85th percentile speed)

NC allowed until fdemand	= 0.02±e, (f=0.04 for 0.02+e, f=0.00 for 0.02-e)
RC allowed until fdemand	= 0.03 R=1900
e = 0.03 allowed until fdemand	= 0.043 R=1300
e = 0.04 allowed until fdemand	= 0.05 R = 1060
e = 0.05 allowed until fdemand	= 0.07 R=800
e = 0.06 allowed until fdemand	= 0.10 R=600 (f max) new construction
e = 0.07 allowed until fdemand	= 0.10  R = 560
e3R = 0.08 allowed until fdemand	= 0.10 R=530