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ABSTRACT 
Many soil stability problems in geotechnical engineering can be analyzed by means of the classical slip line method – a 
relatively rigorous (baseline) solution. A slip line solution satisfies the lower bound theorem in plasticity theory, i.e. it 
satisfies boundary conditions, equilibrium equations and yield criteria for soil. It also provides insight into the soil failure 
mechanism, while requiring fewer assumptions than more traditional engineering approaches. Two decades ago 
computer programs were generally needed in order to obtain a solution of soil capacity by the slip line method, making 
the process difficult and tedious for others to follow. This paper proposes a practical method using spreadsheets for 
calculating soil capacity. Three typical example situations involving slope, tunnel, and foundation problems are solved 
using the slip line method and compared with established mathematical approaches. The procedure is based on using 
an iteration feature embedded in widely available spreadsheets, to process a finite difference matrix. Iterative searching 
of various solutions is performed automatically by invoking a spreadsheet’s optimization tool, Solver. This spreadsheet-
based method makes it easier to visualize multilayer iterations, and VBA user-functions reduce the programming effort 
needed. 
 
RÉSUMÉ 
Beaucoup de problèmes de stabilité géotechnique peuvent être analysés au moyen de la méthode de lignes de 
glissade - une solution relativement rigoureuse. La solution lignes de glissade correspond au théorème de limite 
inférieure dans la théorie de plasticité, c.-à-d. elle satisfait les conditions extérieures, les équations d'équilibre et les 
critères de rupture du sol. Un autre avantage vient de l'évaluation du mécanisme d'échec de sol avec des prétentions 
moins intuitives impliquées que des approches approximatives de technologie plus traditionnelle. Les programmes 
machine il y a décennies de couples étaient généralement nécessaires pour obtenir une solution de la capacité de sol 
par la ligne méthode de glissade, et il était pénible de suivre de d'autres. Dans le papier on propose une méthode 
pratique à l'aide des bilans pour calculer la capacité de sol. Trois problèmes typiques d'exemple comprenant la pente, 
le tunnel, et la base sont résolus respectivement et comparés à l'approche mathématique établie. Le procédé proposé 
est basé sur un dispositif de l'itération inclus dans des bilans largement disponibles dans l'application de l'armature finie 
de différence. La recherche itérative de diverses situations intéressées de solution est effectuée automatiquement en 
appelant le solutionneur d'outil d'optimisation d'un bilan. L'attraction de la méthode de bilan peut particulièrement être 
sur le transparent des itérations multicouche plus des utilisateur-fonctions de VBA trouvées sur le processus de solution 
numérique compliqué, qui est la plupart du temps une matité principale pour la programmation. 
 
 
 
1 INTRODUCTION 
 
This paper is concerned with the numerical solution of 
plane strain problems by the slip line method using a 
single page of spreadsheet. For 3D problems, the 
procedure is similar, except that multiple sheets are used, 
and the worksheets are linked to represent the behaviour 
of the individual slices or layers. 

The slip line method is also known as the method of 
stress characteristics. It is aimed at solving the classical 
geotechnical bearing capacity problem of a rigid 
foundation resting on a cohesive-frictional soil mass and 
loaded to failure by a central vertical force. The soil mass 
is assumed as an ideally plastic material which behaves 
elastically until it yields and then undergoes deformation 
indefinitely at constant stress unless strain-strengthening 
or work-weakening occurs. This plastic behaviour is 
defined by a full set of constitutive equations. Although 
real soils will not correspond exactly to this model, it does 
provide a theoretical basis on which the actual behaviour 
of soil masses may be compared. 

The theory is based entirely on plastic equilibrium 
from which the stress in the soil mass at failure is 
deduced. The failure regions do not need to cover the 
entire soil mass: however, the yield condition must be 
satisfied everywhere within the failure regions. Generally, 
routine highway embankment stability, strip foundation 
bearing capacity, retaining walls, tunnels and some slope 
failures all may be analyzed using the slip line method. 
Some analytical closed form solutions can be obtained by 
assuming the soil is weightless (Sokolovskii, 1965). 
Inclusion of soil weight considerably complicates 
mathematical solution so that numerical methods must be 
employed for most cases (Cheng et al. 2005). Numerical 
methods traditionally require computer programs, which, 
though useful (Martin, 2003), may obscure the underlying 
elegant concepts. Coding or mastering the details of such 
a program is likely to be too time-consuming for most 
practising geotechnical engineers. 

A complete description of the slip line approach is 
found in Hill (1950), Wu (1966), Booker et al. (1977), 
Chen (1975), and Davis et al. (2002). 
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2 FINITE DIFFERENCE SOLUTION 
 
Referring to the coordinate system shown in Figure 1, two 
equations of equilibrium under conditions of plane strain 
are established: 
 
 

 
 

Figure 1. Stresses on an element in plane strain problem 
 
 

xyx

x y

τσ γ
∂∂ + =

∂ ∂
 [1] 

 

0y xy

y x

σ τ∂ ∂
+ =

∂ ∂
 [2] 

 
 
where � is the unit weight of the soil material in the x 
direction. The material is in a state of failure and the 
stresses obey the Mohr-Coulomb yield condition: 
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where c and � are the cohesive strength and friction 
angle respectively. The stresses can be also expressed 
as follows: 
 
 

cos 2x P Rσ θ= +  [4] 

 
cos 2y P Rσ θ= −  [5] 

 
sin 2xy Rτ θ=  [6] 

 
 
where angle � is the direction of the major principal stress 
�1 relative to the x axis; P and R are the mean stress and 
the radius of Mohr stress circle, namely 
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By substituting Eqs [4] to [6] into equilibrium Eqs [1] to [2], 
we get the following governing equations: 
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These are two simultaneous first order partial 

differential equations governing the variation of stress 
state in terms of (P, �). Since they are hyperbolic, a 
suitable approach to solving them is the so-called method 
of characteristics (Hill, 1950; Abbott, 1966). In this paper, 
we assume the �-line is the line which makes a clockwise 
acute angle with the direction of �1 and the �-line which 
makes a counter-clockwise acute angle with the direction 
of �1. So the two characteristics (�, �) are defined by 
 

�-line:  tan( )
dy
dx

θ µ= −  [11] 

 

� -line:  tan( )
dy
dx

θ µ= +  [12] 

 
where � = �/4 - �/2. Physically, the two characteristics 
represent the two failure planes on which the failure 
criterion is satisfied. Considering the directional derivative 
along the �-line and �-line, respectively 
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sin 2 cos( ) cos( )
y S Sα β

µ θ µ θ µ∂ ∂ ∂= − + + −
∂ ∂ ∂

 [16] 

 
By substituting Eqs [15] to [16] into equilibrium Eqs [9] 

to [10], we get the following governing equations: 
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The above two equations are the classical slip line 
equations, and can be solved using the finite difference 
method as suggested by Sokolovskii (1965). As shown in 
Figure 2, starting from two points A and B with known 
solutions the results for the intersection point P can be 
given. If the grid size is small enough, Eqs [17] to [18] can 
be rewritten as, 
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From Eqs [11] to [12], the following relations can be 
established: 
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Figure 2. � and � lines in slip line solution 
 
 

Based on the above four equations, we can get results 
for the point P as follows: 
 

( ) ( )
( ) ( )

PBA

BBPAB

BAPBA

P RRR
RRPP

yyyxx

2
2sin

22cos2sin

++
++−+

−−−−

=
θµ

µγµγ

θ  

                                                                       [23] 
 

( ) ( )[ ]
( ) ( )

( )
( ) ϕθθµ

µγ
θθµγϕθθ
ϕθθµ

sin2sin
2cos

2sincos

2sin2sin

BP

BP

BPBP

BBPBA

P

yy

cPxx

P
−+

−
−−+−

−−−−

=  

                                                                       [25] 
 

1 2

1 2

( ) ( )

( ) ( )

B A A B

P

dy dy
y y x x

dx dxx
dy dy
dx dx

− + −
=

−
 [26] 

 

2( ) ( )P B P B

dy
y y x x

dx
= + −  [27] 

 
Based on the boundary conditions, an iterative 

process is needed to obtain the values of xp, yp, �p and 
Pp. And this iterative process is easily performed on a 
spreadsheet platform. 
 
 
3 IMPLEMENTATION BY SPREADSHEET 
 
Prior to starting to set up a spreadsheet for slip-line 
calculation, some preparation is required. On the Tools 
menu, click Options; on the Calculation tab, select 
Manual Calculation and Recalculate before save and 
make sure that Iteration is turned off. 

The purpose of doing this first is to advoid a numerical 
problem (e.g division by zero) which would otherwise 
occur in the course of setting up the spreadsheet. Low et 
al. (1997) points out that “…iterative calculations among 
spreadsheet cells connected by circular references will 
produce a solution only if the iterative calculations lead to 
convergence.” These adjustments can be reversed once 
the spreadsheet is complete. If the spreadsheet hangs, 
as shown by the appearance for example of “#” it needs 
to be debugged. For spreadsheets using an iterative finite 
difference solution for the slip line method, initially the 
calculation of Range x depends on both Range y and 
Range �; Range y depends on both Range x and Range 
�; Range P depends on all three Ranges x, y and �. 
Therefore, Range � is a critical path. When the 
spreadsheet hangs, turn off iteration and automatic 
recalculation, then try deleting Range � and re-input its 
formulae correctly. Then turn iteration and automatic 
recalculation on again. It is helpful to practise first with a 
simpler sheet involving multilayer iteration. Reading Low’s 
paper also helps. 

Wherever optimization is required, do not hesitate to 
make use of the embedded Goal Seek or Solver. 
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3.1 Slope Stability for Landmark Project and 
Embankment 

 
The main task in this case involves slope stability analysis 
to establish development setback lines and geotechnical 
design of a collector road along an escarpment (Hopkins 
et al., 2005). 

When many buildings and retaining structures are 
constructed adjacent to a slope, the design of a strip-raft 
foundation close to the edge of the slope is a critical 
problem. The slope will fail when the vertical load acting 
on the slope crest reaches a critical value. Figure 3 
shows a spreadsheet setup for a soil slope with an angle 
of friction � = 30°; cohesion c = 50kPa; and unit weight 
� = 0 kN/m3. Calculation of the critical loads is 
implemented as follows: 

i. Input the soil physical parameters (c, �, �,...) and 
formula in cells A11 to H11, where the framed cell 
contains the formula; mj is the number of � lines; 	 is 
the direction of the slope surface relative to the y-
axis, regarded as positive when pointing downwards 
to the right.; the “step” shown in cell H11 is the mesh 
step along the slope surface; “step1” in cell G11 is 
the distance between the first �-line and singularity 
"0.0", which is the origin of the coordinate system. 
The step is chosen so as to obtain a suitable degree 
of accuracy. 

ii. Create four user-defined spreadsheet functions 
shown as follows, by clicking Insert/Macro/module in 
Microsoft Excel and then, on the module sheet, type 
“Function xP……”, etc. The four functions xP(), yP(), 
pP(), ThetaP() are based on Eqs [23] to [27] and 
shown below; then turn iteration on. 

iii. Enter constants and formulae into the columns 
labelled x as follows: 
E17=IF(H12=0,0,F16+I12*SIN(RADIANS(H12)));D18
=IF(H12=0,0,E17+J12*SIN(RADIANS(H12)));C19=IF
(H12=0,0,D18+J12*SIN(RADIANS(H12)));B20=IF(H1
2=0,0,C19+J12*SIN(RADIANS(H12))); other boxed 
cells input 0; all non-boxed cells in x contain formulae 
xP(), for example 
F17=xP(�,F23,E24,F16,E17,F38,F37,E38), then 
autofill all non-boxed cells left in x. 

iv. Enter constants and formulae into the columns 
labelled y as follows: 
E24=IF(H12=0,F23+I12,F23+I12*COS(RADIANS(H1
2)));D25=IF(H12=0,E24+J12,E24+J12*COS(RADIAN
S(H12)));C26=IF(H12=0,D25+J12,D25+J12*COS(RA
DIANS(H12)));B27=IF(H12=0,C26+J12,C26+J12*CO
S(RADIANS(H12))); other boxed cells are input 0; all 
non-boxed cells in y contain formulae yP(), for 
example F24=yP(�,E24,E17,F17,F38,E38), then 
autofill all the non-boxed cells left in y. 

v. Enter constants and formulae into the columns 
labelled P as follows: all boxed cells contain formulae 
as shown in Figure 3; all non-boxed cells in P contain 
formulae pP(), for example 
F31=pP(�,�,�,c,E38,F38,E31,E17,F17,E24,F24), 
then autofill all the non-boxed cells left in P. 

vi. Enter the data and formulae into the columns 
labelled as follows: all boxed cells contain formulae 
as shown in Figure 3; 
G37=F37-($F$37-$I$37)/3 
H37=G37-($F$37-$I$37)/3 
F38=E38+($J$38-$E$38)/(mj+1) 
G38=F38+($J$38-$E$38)/(mj+1) 
H38=G38+($J$38-$E$38)/(mj+1) 
I38=H38+($J$38-$E$38)/(mj+1) 
Other non-boxed cells contain formulae ThetaP(), for 
example 
E39=ThetaP(�,�,�,c,E17,D18,E24,D25,E25,E31,D32
,E32,E38,D39), then autofill all non-boxed cells left in 
�. 

 
The VBA functions are as follows: 

Function xP(mu, yA, yB, xA, xB, ThetaP, ThetaA, ThetaB) 
dy1 = Tan(0.5 * (ThetaP + ThetaA) - mu) 
dy2 = Tan(0.5 * (ThetaP + ThetaB) + mu) 
t1 = yB - yA + dy1 * xA - dy2 * xB 
t2 = dy1 - dy2 
xP = t1 / t2 

End Function 
 
Function yP(mu, yB, xB, xP, ThetaP, ThetaB) 

dy2 = Tan(0.5 * (ThetaP + ThetaB) + mu) 
yP = yB + dy2 * (xP - xB) 

End Function 
 
Function pP(gamma, mu, phi, c, ThetaB, ThetaP, pB, xB, xP, yB, 
yP) 

mu = 2 * mu 
phi = phi / 180 * 3.1415926 
t1 = (Sin(mu) - (ThetaP - ThetaB) * Sin(phi)) * pB 
t2 = -2 * c * (ThetaP - ThetaB) * Cos(phi) 
t3 = gamma * Sin(mu) * (xP - xB) 
t4 = -gamma * Cos(mu) * (yP - yB) 
t5 = Sin(mu) + (ThetaP - ThetaB) * Sin(phi) 
 
pP = (t1 + t2 + t3 + t4) / t5 

End Function 
Function ThetaP(gamma, mu, phi, c, xA, xB, yA, yB, yP, pA, pB, 
pP, ThetaA, ThetaB) 

mu = 2 * mu 
phi = phi / 180 * 3.1415926 
rP = pP * Sin(phi) + c * Cos(phi) 
ra = pA * Sin(phi) + c * Cos(phi) 
rb = pB * Sin(phi) + c * Cos(phi) 
t1 = gamma * Sin(mu) * (xA - xB) 
t2 = -gamma * Cos(mu) * (2 * yP - yA - yB) 
t3 = Sin(mu) * (pB - pA) 
t4 = (rP + ra) * ThetaA 
t5 = (rP + rb) * ThetaB 
t6 = ra + rb + 2 * rP 
ThetaP = (t1 + t2 + t3 + t4 + t5) / t6 

End Function 
 

Sokolovskii (1965) had obtained analytical closed form 
solutions (Figure 3) for calculation of the critical loads for 
weightless soil slope cases. For this example, the 
analytical solution shown in Figure 3 is 334.81 kPa and 
the numerical solution using the spreadsheet is 
334.97 kPa. 
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28
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32
33
34

35
36
37
38
39
40
41
42

A B C D E F G H I J K L M N

qu(kPa) qu(kPa)
Numerical Theory Error

334.97 334.81 -0.05%

c(kPa) �(o) �(kN/m3) � mj � (deg) Step1(m) Step (m)
50 30 0 0.5236 4 66 0.05 0.50

x
1 2 3 4 5 6 7 8 9 10 11 12

1 0.00 0.00 0.00 0.00 1
2 0.05 0.03 0.02 0.02 0.02 0.00 2
3 0.50 0.33 0.30 0.28 0.26 0.23 0.20 0.00 3
4 0.96 0.79 0.62 0.57 0.53 0.49 0.45 0.39 0.20 0.00 4
5 1.42 1.25 1.08 0.91 0.84 0.78 0.72 0.67 0.59 0.39 0.20 0.00 5

y
1 2 3 4 5 6 7 8 9 10 11 12

1 0.00 0.00 0.00 0.00 1
2 0.02 0.00 -0.01 -0.01 -0.01 -0.02 2
3 0.22 -0.01 -0.06 -0.08 -0.10 -0.11 -0.14 -0.25 3
4 0.43 0.19 -0.04 -0.11 -0.15 -0.18 -0.21 -0.25 -0.36 -0.48 4
5 0.63 0.40 0.16 -0.07 -0.16 -0.22 -0.27 -0.31 -0.36 -0.48 -0.59 -0.70 5

P
1 2 3 4 5 6 7 8 9 10 11 12

1 1
2 86.60 104.21 123.61 144.97 168.51 194.45 2
3 86.60 86.60 104.21 123.61 144.97 168.51 194.45 194.45 3
4 86.60 86.60 86.60 104.21 123.61 144.97 168.51 194.45 194.45 194.45 4
5 86.60 86.60 86.60 86.60 104.21 123.61 144.97 168.51 194.45 194.45 194.45 194.45 5

�

1 2 3 4 5 6 7 8 9 10 11 12
1 0.42 0.28 0.14 0.00 1
2 0.42 0.34 0.25 0.17 0.08 0.00 2
3 0.42 0.42 0.34 0.25 0.17 0.08 0.00 0.00 3
4 0.42 0.42 0.42 0.34 0.25 0.17 0.08 0.00 0.00 0.00 4
5 0.42 0.42 0.42 0.42 0.34 0.25 0.17 0.08 0.00 0.00 0.00 0.00 5

�

�

�=�/4-�/2

p=(c*cos(�))/(1-sin(�))

�=�/2-�

qu=c*ctg�{(1+sin�)/(1-
sin�)*exp[(�-2�)tg�]-1}

(Sokolovski, 1954)

qu=p(1+sin�)+c*cos�
y (m)

x 
(m

)

� (deg)

q

Units: m, kPa, degree (or °), 
kN/m3

 
 

Figure 3. Spreadsheet solution, compared with the analytical solution by Sokolovskii (1965) 
 
 
3.2 Bearing Capacity of Footing 
 
Bearing capacity is a classical problem that has been 
considered by Hill (1950), Sokolovskiii (1965), and Chen 
(1975) using plasticity theory, the slip line method and 
limit analysis. If 	 in the first example is equal to 0, the 
spreadsheet setup for a soil slope in Figure 3 can then be 
used to analyze the bearing capacity of a footing. For 
improving the accuracy, a small grid size is used 
(Figure 4). The soil is homogenous with cohesion 
c = 144.5 kPa, and unit weight � = 17.01 kN/m3. The 
width of the footing is 17m. By changing the cell “step” 
until the longest �-line runs through the midpoint of the 
base, the ultimate bearing capacity can be obtained. 
Some formulations have been proposed to determine the 
bearing capacity, including Terzaghi (1943), Meyerhof 
(1951), Vesic (1973) and Chen (1975), among others. 
The numerical results in this paper are compared with the 
classic formulations above and different friction angles 
are considered. Because the slip line solution satisfies 

the equations of equilibrium, the results are among the 
best lower bound results available. This is illustrated in 
Table 1. 

 
3.3 Circular Tunnel – Thickness of Plastic Zone 
 
A plane strain problem of a deep circular tunnel is 
considered here. If the in situ stress is sufficiently great 
there will be a failure region surrounding the tunnel. The 
tunnel excavation surface and the outer surface of the 
failure region surrounding the excavation are both 
principal surfaces. In fact, all circular surfaces concentric 
with the excavation surface are principal surfaces 
provided they are within the plastic zone. If we know the 
tunnel radius, the internal support pressure and the 
pressure acting on the boundary of the failure region, 
then the radius of the plastic zone around the tunnel may 
be obtained (Davis et al., 2002). 

In this example, the �-lines are concave towards the 
left. The 
 is an angle which describes the location where 
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the outermost slipline daylights on the excavation surface, 
let us call it point A, as shown in Figure 5. In order to find 
the thickness of the plastic zone, we vary the 
 value until 
cell U20 equals to zero. Figure 6 shows a spreadsheet 
setup for this case. This can be implemented easily by 
using solver. 
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Force distribution

 
 
Figure 4. Spreadsheet results for bearing capacity of 
footing 
 
 
Table 1. Comparison of the slip line solution with other 
classic formulations for bearing capacity 
 
�  
(°) 

xls 
(slipline) 

Vesic 
(1973) 

Meyerhof 
(1951) 

Terzaghi 
(1943) 

Chen 
(1975) 

0 742.9  743.0  743.0  743.0  743.0  

5 972.1  1002.6  947.7  950.0  1004.9  

10 1303.6  1382.7 1256.8  1273.3  1395.5  

15 1802.5  1968.7  1749.2  1791.1  2011.0  

20 2587.7  2921.9  2558.4  2654.8  3039.0  

25 3894.9  4565.7  3971.7  4166.0  4867.1  

30 6214.8  7595.3  6619.2  6968.2  8352.7  

 
 

A 
y 

x 

� - 

�utermost slipline 

 
 
Figure 5. Definition of skew angle 
  
 
 
4 SUMMARY 
 
The slip line method is a baseline calculation tool which 
can be used to analyze many geotechnical failure 
problems. The method is regarded as difficult to apply in 

routine geotechnical practice mainly because of the 
multilayer iteration involved. However, with the iterative 
features now available in spreadsheets complete iterative 
finite difference procedures can be carried out relatively 
easily. The examples in this paper give the same results 
as those based on closed-form solutions, and benefit 
from the transparency of operation of the spreadsheet-
based approach. Spreadsheet setups could potentially 
handle more complex cases, e.g., loaded sloping ground 
with or without setback (Cheng et al., 2005), dynamic 
loads, pore water pressure, anisotropy, non-linearity, and 
probabilistic analysis in engineering practice. Some 
special problems may be solved in the same manner, for 
example, fall cone tests (Houlsby, 1982). What needs to 
be borne in mind is that the slip line solution is always a 
lower bound (although not guaranteed to be the lowest), 
so in general it provides a conservative estimate of 
capacity or stability. If we can also apply an upper bound 
method (e.g. Sarma, 1973) to the same problem, we can 
bracket the exact solution. Electronic copies of the 
spreadsheets are available from the authors on request. 
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A B C D E F G H I J K L M N O P Q R S T U V W X

c(kPa) �(o) �(kN/m3) � �(o) ro(m) rp(m) pi (kPa) pp (kPa) po (kPa)
25 4 0 0.75 -0.77 2 8.00 0 87 87.00 0.00

x
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1.98 2.31
2 1.90 2.07 2.42 2.66
3 1.79 1.97 2.15 2.53 2.81 3.05
4 1.62 1.82 2.02 2.23 2.62 2.95 3.23 3.51
5 1.42 1.63 1.84 2.06 2.29 2.70 3.08 3.39 3.71 4.02
6 1.19 1.39 1.61 1.84 2.08 2.33 2.78 3.20 3.55 3.89 4.25 4.62
7 0.92 1.13 1.35 1.58 1.82 2.08 2.36 2.83 3.30 3.69 4.07 4.47 4.88 5.30
8 0.64 0.83 1.05 1.28 1.52 1.79 2.07 2.36 2.87 3.38 3.81 4.23 4.67 5.13 5.60 6.07
9 0.34 0.52 0.72 0.94 1.18 1.44 1.72 2.02 2.34 2.88 3.45 3.91 4.37 4.86 5.36 5.88 6.42 6.97

10 0.03 0.19 0.38 0.59 0.81 1.06 1.34 1.63 1.95 2.29 2.88 3.48 3.98 4.49 5.02 5.57 6.15 6.75 7.37 8.00

y
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0.31 0.00
2 0.61 0.51 0.23 0.00
3 0.90 0.83 0.73 0.48 0.24 0.00
4 1.17 1.12 1.05 0.97 0.75 0.51 0.28 0.00
5 1.40 1.39 1.35 1.30 1.23 1.04 0.81 0.58 0.32 0.00
6 1.61 1.62 1.62 1.60 1.57 1.51 1.34 1.13 0.92 0.66 0.36 0.00
7 1.77 1.82 1.85 1.87 1.87 1.85 1.81 1.67 1.48 1.28 1.05 0.76 0.41 0.00
8 1.90 1.98 2.04 2.10 2.13 2.15 2.15 2.13 2.03 1.86 1.69 1.47 1.20 0.87 0.48 0.00
9 1.97 2.08 2.18 2.27 2.35 2.41 2.45 2.48 2.48 2.41 2.27 2.13 1.93 1.69 1.38 1.00 0.55 0.00

10 2.00 2.14 2.27 2.40 2.51 2.61 2.70 2.77 2.82 2.84 2.82 2.72 2.60 2.44 2.22 1.94 1.58 1.15 0.63 0.00

P
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 26.81 35.27
2 26.81 31.02 39.57 43.92
3 26.81 31.02 35.27 43.92 48.32 52.76
4 26.81 31.02 35.27 39.57 48.32 52.76 57.25 61.79
5 26.81 31.02 35.27 39.57 43.92 52.76 57.25 61.79 66.39 71.03
6 26.81 31.02 35.27 39.57 43.92 48.32 57.25 61.79 66.39 71.03 75.72 80.46
7 26.81 31.02 35.27 39.57 43.92 48.32 52.76 61.79 66.39 71.03 75.72 80.46 85.26 90.11
8 26.81 31.02 35.27 39.57 43.92 48.32 52.76 57.25 66.39 71.03 75.72 80.46 85.26 90.11 95.01 99.96
9 26.81 31.02 35.27 39.57 43.92 48.32 52.76 57.25 61.79 71.03 75.72 80.46 85.26 90.11 95.01 99.96 104.97 110.04

10 26.81 31.02 35.27 39.57 43.92 48.32 52.76 57.25 61.79 66.39 75.72 80.46 85.26 90.11 95.01 99.96 104.97 110.04 115.16 120.33

�

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 -1.42 -1.57
2 -1.26 -1.34 -1.49 -1.57
3 -1.10 -1.18 -1.26 -1.42 -1.49 -1.57
4 -0.95 -1.03 -1.10 -1.18 -1.34 -1.42 -1.49 -1.57
5 -0.79 -0.87 -0.95 -1.03 -1.10 -1.26 -1.34 -1.42 -1.49 -1.57
6 -0.64 -0.71 -0.79 -0.87 -0.95 -1.03 -1.18 -1.26 -1.34 -1.42 -1.49 -1.57
7 -0.48 -0.56 -0.64 -0.71 -0.79 -0.87 -0.95 -1.10 -1.18 -1.26 -1.34 -1.42 -1.49 -1.57
8 -0.32 -0.40 -0.48 -0.56 -0.64 -0.71 -0.79 -0.87 -1.03 -1.10 -1.18 -1.26 -1.34 -1.42 -1.49 -1.57
9 -0.17 -0.25 -0.32 -0.40 -0.48 -0.56 -0.64 -0.71 -0.79 -0.95 -1.03 -1.10 -1.18 -1.26 -1.34 -1.42 -1.49 -1.57

10 -0.01 -0.09 -0.17 -0.25 -0.32 -0.40 -0.48 -0.56 -0.64 -0.71 -0.87 -0.95 -1.03 -1.10 -1.18 -1.26 -1.34 -1.42 -1.49 -1.57

�

	

-10
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-6
-4
-2
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6
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10

-10 -5 0 5 10

y (m)

x 
(m

)

�(o)

�=�/4-�/2 =W33

=�

M64=L65-
($D$73+PI()/2)/10
…
E72=D73-
($D$73+PI()/2)/10

All non-boxed cells in �  contain foumulas 
ThetaP(garma, mu, phi, c, xA, xB, yA, yB, yP, pA, pB, pP, 
ThetaA, ThetaB)
fof example
M64=ThetaP(�,�,�,_c,M24,L25,M37,L38,M38,M51,L52,M52,M64,
L65)
then autofill all non-boxed cells in �

All non-boxed cells in P  contain foumulas 
pP(garma, mu, phi, c, ThetaB, ThetaP, pB, xB, xP, yB, yP),
for example
N57=pP(�,�,�,_c,M64,N64,M51,M24,N24,M37,N37)
then autofill all non-boxed cells in P

p=(pi+c*cos�)/(1-sin�)

M37=ro*COS(-M64)
…
D46=ro*COS(-D73)

All non-boxed cells in y contain foumulas 
 yP(mu, yB, xB, xP, ThetaP, ThetaB), for example
M38=yP(�,L38,L25,M25,M65,L65)
then autofill all non-boxed cells in y

M24=ro*SIN(-M64)
…
D33=ro*SIN(-D73)

N24=M24+(N37-
M37)/TAN((N64+M64)/2+�)
…
W33=V33+(W46-
V46)/TAN((W73+V73)/2+�)

All non-boxed cells in x  contain foumulas 
xP(mu, yA, yB, xA, xB, ThetaP, ThetaA, ThetaB), 
for example M25=xP(�,M37,L38,M24,L25,M65,L65,M64), 
then autofill all other non-boxed cells in x

=W60*(1-SIN�)-c*COS�)

=P20-Q20

Notes:
� is an angle between the line of the end point (daylighted 
on excavation surface) of outest slipline (daylighted on 
outer surface of plastic zone) connecting with circular 
center, and y-axis; r0 is tunnel radius; rp is radius of 
plastic zone;  pi is internal support pressure in tunnel; pp 
is pressure on outer surface of plastic zone ; p0 is 
calculated pressure on outer surface of plastic zone.

 
 

Figure 6. Tunnel example setup 
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