TABLE OF CONTENTS

			Page	
	Section	Subject	Number	Page Date
H.1		DDUCTION		June 1996
	H.1.1	General		June 1996
	H.1.2	Cost Effectiveness		June 1996
	H.1.3	Definitions		April 1995
H.2		SIFICATION		April 1995
	H.2.1	Introduction		April 1995
	H.2.2	Design Speed		April 1995
	H.2.3	Posted Speed		April 1995
H.3	ALIGN	VMENT ELEMENTS	H-8	April 1995
	H.3.1	Introduction	H-8	April 1995
	H.3.2	Sight Distance	H-9	June 1996
		H.3.2.1 General	H-9	June 1996
		H.3.2.2 Minimum Stopping Sight Distance	H-9	June 1996
		H.3.2.3 Passing Sight Distance		April 1995
	H.3.3	Horizontal Alignment	H-10	April 1995
		H.3.3.1 Curves	H-10	April 1995
		H.3.3.2 Spiral Curves	H-13	April 1995
	H.3.4	Vertical Alignment	H-13	April 1995
		H.3.4.1 Maximum Gradient	H-13	April 1995
		H.3.4.2 Vertical Curves	H-13	April 1995
H.4	CROS	S SECTION ELEMENTS		April 1995
	H.4.1	Introduction	H-16	April 1995
	H.4.2	Roadway Width		April 1995
		H.4.2.1 Two-Lane Roads		April 1995
		H.4.2.2 One-Lane Two-Way Roads		April 1995
		H.4.2.3 Cross-Slopes		April 1995
H.5	ROAD	SIDE GEOMETRY		April 1995
	H.5.1	Sideslopes		April 1995
	H.5.2	Backslopes		April 1995
	H.5.3	Ditches		April 1995
	H.5.4	Drainage Structures		April 1995
	H.5.5	Right of Way		April 1995
	H.5.6	Approaches to Local Roads		April 1995
	11.0.0	Approaches to Local Roads	11 61	1 PIII 1000

LIST OF FIGURES

Figuro	Description	Page Number
Figure	Description	Number
H-3.3.1	Method of Attaining Superelevation Revolved About Centreline	H-11
	Crest Vertical Curvature for Stopping Sight Distance on Two-Lane Local Roads and One-Lane Two-Way Local Roads	
H-3.4.2b	Crest Vertical Curvature for Stopping Sight Distance on One-Lane Two-Way Local Roads	H-15
H-3.4.2c	Sag Vertical Curvature for Stopping Sight Distance on Local Roads	H-15
H-4.1a	Standard Cross-Section for Local Road RLU-210G-90 (RLU-209G-90) (RLU-208G-90)	H-17
H-4.1b	Standard Cross-Section for Local Road RLU-208G-60 (RLU-207G-60)	H-18
H-4.1c	Standard Cross-Section for Local Road RLU-207G-50 (RLU-206G-40)	H-19
H-4.1d	Standard Cross-Section for One-Lane Two-Way Local Road RLU-104G-50/40 /30	H-20
H-5.6	Approach Treatment for Minor Access to Low Speed Local Roads (Design Speed <80km/h)	H-25

LIST OF TABLES

Table	Description	Page Number
H.1.1a	Traffic Volume Ranges for Design Designations on Primary and Secondary Highways	
	With Local Function in Alberta	H-5
H.1.1b	Breakdown of Rural Roads in Alberta by Classification (1990)	H-5
H.3.1	Summary of Alignment Controls for Local Roads	H-8
H.3.2.2a	Minimum Stopping Sight Distance for One-Lane Two-Way Low Volume Roads	H-9
H.3.2.2b	Effect of Grade on Stopping Distance in Wet Conditions for Low Volume Roads	H-9
H.3.3.1a	Superelevation and Minimum Spiral Parameter for Local Roads	H-12
H.3.4.2	Crest Vertical Curvature for Passing Sight Distance for Two-Lane Local Roads	H-16
H.4.2.1	Local Roads: Guide for Selection of Width	

This page left blank intentionally.

H.1 INTRODUCTION

H.1.1 General

Local Roads in Alberta are defined as rural roads that are not classified as: primary or secondary highways, access roads to towns or villages, or park roads. Generally, local roads will have annual average daily traffic (AADT) of 200 or less. Where the AADT exceeds 200, designers may consider providing a wider subgrade to allow for future paving and they would be advised to select a design designation compatible with the standard design designation for that function and volume on the primary or secondary highway system. Those designations are listed in Table H.1.1a below:

Table H.1.1a - Traffic Volume Ranges for Design Designations on Primary and Secondary Highways with Local Function in Alberta

Design Designation	Design AADT*
RLU-208	0-200**
RLU-209	200-1500
RLU-210	1500-2500
RLU-211.8	2500-9000

- * Design AADT is defined as the maximum AADT projected for the design life of the roadway. Assuming a continuous growth and a 20-year design life, this will normally occur on the 20th year after construction.
- ** Where the design AADT on a local road is less than 200, the design guidelines shown in this chapter are applicable.

It should be noted that local roads are not under provincial jurisdiction in Alberta. These guidelines are provided as information only.

Approximately 125,000 km of the rural road system in Alberta has been classified as local road. This is approximately 82 percent of the total length of rural roads in Alberta. The breakdown is shown in Table H.1.1.b.

Table H.1.1.b Breakdown of Rural Roads in Alberta by Classification (1990)

Classification	km	% of	%
Rural Network		Total	Paved
Primary Highway	13,473	8.7	93.3
Secondary			
Highway	15,129	9.77	51.0
Local Roads	126,263	81.53	1.8
Total	154,865	100	

The purpose of this guide is to implement use of uniform standards and practices for the design and construction of safe and cost-effective local roads.

Generally, this chapter supplements the road design standards and guidelines presented elsewhere in this manual. Geometric parameters have been provided for a lower range of design speeds (down to 30 km/h). Special road cross-sections based on traffic volume and design speed have been provided for local roads, because their final surface type is usually gravel. The standards described in this chapter apply only to local roads with an AADT less than 200. Other chapters should be used for all non-local roads or local roads where the AADT exceeds 200.

H.1.2 Cost Effectiveness

The standards developed for local roads are not directly based on an economic analysis. However, the fact that standards have been developed for local roads is in itself an economic consideration. Designers are encouraged to undertake an economic analysis, if time permits, to develop the most economic road that satisfies both the agency and road user requirements. Designers should consider the future function and traffic volume on the roadway.

Factors that should be considered in the economic analysis are capital costs, maintenance costs, collision costs, vehicle operating and time costs as related to design speed and surface type. It should be noted that this chapter provides standards that are applicable exclusively to unpaved (gravel or dirt) roads. This is because unpaved roads are thought to be generally appropriate for local roads with less than 200 AADT. A review of the available literature from other jurisdictions has shown that a conventional roadway pavement cannot usually be justified economically on a roadway with AADT as low as 200. Some experts have suggested that an AADT of 500 is the break-even volume, where the benefits derived from having a pavement will generally exceed the premium costs incurred in construction and maintenance.

Of course, there are examples of public roadways in Alberta with less than 200 AADT which are paved. However, the reasons for paving these roadways are normally not strictly based on the roadway economics of those particular segments. Justification for paving a particular low volume segment may be based on other considerations, such as network continuity or economic development for the area. Also, in some cases a structure less costly than a conventional pavement may have been used, for example, base course with double seal coat or single seal coat.

Because local roads primarily perform a land access function, it is difficult to justify paving unless the volume is well in excess of 200 AADT.

H.1.3 Definitions

Terminology used in this chapter applying to low volume roads is defined here.

- Average Annual Daily Traffic (AADT) is defined as the total traffic (either measured or estimated) over an entire year divided by the number of days in that year. Values are for total two-way traffic.
- Design AADT is the AADT projected for the design year. In the case of new construction projects, the design year is normally considered to be 20 years after the year of construction because the design life is typically 20 years in duration. The design AADT can be estimated using current AADT and a projected annual growth rate.

It is appropriate to use Design AADT for design purposes to select roadway width, design speed, etc. on a new construction project. It is appropriate to use existing AADT when checking to see if an existing road meets standards.

• Two-lane roads are roads that provide sufficient roadway width for the safe passing of opposing vehicles.

- One-lane, two-way roads are roads with one lane that carries traffic in two directions.
- Earth roads are roads that have a driving surface consisting of subgrade (earth) material.
- Gravel roads are roads that have a driving surface consisting of coarse granular material.
- Surfaced roads are roads that have been covered, on the travelled lane(s) and possibly the shoulders, by an asphalt or concrete pavement.

H.2 CLASSIFICATION

H.2.1 Introduction

The classification system used for local roads is essentially the same as that used elsewhere in this manual except that the letter G is added in the second part of the description to indicate that the finished surface is to be gravel. For example:

RLU-209G-90 indicates a rural local undivided roadway with two lanes, a 9m gravel surface and a design speed of 90 km/h.

These roads will always be undivided. The roadway width is variable but should be chosen based on consideration of design speed, traffic volume, traffic composition and function.

The number of lanes is normally two. However, onelane two-way roadways are considered suitable in some cases where the AADT is less than 50 and the design speed is not more than 50 km/h.

H.2.2 Design Speed

One of the most important features of local road design is selection of design speed. Once selected, the various geometric features including sight distance, horizontal and vertical alignments, roadway widths, cross-section elements and right-of-way widths, are related to design speed to obtain a balanced and safe design.

Design speed has a large impact on the construction cost of a roadway, as well as the quality of service provided. The provision of safety and an appropriate level of service must be considered the primary factors in selection of design speed. Although cost is a consideration, it should be considered secondary.

In Alberta, running speeds recorded on rural roads have been very high. There has been only limited monitoring of speeds on gravel roads, but where data is available, the mean speed was about 85 km/h and the 85th percentile speed was about 102 km/h (that is, 15 percent of vehicles are exceeding this speed). It should be noted that the speed was monitored only on gravel surfaced primary highways. Local roads in Alberta are generally not posted for maximum speed limit and where this is the case, the legal speed limit is 80 km/h. Both of these considerations would indicate that 90 km/h should be adopted as the desirable design speed for local roads where possible within economic, right of way and terrain constraints. Although it is appropriate to use 90 km/h as the desirable design speed for local roads, it is also important to ensure that engineering judgement is used to select design speed. With volumes less than 200 AADT, the high cost of construction that could be required in difficult terrain conditions, may not be offset by the road user benefits. A wide range of design speeds, from 90 km/h to 30 km/h, is consequently considered appropriate for local roads.

The following points should be considered when selecting design speed:

- Design speed should be consistent with the speed a driver is likely to expect. Low design speeds are not always appropriate for low volume local roads because drivers do not tend to adjust their speeds to the classification of the road, but rather to the physical limitations and traffic.
- Selecting low design speeds on open flat terrain is likely to produce an accident-prone and uneconomical design. However, under difficult terrain conditions, drivers accept lower speed operation.

- Where trips are long, higher design speeds are appropriate, especially in isolated areas where drivers tend to travel faster.
- Service function should be considered. Roads located in isolated communities serving many residents have a lower design speed than a typical farm to market road.
- Low design speeds may be appropriate for recreational roads (especially within parks) because of environmental constraints, aesthetic considerations and the desirability of slower traffic.
- Design speed is frequently set at 10 km/h above the proposed posted speed in order to provide for drivers exceeding the posted speed by that amount. In this way, the design speed will provide for all but the reckless driver, for whom it is not reasonable to design.
- Higher design speeds are generally easier to justify on higher volume roads due to the increased safety and road user benefits.

H.2.3 Posted Speed

Unposted rural roads in Alberta have a legal speed limit of 80 km/h, so posting of speeds is generally not necessary where the geometric elements are suitable for running speeds of up to 80 km/h.

In cases where the geometrics or other considerations dictate a lower speed in selective locations only, speed advisory signs are suggested.

A lower posted speed throughout a long section of local road is appropriate only where the entire section contains geometric features that dictate the lower speed.

H.3 ALIGNMENT ELEMENTS

H.3.1 Introduction

The alignment elements for local roads are primarily based on design speed using the same physical relationships as described in Chapter B. Sight distances, gradients, horizontal curvature and vertical curvature have been developed for design speeds of 30 km/h to 90 km/h.

Three exceptions to the general rules used in Chapter B are:

- The maximum superelevation rate is 0.08m/m
- Simple horizontal curves are permitted in some cases
- The suggested maximum gradients are higher to allow for more economical design on low volume local roads.

A summary of alignment controls is shown below in Table H.3.1:

Design Speed (km/h)	Maximum * Gradient (%)	Minimum ** Stopping Sight Distance (m)	Minimum Passing Sight Distance (m)	Maximum Superelevation (m/m)	Minimum Radius of Curve (m)
30	11-16	30	210	0.08	30
40	11-15	45	280	0.08	50
50	10-14	65	340	0.08	80
60	10-13	85	420	0.08	120
70	9-12	110	480	0.08	170
80	8-10	140	560	0.08	230
90	7-9	170	620	0.08	300

Table H.3.1 - Summary of Alignment Controls for Local Roads

- * The lower value is the maximum gradient on rolling terrain; the higher value is the maximum gradient in mountainous terrain. In certain site specific situations gradients above the maximums shown in this table may be appropriate as indicated in Section H.3.4.1.
- ** Minimum stopping sight distance as listed applies to two lane roads and one-lane one-way roads only. Refer to Table H.3.2.2a for minimum stopping sight distances for one-lane two-way roads.

H.3.2.1 General

Minimum passing and stopping sight distances have been calculated for local roads using the same criteria as in Chapter B. The passing sight distance value only applies to two-lane, two-way roads as passing is not a consideration on one-lane roads.

Decision sight distance and non-striping sight distance are not included for local roads. They are considered more applicable to higher volume and higher function paved roads.

H.3.2.2 Minimum Stopping Sight Distance

Minimum stopping sight distance on local roads is based on friction factors for wet pavement conditions and a 2.5 second perception-reaction time. Friction values for gravel roads and earth roads are assumed to be the same as that for pavements in poor condition with a wet surface. This is because friction values, which have been developed through research for gravel and earth roads, have not been translated into usable standards. Speeds tend to be lower under adverse conditions and drivers tend to follow further behind other vehicles where dust conditions exist. This provides an improved safety factor for stopping in poor conditions, when using friction factors based on smooth wet pavements.

On one-lane two-way roads, enough sight distance must be available for approaching vehicles to stop before colliding. The sight distance required for two approaching vehicles to stop is taken as twice the stopping sight distance required for a vehicle approaching a fixed object.

Minimum stopping sight distance for one-lane twoway roads, for a range of design speeds of 30 km/h to 50 km/h, is shown on Table H.3.2.2a.

Table H.3.2.2a - Minimum Stopping Sight Distance for One-Lane Two-Way Low Volume Roads

Design Speed	Minimum Stopping Sight Distance
(km/h)	(m)
30	60
40	90
50	130

To allow for the effect of grade on minimum stopping sight distance, Table H.3.2.2b may be applied.

	Correction to Stopping Sight Distance (m)												
Design Speed (km/h)		Decrea	ase for	Upgrade		Ir	Increase for Downgrade						
	3	6	9	12	15	3	6	9	12	15			
30	-	-	-	-	-	-	-	-	-	-			
40	-	-	5	5	5	-	5	5	10	10			
50	5	5	10	10	10	-	5	10	15	20			
60	5	5	10	10	-	5	10	15	25	-			
70	5	10	15	15	-	5	10	20	35	-			
80	10	15	20	-	-	10	15	30	-	-			
90	10	20	25	-	-	10	20	40	-	-			
100	10	20	25	-	-	15	30	55	-	-			

Table H.3.2.2b - Effect of Grade on Stopping Distance in Wet Conditions for Low Volume Roads

H.3.2.3 Passing Sight Distance

Passing sight distance is not considered to be a significant design element for local roads because the passing demand is typically very low due to the low volumes. However, for safety reasons, it is important to provide as many passing opportunities as possible on each road segment where economically feasible.

Passing sight distances are not applicable to one-lane roads.

H.3.3 Horizontal Alignment

H.3.3.1 Curves

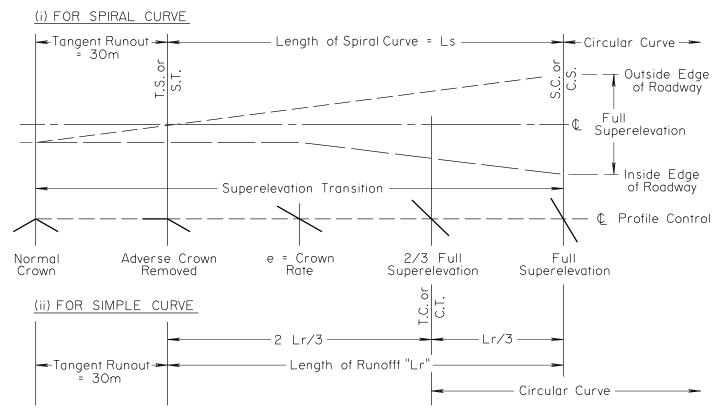
The design of horizontal curves on local roads is the same as on higher classification roads except that the superelevation table is different and simple curves are permitted for some combinations of radius and design speed.

Maximum safe side friction factors for gravel and earth roads are assumed to be the same as for paved roads throughout the range of design speeds.

The maximum superelevation rate for gravel surfaced local roads in Alberta is 0.08m/m. The higher maximum rate is allowed because unpaved roads can be expected to provide better surface friction than paved roads in the worst ice condition.

Note: The primary reason for using 0.06m/m as the maximum superelevation rate on paved roads is to reduce the occurrence of low-speed side slip on sharp horizontal curves in the worst ice condition. The worst ice condition is expected to occur only under thin film quick-freeze conditions at a temperature of about -1°C in the presence of water on the pavement. This is not a concern on unpaved roads.

The normal crown rate on gravel surfaced roads in Alberta is 0.03m/m. This is also the minimum superelevation rate.


The distribution of superelevation rates for each design speed is a function of the maximum superelevation rate, the form of distribution chosen and the normal crown rate on tangent sections. Table H.3.3.1a gives the superelevation rates recommended for various speeds and radii based on a maximum rate of 0.08m/m and a normal crown of 0.03m/m.

In superelevating two-lane roadways, the road is normally rotated about its centreline. Alternatively, road can be rotated about either edge where necessary. The desirable method of developing superelevation on spiral and simple curves is illustrated in Figure H-3.3.1.

On spiral curves the full superelevation is developed at the beginning of the circular curve. On simple curves, two-thirds of the full superelevation is developed before the circular curve begins. The superelevation is developed from an adverse crown removed stage to the full superelevation stage over a distance which is described as the superelevation runoff (^Lr). In the case of spiral curves, the length of superelevation runoff is 1.5 times the length of spiral. In the case of simple curves, the ^Lr required is shown in a table in Figure H-3.3.1.

The roadway cross section is changed from normal crown to adverse crown removed over a distance that is described as the tangent runout. The length of tangent runout is based on a 3.5m lane. The standard length of runout is 30m. This is based on an acceptable rate of change of elevation at the edge of the lane compared to the centreline. The rate is 286:1, that is, $3.5 \ge 0.03/30 = 1/286$. This is considered comfortable for the lower speeds that are typical on local roads and minimizes the length of roadway that has less than desirable cross-slope for surface drainage.

FIGURE H-3.3.I METHOD OF ATTAINING SUPERELEVATION REVOLVED ABOUT CENTRELINE

This method of attaining superelevation is to be used on 2-lane undivided local roads.

A 30m tangent runout is applicable for 2-lane undivided local roads. This tangent runout length is based on a 3.5m travel lane.

Ls is determined based on spiral perameter Ls = $A = \frac{2}{Radius}$

Lr (for simple curves) is determined from the table below.

e	Lengtl	h of Runo.	ff "Lr" in	metres t	for Design	Speed	(km/h)
(m/m)	30	40	50	60	70	80	90
0.03	30	30	30	30	30	30	40
0.04	30	30	30	40	40	40	50
0.05	40	40	40	50	50	50	60
0.06	40	50	50	60	60	70	70
0.07	50	50	60	60	70	70	80
0.08	60	60	70	70	80	80	90
L	1		Tab	/	1	1	1

LENGTH REQUIRED FOR SUPERELEVATION RUNOFF ON SIMPLE CURVES

Table

The above runoff lengths, "Lr" are required for two-lane local roads.

00/	P B	NC	0.030 530	0.030 480		0.030 335	0.037 290	0.044 260	0.049 240	0.052 225	0.056 210	0.060 200	0.065 190	061 120.0	0.078 190	0.080 190	minimum R=390		00				2003 = C					nerres	C		0		used where possible.	not essential
66	e	NC	NC	0.030 450		0.030 300	0.032 270	0.038 240	0.043 225	0.046 200	0.049 200	0.053 185	0.058 175	0.064 160	0.071 160	0.075 160	0.080 160	0.080 160	minimum R=300			0.08	ross slone			- sunaralavotion		4	ō	h. L = A ²]œ	Sniral narameters are minimum	higher values should be used where	desirable but
80	e	NC	NC	NC	0.030 370	0.030 300		0.032 225	0.036 220	0.039 200	0.042 175	0.046 175	0.050 165	0.056 150	0.063 135	0.067 125	0.072 125	0.078 125	0.080 125	minimum R=230			_		Notes	A is supere	2 .	A IS Spiral p	NC is normal cross	Spiral Lenath.		Sniral narad	higher value	Spirals are desirable
22	e P	NC	NC	NC	NC	0.030 275	0.030 255	0.030 220		0.032 180	0.035 175	0.038 165	0.042 150	0.048 140	0.054 125	0.058 120	0.063 120	0.069 110	0.073 110	0.075 110	0.078 110	0.080 110	minimum R=170											
60	e A	NC	NC	NC	NC	NC	0.030 225	0.030 200	0.030 175	0.030 175	0.030 160	0.030 150	0.034 140	0.039 125	0.045 115	0.049 110	0.053 100	0.059 100	0.062 95	0.065 90	0.068 90	0.072 85		0.080 85	0.080 85	minimum R=120								
50	e	NC	NC	NC	NC	NC	NC	0.030 180	0.030 170	0.030 150	0.030 150	0.030 140	0.030 125	0.030 120	0.031 100	0.035 100	0.039 90	0.041 85	0.044 80	0.047 80	0.051 75	0.055 75		0.064 70	~		0.075 65	0.080 65	minimum R=80					
40	e A	NC	NC	NC	NC	NC	NC	NC	NC	NC	0.030 135	0.030 125	0.030 120	0.030 100			0.031 80	0.035 75	0.039 70				0.051 65	0.055 60			0.067 55	0.071 50	0.075 50	0.080 50	minimum R=50			
30	e	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	0.030 80	0.030 75		0.030 60	0.032 60	0.034 60	0.037 60	0.041 55	0.044 55	0.048 55		0.056 50			0.068 45	0.070 45	0.080 40	0.080 35	minimum R=30	
design speed km/h	radius m	2000	5000	4000	3000	2000	1500	1200	000	006	800	200	600	500	400	350	300	250	220	200	180	160	140	120	001	06	80	02	60	50	35	30		

TABLE H.3.3.1a SUPERELEVATION AND MINIMUM SPIRAL PARAMETER FOR LOCAL ROADS, e_{MAX} = 0.08, NORMAL CROSS SLOPE = 0.03

GRAPHICS FILE: debh33la.man

H-12

On any type of roadway, vehicles naturally adopt a transition path when entering and leaving horizontal circular curves. The provision of a transition curve between tangent and the horizontal circular curve allows vehicles to travel around curves without encroaching on the opposing lane or the shoulder. The transition curve also provides a length over which superelevation can be introduced in a manner closely fitting the lateral friction demand that is being experienced by the vehicle due to the speed and radius (which is variable). Construction costs associated with implementing transition curves are negligible. As their use tends to promote uniformity in speed and reduce encroachment on adjacent lanes, they may reduce road user costs and collision costs.

Spiral parameters for local roads are given in Table H.3.3.1a. The length of spiral (L^S) is determined based on the spiral parameter and radius, that is, $L_S = A^2/R$.

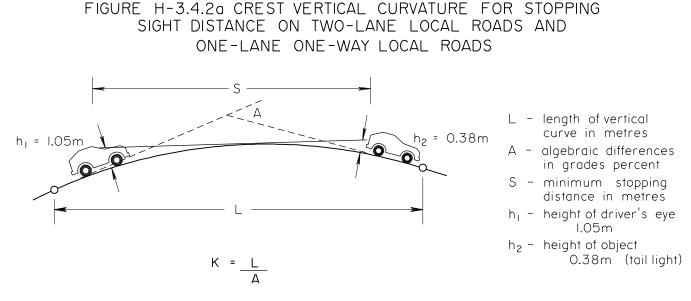
H.3.4 Vertical Alignment

H.3.4.1 Maximum Gradient

The ideal maximum gradient for a particular roadway cannot generally be established without an economic analysis to strike a balance between reduced road user costs and increased construction costs. Steep grades may reduce construction costs, but they increase operating costs, which can be significant if the truck volume is high. Steep grades may also create hazardous conditions in areas where snow and ice prevail for several months of the year.

The potential for soil erosion in the roadside areas should be considered when selecting steep grades. Ditches adjacent to steep roadways will have fast flowing water and may require special erosion protection measures. Suggested maximum gradients for local roads are shown in Table H.3.1. Higher maximum gradients are permitted on local roads than on roads of higher classification. The benefits gained from reducing road user costs may not offset the additional construction costs for flatter gradients on roadways with less than 200 AADT. However, gradients less than the maximum should be used where practical to increase the level of service and standard of operation, unless an economic analysis justifies using maximum gradients.

H.3.4.2 Vertical Curves


Minimum standards for crest vertical curves and sag vertical curves for local roads are based on the minimum stopping sight distances developed in Section H.3.2. In developing crest vertical curvature for stopping sight distance, a height of driver's eye of 1.05m is used with a fixed object height of 0.38m. The legislated minimum height of tail light for vehicles in Canada is 380mm. The minimum values for vertical crest curvature are given in terms of K in Figure H-3.4.2a.

The parameters to be considered in developing crest vertical curvature for stopping sight distance for onelane two-way roads are the height of driver's eye (1.05m) and the height of opposing vehicle (1.30m). The height of the roof of a passenger car is assumed to be 1.30m. Figure H-3.4.2b gives crest K values for minimum stopping sight distance for one-lane twoway roads for design speeds of 30 km/h, 40 km/h and 50 km/h.

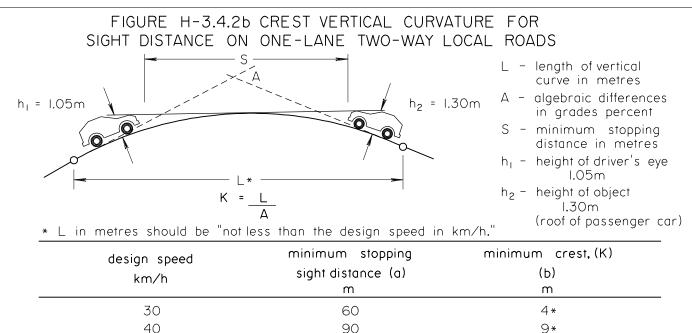
Sag vertical curvature for stopping sight distance is based on headlight control criteria. The minimum K values for sag curves on one-lane roadways are the same as on two-way roadways.

The sag vertical curvature for stopping sight distance for local roads is given in Figure H-3.4.2c.

Table H.3.4.2 gives crest K values for passing sight distance for two-lane local roads with design speeds from 90 km/h to 30 km/h.

design speed km/h	minimum stopping sight distance (a) m	minimum crest, (K) (b) m
30	30	2*
40	45	4*
50	65	7*
60	85	15 *
70	IIO	22*
80	140	35*
90	170	55

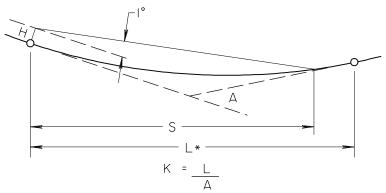
- Note: Minimum K value for the lower design speeds is normally controlled by the minimum L value. i.e. L in metres should be "not less than the design speed in km/h."
 (a) based on fixed perception reaction time of 2.5 seconds
 - (b) based on fixed perception reaction time of 2.5 seconds and object height of 380mm


Note: The 'K' values listed above apply to vertical crest curves where the length of curve exceeds the stopping distance (s), in which case the K required is given by the following expression:

$$K = \frac{S^{2}}{200(\sqrt{h_{1}} + \sqrt{h_{2}})^{2}}$$

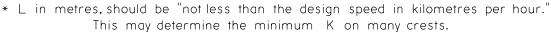
For cases where the length of curve is less than the stopping sight distance, K is given by the following expression:

$$K = \frac{2S}{A} - \frac{200(\sqrt{h_1} + \sqrt{h_2})^2}{\Delta^2}$$


50

Note: The minimum k values listed above apply to vertical crest curves where the length of curve exceeds the stopping sight distance. For cases where the length of curve is less than the stopping sight distance, the relevant formula from Table H.3.4.2a should be used with $h_1 = 1.05m$ and $h_2 = 1.30m$. For some curves it may be found that the minimum curvature required to stop for a 0.38m stationary object is flatter than the curve required to stop for a passenger vehicle approaching, in which case the flatter curve should be used on one-lane two-way roads. The minimum K value on lower speed roads is frequently controlled by the guidelines which state that L in metres, should be "not less than the design speed in km/h."

130



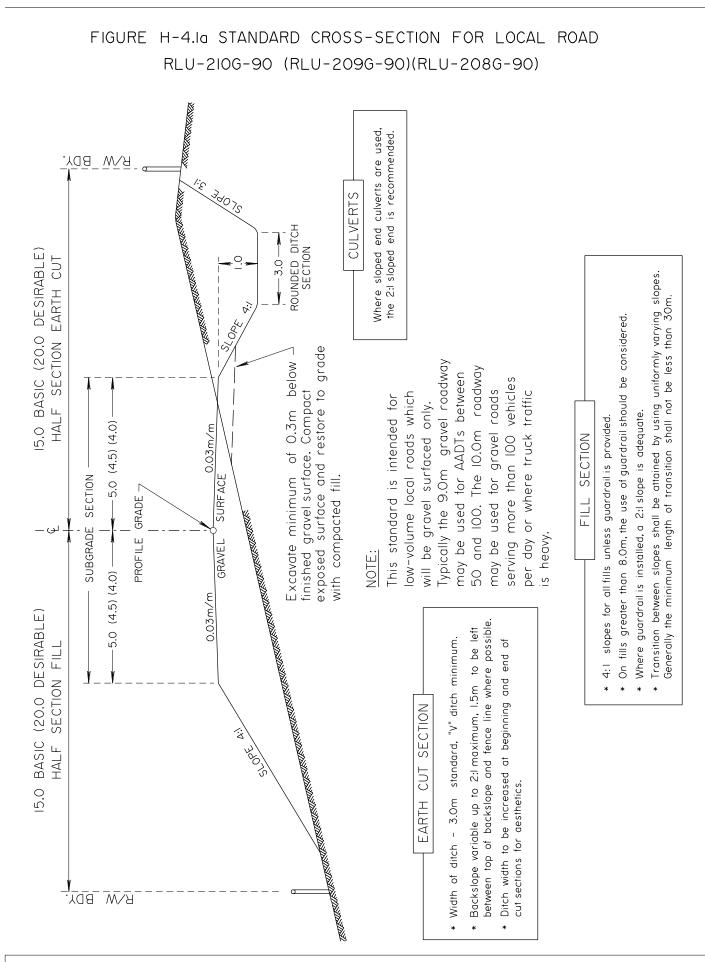
L - length of vertical curve in metres

18*

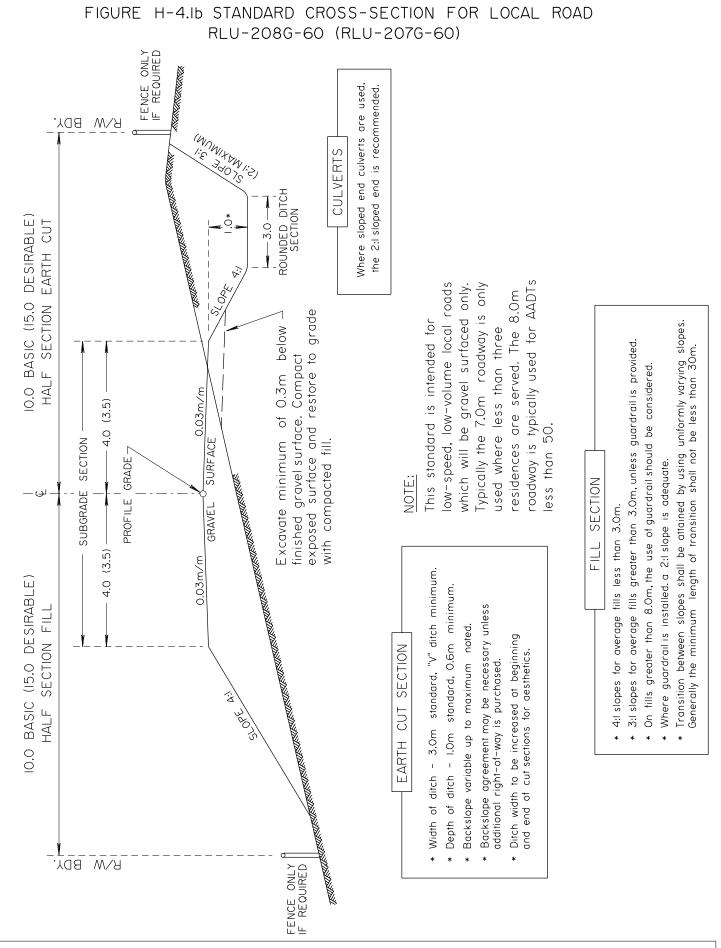
A - algebraic difference in grades percent

- S minimum stopping sight distance in metres
- H height of head lamps 0.60m
 - angle of beam upward from plane of vehicle

design speed km/h	minimum stopping sight distance on sag m	minimum sag, (K) (a) m
	30	4*
40	45	8*
50	65	13 *
60	85	l8 *
70	IIO	25*
80	140	35*
90	170	40*
	(a) K values based on headlight con	trol.

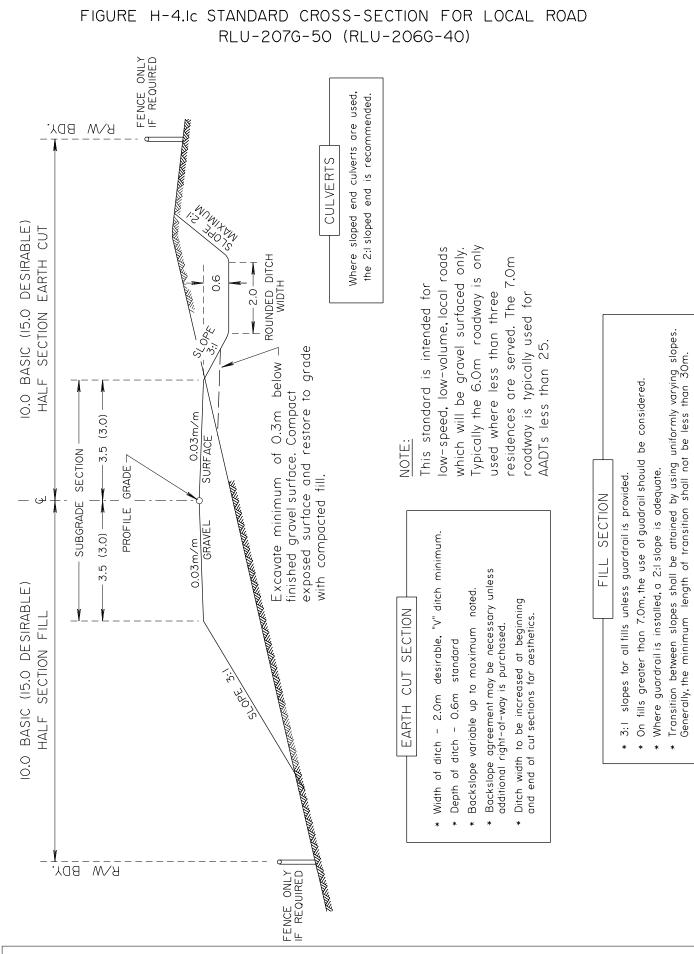

Table H.3.4.2 - Crest Vertical Curvature for Passing Sight Distance for Two-Lane Local Roads

Design Speed, (km/h)	30	40	50	60	70	80	90
Minimum Passing Sight Distance (m)	250	290	340	420	480	560	620
Minimum Rounded Crest K (m)	70	90	25	190	245	335	410

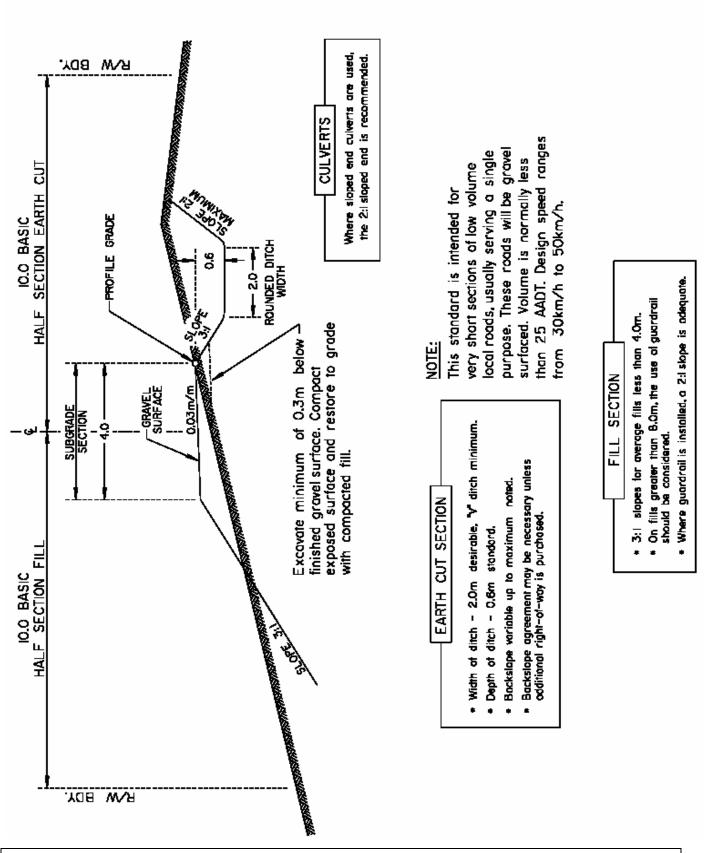

H.4 CROSS-SECTION ELEMENTS

H.4.1 Introduction

Cross-section elements for local roads have been developed based on traffic volumes, function and design speed. Figures H-4.1a, H-4.1b, H-4.1c and H-4.1d show cross-section elements for two-lane gravel roads and one-lane two-way gravel roads. The elements are discussed in the following sections.



H-17



LOCAL ROADS

GRAPHICS FILE: TIGSF SOI\REB\MANUAL\CHAPTERS\CHAP-H\cb623m50.man

LOCAL ROADS

FIGURE H-4.Id STANDARD CROSS SECTION FOR ONE-LANE TWO-WAY LOCAL ROAD RLU-104G-50 /40 /30

H.4.2 Roadway Width

H.4.2.1 Two-Lane Roads

Roadway widths for two-lane local roads are a function of traffic volume, traffic composition and design speed.

The widths shown on Table H.4.2.1 are considered appropriate for the volumes and speeds shown and have satisfied safety requirements for the passage of opposing vehicles. They do not provide sufficient roadway (shoulder) width for emergency or leisure stops because the frequency of conflicts associated with stationary vehicles on low-volume roads does not justify the additional expense.

The roadway widths shown in Table H.4.2.1. are for gravel roads. Roadway widths greater than those

shown may be required for earth roads to provide for future gravelling.

Roadway widths for gravel surfaced roads are influenced by truck volumes. On these roads, vehicles tend to encroach on the centre-line of the roadway as drivers shy away from the edge. To provide for clearance requirements for the safe passage of opposing vehicles, roadway widths may be increased by 0.5m or one metre for routes which carry in excess of 15 trucks per day.

The decision to select a roadway width to accommodate future surfacing may require an economic analysis. Normally, in Alberta, local roads with AADT less than 200 are built as if the gravel surface is the final surface with no provision for future paving.

Roadway Width * (m)									
Design Speed (km/h)	AADT less than 25	AADT less than 50	AADT 50-10	AADT 100-200					
30	6.0	6.0	7.0	7.0					
40	6.0	7.0	7.0	7.0					
50	7.0	7.0	8.0	8.0					
60	7.0	8.0	9.0	10.0					
70	7.0	8.0	9.0	10.0					
80	7.0	8.0	9.0	10.0					
90	7.0	8.0	9.0	10.0					

Table H.4.2.1 - Local Roads: Guide for Selection of Width

....

- Where the traffic composition is more than 20% trucks, a wider road than what is indicated by the AADT may be used (normally one metre wider).
- ** Where oversized vehicles are permitted to use the road on a regular basis, for example on log haul routes, the roadway width is to be selected based on the maximum permitted load width. An 11m gravel roadway is considered standard for log haul resource roads.

H.4.2.2 One-Lane Two-Way Roads

In some cases, it is desirable to build one-lane twoway roads. Generally these roads are short, serve a single purpose and are not part of a continuous route.

For reasons of safety, these roads may only be considered if the AADT is less than 25 and the design speed is 25 km/h or less. The use of one-lane roads is not recommended where conditions encourage operating speeds in excess of 50 km/h.

Figure H-4.1d shows the cross-section elements for one-lane two-way roads. The roadway width of 4.0m limits the road to one-lane and turnouts are required for passing.

H.4.2.3 Cross Slopes

On tangent sections of two-lane roadways, cross slope is applied from the centreline to each side of the roadway. On one-lane roads, a cross slope is applied from one edge to the other.

The recommended minimum cross slope on gravel surfaced local roads in Alberta is 0.03m/m. The purpose of this minimum is to provide good surface drainage and hence minimize infiltration of storm water into the roadway subgrade.

At horizontal curve sections, superelevation may be required depending on the speed and radius. Maximum superelevation is 0.08m/m. Superelevation values for design are given in Table H.3.3.1a. Cross slopes on shoulders are the same as on the adjacent roadway.

H.5 ROADSIDE GEOMETRY

H.5.1 Sideslopes

Slopes of 4:1 are desirable. A slope of 3:1 is considered adequate for design speeds up to 90 km/h. For the higher design speeds (60 km/h or greater), a 2:1 slope is generally not used unless guardrail protection is provided.

For the lower design speeds, maximum sideslopes of 2:1 are allowed if the soil will remain stable. In these cases, consideration should be given to the installation of guardrail especially on high embankments.

Gentle sideslopes increase safety, are more stable than steep sideslopes, aid vegetation and allow easier maintenance.

In mountainous terrain, maximum sideslopes of 1.5:1 may be appropriate for economic reasons. For high fill areas, warrants for traffic barriers should be examined.

H.5.2 Backslopes

Maximum backslopes of 2:1 are suggested. Steeper backslopes have been used in some areas. Backslopes of 3:1 are preferred. Where backslope agreements are made between the road authority and the land owner for the purpose of reducing right-of-way purchase requirements or obtaining fill material, flatter backslopes in the range of 6:1 to 10:1 may be used.

Where solid rock is encountered, backslopes of up to 0.25:1 may be used. Where rock that is prone to weathering is encountered, flatter slopes are usually necessary because very steep slopes would not be stable. Where rock can be easily excavated, the normal cross-section for the roadway designation may be used.

H.5.3 Ditches

Drainage channel cross-sections require adequate hydraulic capacity and are designed to keep water velocities below the scour limits, where possible. A standard ditch width of three metres is used on local roads. Normally the ditch bottom slopes away from the roadway at 0.05m/m. However, flat-bottomed ditches may be used where required to reduce erosion.

The invert of the ditch is normally 1.15m below the edge of the roadway to provide adequate drainage for the roadway structure. If necessary, this depth can be reduced to 0.6m to suit other constraints, such as right of way or longitudinal drainage.

Other features to consider in design of ditches are: borrow requirements, snow storage capacity, snow drifting, erosion and right-of-way constraints.

H.5.4 Drainage Structures

Bridge structures should normally provide the same clear roadway width as the roadway on both approaches.

Corrugated steel pipe is normally used to accommodate minor drainage channels, that is, where

less than 1500mm diameter is required. In these cases, if a sloped end culvert is used to blend into the fill slope, a 2:1 sloped end is suggested.

H.5.5 Right of Way

The desirable right of way width for 10m and 9m local roads is 40m if the design speed is 90 km/h. The basic right of way width for these designations is considered to be 30m.

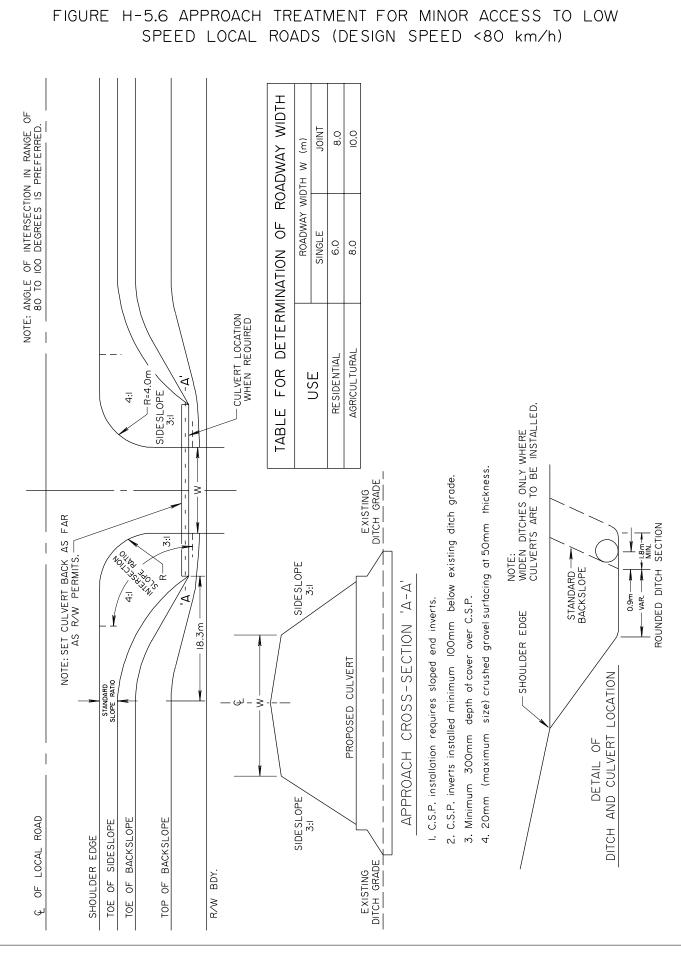
The desirable right of way width for eight metre and seven metre local roads is 30m if the design speed is 60 km/h. The basic right of way for these designations is considered 20m.

The basic right of way width is considered to be 20m for two-lane local roads with design speeds from 30 km/h to 50 km/h. Right-of-way widths for one-lane roadways may be less than for two-lane roadways because of the narrow subgrade.

Backsloping agreements may be used rather than purchasing wider right of way to achieve the roadway cross-section in difficult terrain or where either the road authority or the land owner prefer not to enter into a land purchase agreement.

In treed areas, a narrow, clear right of way (especially on an east-west alignment) results in shading of the roadway, which increases drying time and decreases snow melt. A narrow, clear right of way does, however, have a minimal impact on the forest environment.

In a wide, clear right of way, drivers tend to travel at higher speeds. If drivers exceed the design speed, this could create an unsafe condition. Wide, clear right of ways generally provide better stopping sight distance on sharp horizontal curves and a safer, more forgiving roadside area.


Other factors to be considered in selecting right of way are: borrow requirements, snow storage, snow drifting, future road upgrading, impact on utilities and accommodation of construction and maintenance equipment.

H.5.6 Approaches to Local Roads

For local roads where the design speed is 80 km/h or greater, the geometry required at approaches is as shown in Chapter D of this manual. Refer to the drawings entitled Figure D-3.3a Approach Treatment for Main Intersecting Roadway and Figure D-3.3b

Approach Treatment for Minor Intersecting Roadways.

Where the design speed is less than 80 km/h, the layout shown on Figure H-5.6, Approach Treatment for Minor Access to Low Speed Local Roads (Design Speed < 80 km/h) may be used.

This page left blank intentionally.