Detailed Design

(Hwy 2A) Calgary, Alberta

NOISE REPORT

Prepared for: Alberta Infrastructure and Transportation 2nd Floor, Twin Atria Building 4999 – 98th Avenue Edmonton, Alberta T6B 2X3

Prepared by: Patching Associates Acoustical Engineering Ltd.

for

Chinook Roads Partnership Southeast Stoney Trail Project

September 26, 2011

PAAE Project No. 2010-2880 (rev1)

CALGARY SOUTHEAST STONEY TRAIL

17th Avenue SE to Macleod Trail South

Calgary Southeast Stoney Trail Noise Study

SECTION

TABLE OF CONTENTS

PAGE NO.

1	NOIS	SE ANALYSIS	1-1
	1.1	INTRODUCTION	1-1
	1.2	NOISE CRITERIA	1-1
	1.3	MODEL INPUT	1-1
	1.3.1	TRAFFIC DATA	. 1-1
	1.4	FUTURE NOISE LEVEL PREDICTIONS	1-3
	1.5	CONCLUSION	1-22

TITLE

Appendix A	Explanation of Technical Details
Appendix B	Noise Attenuation Guidelines for within Cities and Urban Areas
Appendix C	Modeled Coordinates for Receive
Appendix D	Modeled Coordinates for Roads
Appendix E	Traffic Volumes and Truck Perce

LIST OF APPENDICES

s Regarding Sound Measurement & Analysis r Provincial Highways Under Provincial Jurisdiction

ers, Barriers, Building Rows and Terrain Lines

entages

LIST OF FIGURES

FIG	TITLE TITLE	PAGE NO.
1	Calgary SEST Community Noise Levels Sundance and Chaparral Area	1-4
2	Calgary SEST Community Noise Levels McKenzie and Cranston Area	1-5
3	Calgary SEST Community Noise Levels McKenzie Towne and Auburn Bay An	rea 1-6
4	Calgary SEST Community Noise Levels Cranston and Auburn Bay Area	1-7
5	Calgary SEST Community Noise Levels Copperfield and Mahogany Area	1-8
6	Calgary SEST Community Noise Levels Copperfield and Marquis Meadows A	area 1-9
7	Calgary SEST Community Noise Levels Applewood Park Area	1-10
8	Calgary SEST Noise Contour Sundance and Chaparral Area	1-12
9	Calgary SEST Noise Contour McKenzie and Cranston Area	1-13
10	Calgary SEST Noise Contour McKenzie Towne and Auburn Bay Area	1-14
11	Calgary SEST Noise Contour Cranston and Auburn Bay Area	1-15
12	Calgary SEST Noise Contour Copperfield and Mahogany Area	1-16
13	Calgary SEST Noise Contour Copperfield and Marquis Meadows Area	1-17
14	Calgary SEST Noise Contour 114 Avenue Interchange Area	1-18
15	Calgary SEST Noise Contour Glenmore Trail Interchange Area	1-19
16	Calgary SEST Noise Contour Peigan Trail Interchange Area	1-20
17	Calgary SEST Noise Contour Applewood Park Area	1-21

ii

NOISE ANALYSIS

1.1 INTRODUCTION

Patching Associates Acoustical Engineering Ltd. was retained by Chinook Roads Partnership (Chinook) to assess the potential noise impact of the proposed Calgary Southeast Stoney Trail (SEST) roadway network from north of 17th Avenue SE to east of Macleod Trail South (Hwy 2A).

The purpose of this study is to determine the predicted noise levels generated by future traffic on the SEST for the existing (2011) first row residential developments adjacent to the project and if required, the height of barrier needed to maintain the Alberta Transportation (AT) target noise level of 65 dBA L_{eq} (24 Hour). This study also determines the 45 dBA L_{eq} (24 Hour) to 75 dBA L_{eq} (24 Hour) noise contours for the proposed roadways.

Noise predictions for road traffic were developed using the Federal Highway Administration's Traffic Noise Model (FHWA TNM version 2.5) computer program based on the traffic volumes and detailed road designs provided by Chinook. Input data are included in Appendix E.

1.2 NOISE CRITERIA

Sound is typically measured using the A-weighting scale and is commonly expressed as an Leq value. The A-weighted equivalent-continuous sound level is the noise descriptor used in the Alberta Transportation noise attenuation guidelines. This index is an energy average of the varying sound level over a specified period. The use of this index permits the description of a varying sound level environment as a single number. As the L_{eq} is an "average" level, the measured sound level may exceed the criterion level, provided the duration is limited. The L_{eq} value considers both the sound level and the length of time that the sound level occurs. Appendix A provides a detailed explanation of the Leq as well as other units and descriptors used in noise analysis.

The AT Noise Attenuation Guidelines for Provincial Highways Under Provincial Jurisdiction within Cities and Urban Areas (adopted 2002) specifies that a basic noise abatement threshold level of 65 dBA Leq (24 Hours) may be received in a resident's yard at a location two metres inside the property line (away from the road right of way), at a height of 1.2 metres above the ground surface. Noise studies for AT are normally to be adjusted to the 10 year planning horizon.

For this study, PAAE was requested to examine the impact of traffic noise based on the contractual design traffic volume as per Schedule 18 from Alberta Transportation. The Schedule 18 design traffic volume takes into consideration an Average Annual Daily Traffic (AADT) of 95,000 vehicles per day (VPD) and the end of the Chinook concession period at the year 2043, whichever comes first. Both horizons examined are beyond the standard 10-year horizon stated in the Guideline.

A copy of the Noise Attenuation Guidelines for Provincial Highways under Provincial Jurisdiction within Cities and Urban Areas document is found in Appendix B.

1.3 MODEL INPUT

Layouts for the SEST, crossing roads and the surrounding area were modeled using drawings received from Chinook using the Federal Highway Administration TNM 2.5 computer program.

Appendix C contains modeled coordinates for receivers and barriers. Appendix D contains modeled coordinates for roadways.

1.3.1 TRAFFIC DATA

Traffic volume projections for this study are based on AADT 95,000 VPD and 2043 year horizons for Stoney Trail and Deerfoot Trail. The following principles were considered:

- If the traffic volume of the mainline section at the 2030 year horizon reaches 95,000 VPD, the year 2030 traffic volume will be used for the noise prediction.
- If the 95,000 VPD traffic volume of the mainline section happens in some year between 2030 the noise prediction.
- If the traffic volume of the mainline section at the 2043 year horizon does not reach 95,000 VPD, the year 2043 traffic volume will be used for the noise prediction.

The following table summarizes the traffic volume projections for the noise prediction for the adjacent community areas.

and 2043, the traffic volume of the year that reaches the 95,000 VPD criteria will be used for

Impacted Study Area	Impacted Communities	Year Based Traffic volume projection
Stoney Tr - North of 17 th Avenue	Applewood Park	2043
Stoney Tr - From north of 22X to east of Deerfoot Trail	McKenzie Towne, Auburn Bay, Copperfield, Mahogany Marques Meadows	2043
Stoney Tr - From west of Deerfoot Trail to east of Sun Valley Blvd/Chaparral Blvd	Mountain Park, McKenzie, Cranston	2030
Stoney Tr - West of Sun Valley Blvd/Chaparral Blvd	Sundance, Chaparral	95,000 VPD at 2038
Deerfoot Tr - South of 22X to north of 196 th Avenue	Cranston, Auburn Bay	95,000 VPD at 2031
Stoney Tr - From south of 17 th Avenue to south of 114 th Avenue	No specific residential area considered	95,000 VPD (approximate year 2030), noise contour calculations only

Table 1 Traffic volume projections of SEST Stage 1 Design

Appendix E contains the projected traffic volumes and truck percentages provided in the Functional Planning Study by Earthtech ranging between 3% and 5% for the AM and PM peak periods on the SEST and between 2% and 11% on the crossing roads. Twenty-four hour traffic volumes were calculated based on the data provided indicating 20% of daily traffic occurring during the combined AM and PM peak hours. The SEST mainline and Deerfoot Trail (Hwy 2) were modeled carrying a 1:1 medium to heavy truck ratio. All the other crossing roads were modeled with a 2:1 medium to heavy truck ratio.

The predicted levels for the Stage 1 design were calculated based on the traffic volume projections at each of the Stoney Trail and Deerfoot Trail mainline segments using the assumption that the breakdown in vehicle traffic classifications remains the same.

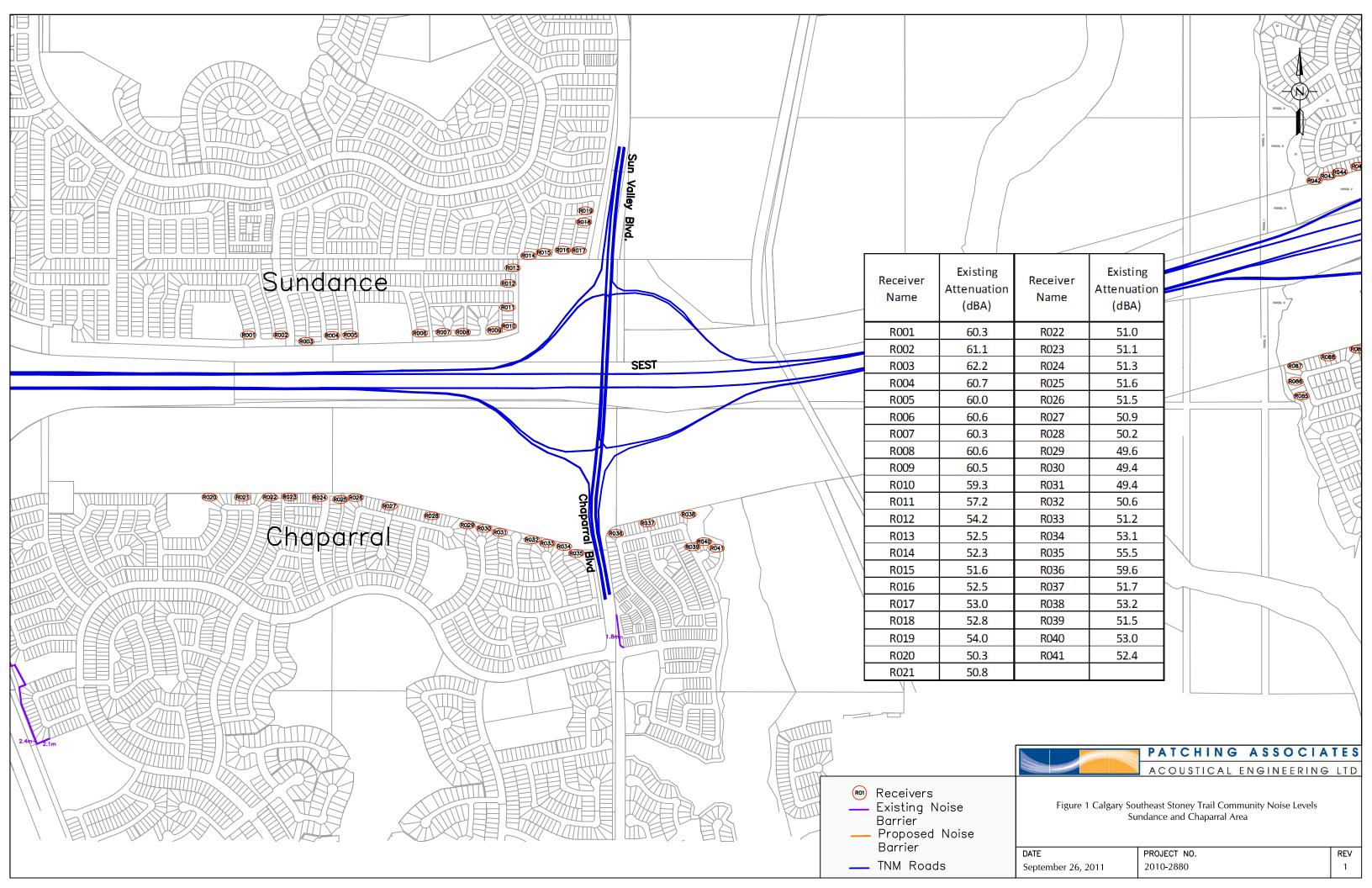
The modeled speeds were based on the design speeds listed in Schedule 18. Vehicles were modeled traveling at 110 kph on SEST. Ramps were modeled ranging between 45 kph and 110 kph. Crossing roads with SEST were modeled at the speeds as follows:

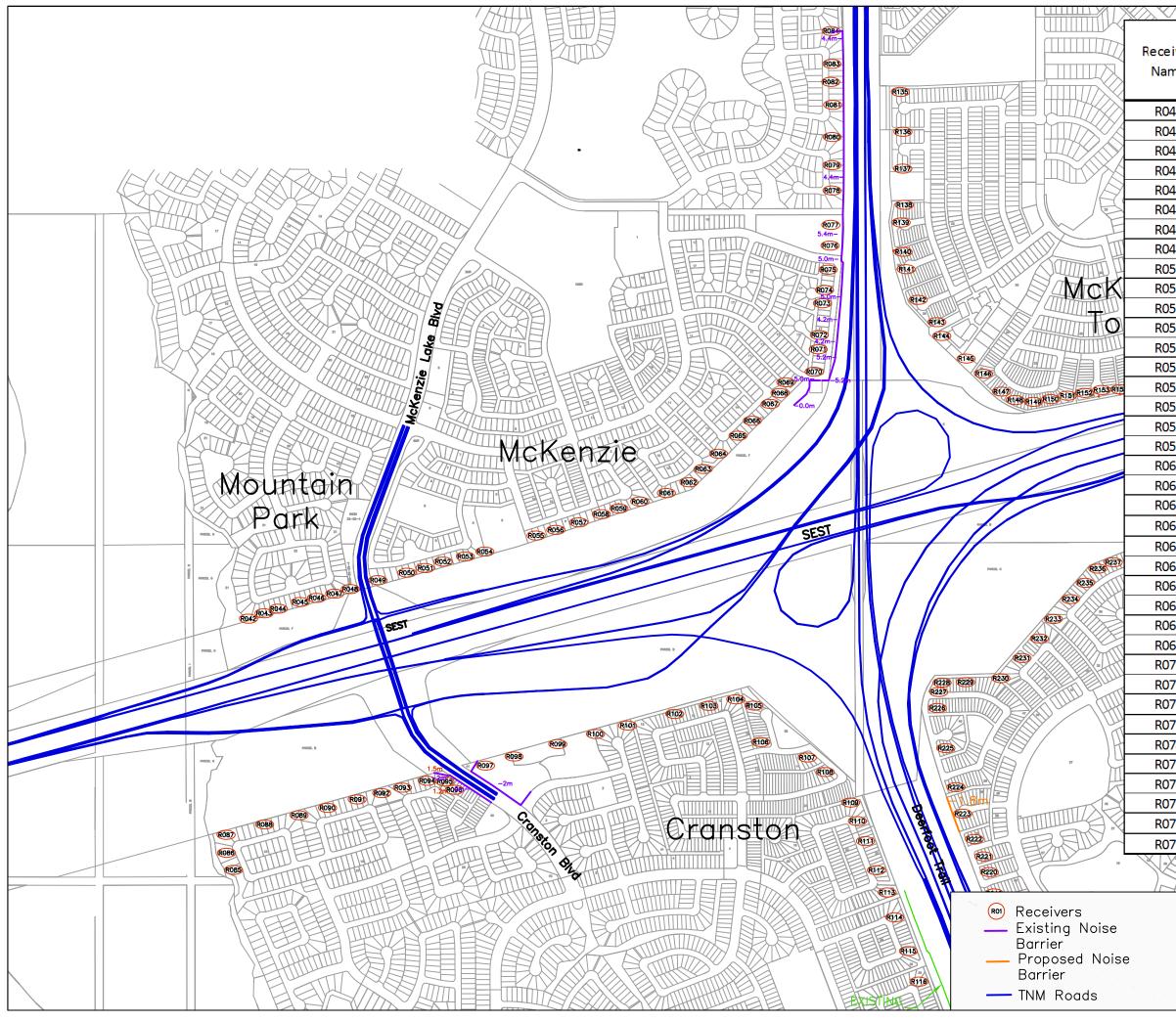
Chaparral Blvd and Sun Valley Blvd, 70 kph Cranston Blvd and McKenzie Lake Blvd, 70 kph Deerfoot Trail South, 110 kph 196 Avenue SE (Cranston Road (W)/Seton Blvd (E)), 70 kph

52nd Street, 70 kph Highway 22X, east of the interchange 130 kph, west of the interchange 90 kph 88 Street SE, 90 kph 114 Avenue, 70 kph Glenmore Trail, 90 kph Peigan Trail, 80 kph 17 Avenue, 70 kph.

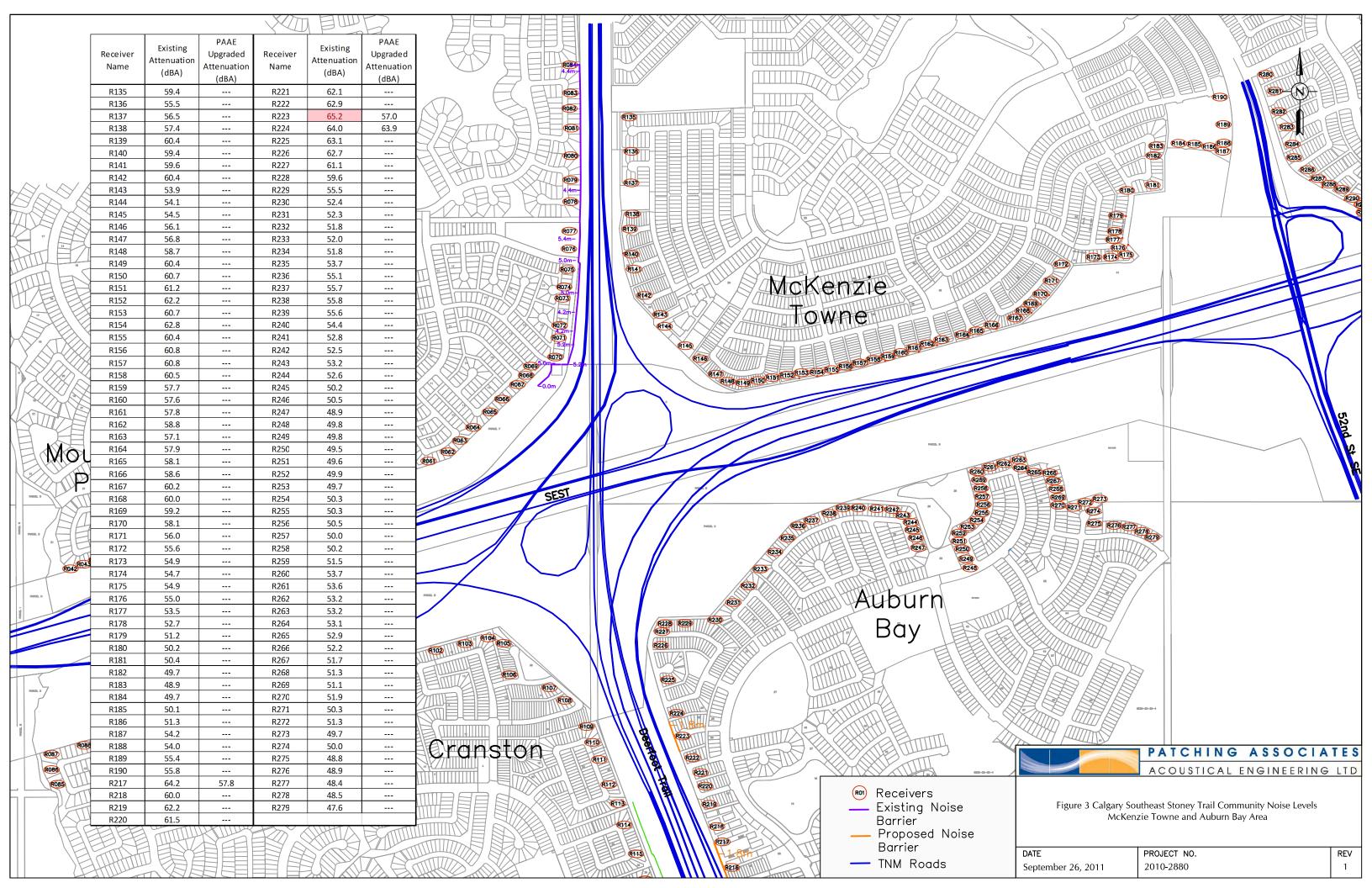
Environmental conditions used in the model were 20 degrees Celsius with 50% relative humidity.

1.4 FUTURE NOISE LEVEL PREDICTIONS

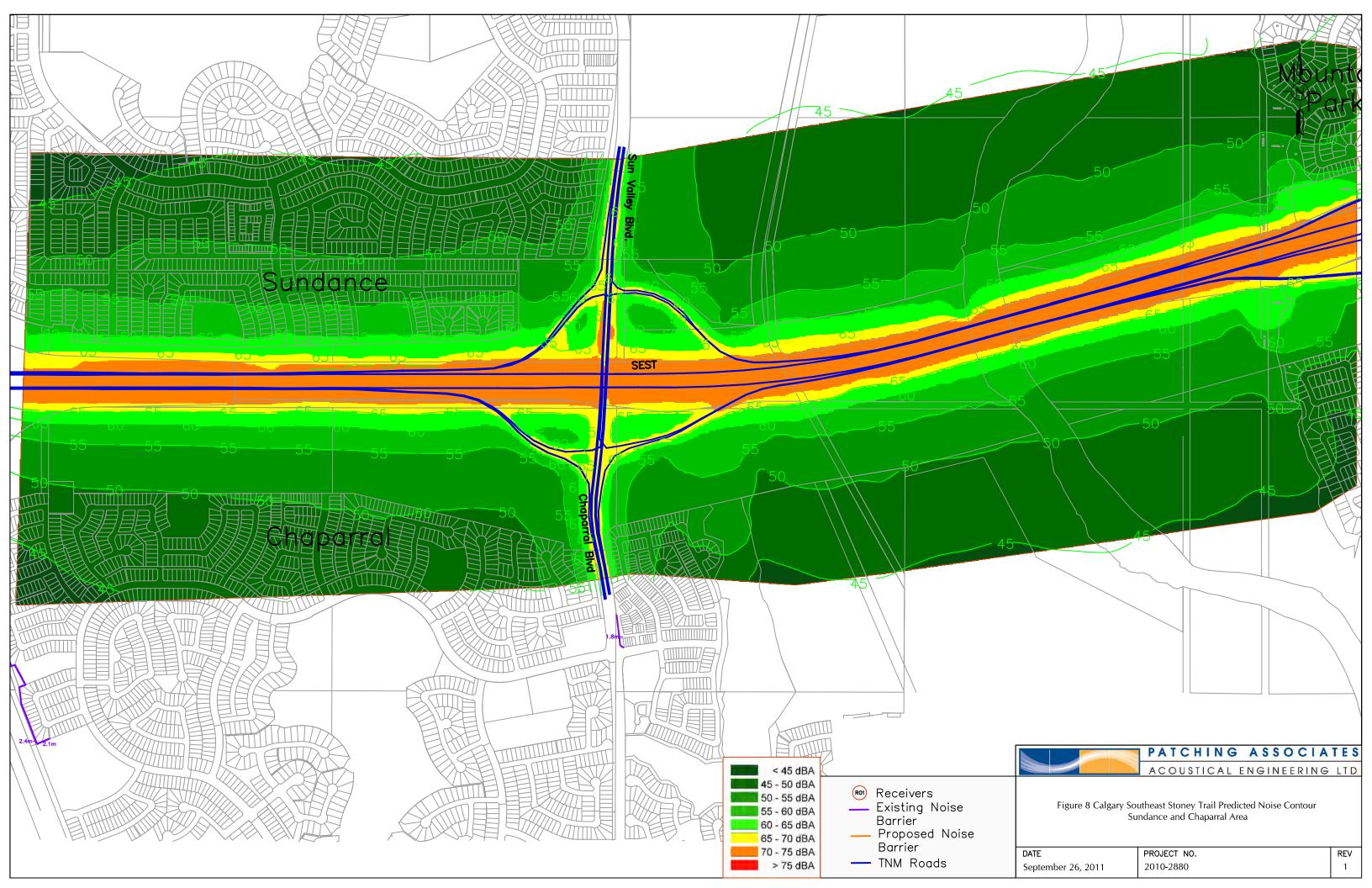

Based on the projected traffic volumes, grades of roads, speeds and land topography, predictions can be made for the noise levels that will be generated by the traffic at given receiver points and noise contours (isobels) for 65 dBA L_{eq} (24 Hours) can be plotted.

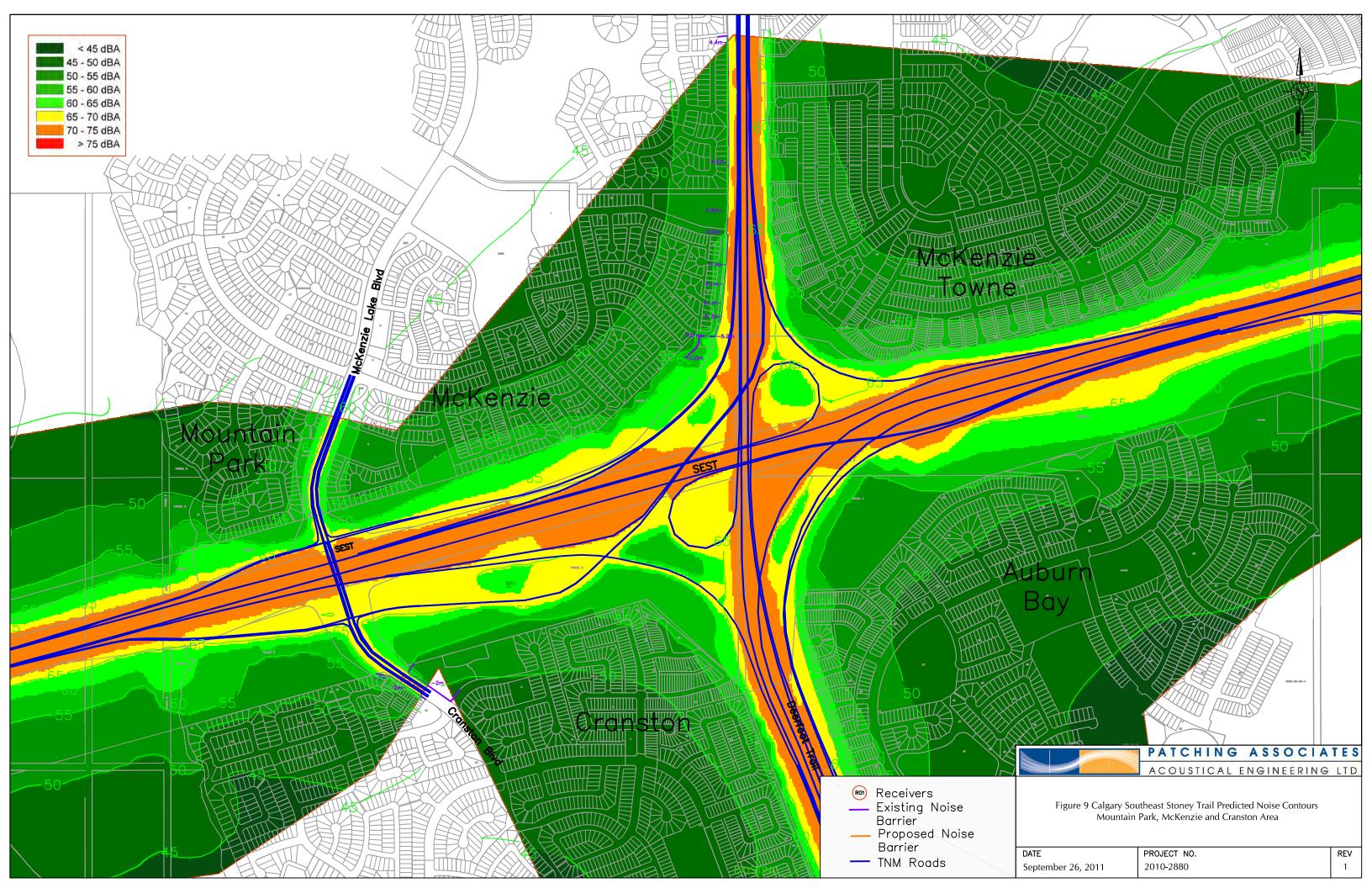

Figures 1 to 7 depict the modeled receivers along with corresponding predicted noise levels shown on Stage 1 plans.

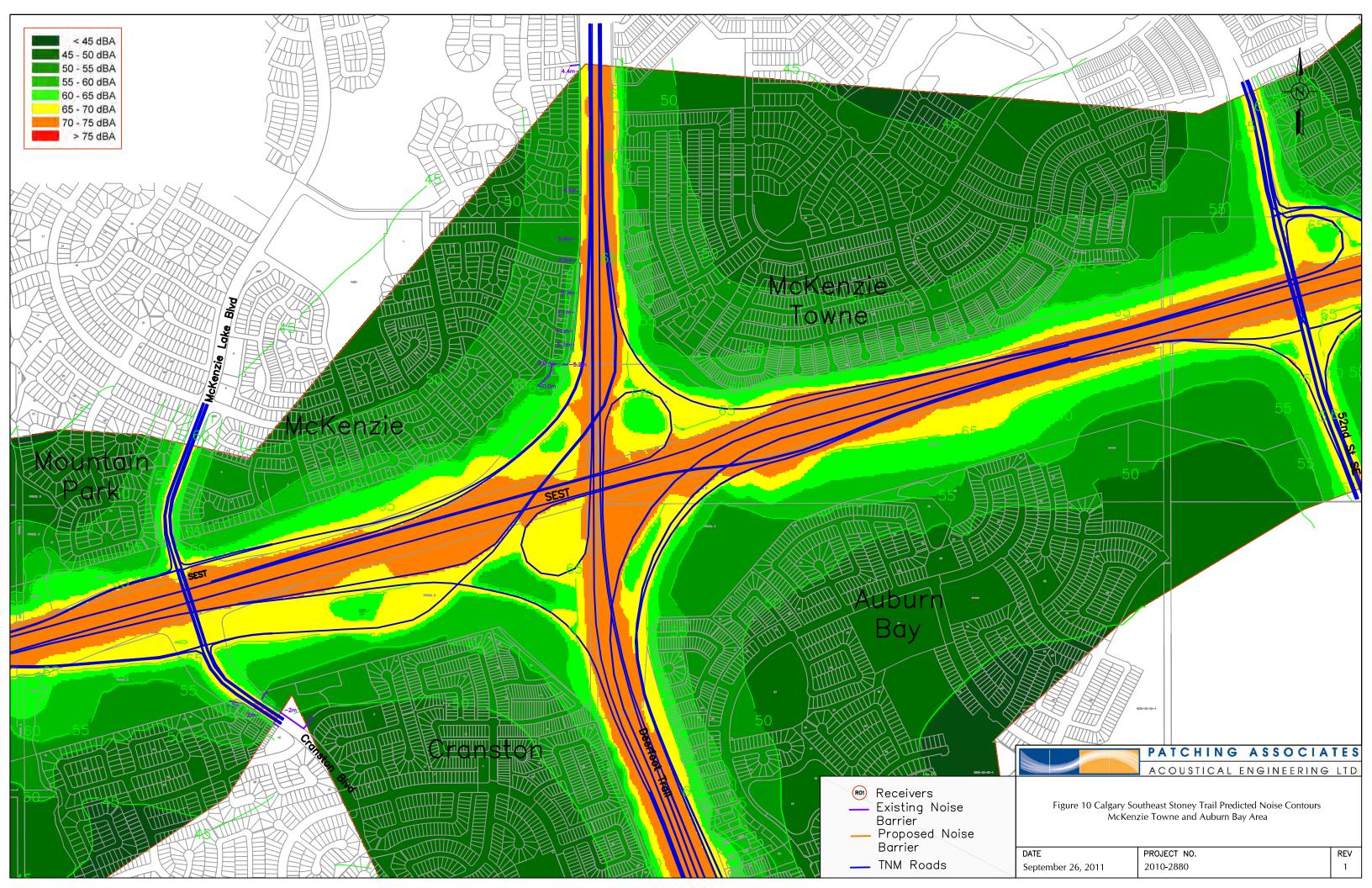
The modeled results indicate that the 65 dBA L_{eq} (24 Hours) noise target will not be exceeded for any receivers modeled for the existing (2011) communities of:


- Sundance and Chaparral	(Figure 1)
- Mountain Park, McKenzie	(Figure 2)
- McKenzie Towne	(Figure 3)
- Cranston	(Figure 2 and 4)
- Copperfield and Mahogany	(Figure 5)
- Copperfield and Marques Meadows	(Figure 6)
Areas that are predicted to exceed the target nois	se level include areas within the community of:

- (Figures 3 and 4) - Auburn Bay
- Applewood Park (Figure 7) -




eiver ame	Existing Attenuation (dBA)	Receiver Name	Existing Attenuation (dBA)		
042	<mark>61.</mark> 8	R080	55.5		
043	60.4	R081	55.3	R183 R184 R1	85 R18
)44	58.4	R081	55.4		
045	56.7	R082	55.2	RIBD	
045 046	55.9	R083	53.5	180	
040 047	56.3	R084	50.6	Ē/	
048	57.3	R085	54.6		
048 049	60.8	R080	53.3		
)49)50	56.2	R087	53.2	173	
)50)51				• ()	
	56.6	R089	52.0		_
052	57.1	R090	51.3		
053	58.0	R091	50.9		-
054	58.7	R092	52.0		
)55	59.6	R093	53.4		
056	59.6	R094	60.0		
057	59.4	R095	62.1		
058	59.3	R096	59.5		
059	59.2	R097	53.3		
060	59.5	R098	51.9		/
061	59.7	R099	52.0		
062	57.5	R100	53.2		
063	54.8	R101	54.3		
064	53.9	R102	54.6		
065	53.7	R103	55.4	R277 R278	
066	53.7	R104	56.1	R279	
067	56.9	R105	56.5		
068	53.3	R106	54.6		
069	53.4	R107	57.6	7/	
070	55.3	R108	58.4		
071	55.9	R109	58.6	/	
072	55.8	R110	56.4		
073	56.4	R110	54.5		
)73)74	56.8	R111 R112	54.6		
)74)75	57.2	R112 R113	54.8		
				×	
)76 77	53.9	R114	55.0		
077	53.3	R115	54.6		
078	55.3	R116	53.5		
)79 Vr=====	55.5				
			HING AS		
DATE		Y Southeast Stoney	TICAL ENG	Noise Levels ea	
	mber 26, 2011	2010-2880	•		EV 1
· ·	-	I			



Figures 8 to 17 give a general depiction of the predicted noise levels adjacent to the roadways by plotting the locations of the 45 dBA to 75 dBA L_{eq} (24 Hour) noise contours at the mainline traffic designed volume. Each figure also shows the locations of the existing subdivisions and proposed roadways.

Note: The contours are based on interpolation for a range of grid points. The predictions for individual locations are based on the specific data for each site and as such, the individual predicted levels should be taken as more accurate in the event of any discrepancies.

1.5 CONCLUSION

The analysis predicts that three short sections of noise wall 1.8 m in height are required on the east side of Deerfoot Trail and north of 17th Avenue. All other areas are assessed as receiving adequate benefit from existing screening or located with a separation distance great enough to the roadways to meet the AT target level. The communities considered in this analysis include:

-	Sundance	(Figure 1)
-	Chaparral	(Figure 1)
-	Mountain Park	(Figure 2)
-	McKenzie Lake	(Figure 2)
-	Cranston	(Figure 2 and 4)
-	McKenzie Towne	(Figure 3)
-	Auburn Bay	(Figure 3 and 4)
-	Copperfield	(Figure 5 and 6)
-	Mahogany	(Figure 5)
-	Marques Meadows	(Figure 6)
-	Applewood Park	(Figures 7)

Appendix A

Explanation of Technical Details Regarding Sound Measurement & Analysis

TECHNICAL DETAILS 2

Sound is the phenomena of vibrations transmitted through air, or other medium such as water or a building structure. The range of pressure amplitudes, intensities, and frequencies of the sound energy is very wide, and many specialized fields have developed using different ranges of these variables, such as room acoustics and medical ultrasound.

Due to the wide range of intensities, which are perceived as sound, standard engineering units become inconvenient. Sound levels are commonly measured on a logarithmic scale, with the level (in decibels, or dB) being proportional to ten times the common logarithm of the sound energy or intensity. Normal human hearing covers a range of about twelve to fourteen orders of magnitude in energy, from the threshold of hearing to the threshold of pain. On the decibel scale, the threshold of hearing is set as zero, written as 0 dB, while the threshold of pain varies between 120 to 140 dB. The most usual measure of sound is the sound pressure level (SPL), with 0 dB SPL set at 2.0 X 10⁻⁵ N/m² (also written 20 μ Pa), which corresponds to a sound intensity of 10⁻¹² Watts/m² (or 1 picoWatt/m², written 1 pW/m²).

Normal human hearing spans a frequency range from about 20 Hertz (Hz, or cycles per second) to about 20,000 Hz (written 20 KHz). However, the sensitivity of human hearing is not the same at all frequencies. To accommodate the variation in sensitivity, various frequency-weighting scales have been developed. The most common is the A-weighting scale, which is based on the sensitivity of human hearing at moderate levels; this scale reflects the low sensitivity to sounds of very high or very low frequencies. Sound levels measured on the A-weighted scale are written in A-weighted decibels, commonly shown as dBA or dB(A).

When sound is measured using the A-weighting scale, the reading is often called the "Noise level", to confirm that human sensitivity and reactions are being addressed. A table of some common noise sources and their associated noise levels are shown in Table A1.

When the A-weighting scale is not used, the measurement is said to have a "linear" weighting, or to be unweighted, and may be called a "linear" level. As the linear reading is an accurate measurement of the physical (sound) pressure, the term "Sound Pressure Level", or SPL, is usually (but not universally) reserved for un-weighted measurements.

Noise is usually defined as "unwanted sound", which indicates that it is not just the physical sound that is important, but also the human reaction to the sound that leads to the perception of sound as noise. It implies a judgment of the quality or quantity of sound experienced. As a human reaction to sound is involved, noise levels are usually given in A-weighted decibels (dBA). An alternate definition of noise is "sound made by somebody else", which emphasizes that the ability to control the level of the sound alters the perception of noise.

The single number A-weighted level is often inadequate for engineering purposes, although it does supply a good estimate of people's reaction to a noise environment. As noise sources, control measures, and materials differ in the frequency dependence of their noise responses or production, sound is measured with a narrower frequency bandwidth; the specific methodology varies with the application. For most work, the acoustic frequency range is divided into frequency bands where the center frequency of each band is twice the frequency of the next lower band; these are called "Octave" bands, as their frequency relation is called an "Octave" in music, where the field of acoustics has its roots. For more detailed work, the octave bands, and certain standard octave and 1/3 octave bands have been specified by international agreements.

Source Or Environment	Noise
	Level
	(dBA)
High Pressure Steam Venting To Atmosphere (3m)	121
Steam Boiler (2m)	90-95
Drilling Rig (10m)	80-90
Pneumatic Drill (15m)	85
Pump Jack (10m)	68-72
Truck (15m)	65-70
Business Office	65
Conversational Speech (1m)	60
Light Auto Traffic (30m)	50
Living Room	40
Library	35
Soft Whisper (5m)	20-35

Where the noise at the receiver is steady, it is easy to assess the noise level. However, both the production of noise at the source and the transmission of noise can vary with time; most noise levels are not constant, either because of the motion of the noise source (as in traffic noise), because the noise source itself varies, or because the transmission of sound to the receiver location is not steady as over long distances. This is almost always the case for environmental noise studies. Several single number descriptors have been developed and are used to assess noise in these conditions.

The most common is the measurement of the "equivalent continuous" sound level, or Lea, which is the level of a hypothetical source of a constant level which would give the same total sound energy as is measured during the sampling period. This is the "energy" average noise level.

Table A1 Males Levels of E.

Typical sampling periods are one hour, nighttime (9 hours) or one day (24 hours); the sampling period used must be reported when using this unit.

The greatest value of the L_{eq} is that the contributions of different sources to the total noise level can be assessed, or in a case where a new noise source is to be added to an existing environment, the total noise level from new and old sources can be easily calculated. It is also sensitive to short term high noise levels.

Statistical noise levels are sometimes used to assess an unsteady noise environment. They indicate the levels that are exceeded a fixed percentage of the measurement time period measured. For example, the 10%-ile level, written L_{10} , is the levels exceeded 10% of the time; this level is a good measure of frequent noisy occurrences such as steady road traffic. The 90% level, L_{90} , is the level exceeded 90% of the time, and is the background level, or noise floor. A steady noise source will modify the background level, while an intermittent noise source such as road or rail traffic will affect the short-term levels only.

One disadvantage with the L_{eq} measure, when used alone, is that nearby loud sources (e.g. dogs barking, or birds singing) can confuse the assessment of the situation when it is the noise from a distant source that is the concern. For this reason, the equivalent level and the statistical levels can be used together to better understand the noise environment. One such indication is the difference between the L_{eq} and the L₉₀ levels. A large difference between the L_{eq} and L₉₀, greater than 10 dB, indicates the intrusion of short-term noise events on the general background level. A small difference, less than 5 dB, indicates a very steady noise environment. If the L_{eq} value exceeds the L₁₀ value this indicates the presence of significant short-term loud events.

Some jurisdictions separate the daytime and nighttime, and calculate the L_{eq} for each time period. Typically, the daytime is defined as the hours between 7 AM (07:00) and 10 PM (22:00); the nighttime is defined as being between 22:00 and 07:00 the following morning. In some localities, the nighttime is defined as being from 11 PM (23:00) to 7 AM (07:00).

Other indexes exist for the evaluation of residents' response to the noise environment. One commonly used value is the Day-night level, L_{DN} . This index is similar to the L_{eq} measure taken over 24 hours, except that a penalty of 10 dBA is added to the noise levels at nighttime when calculating the L_{DN} value. This is to account for the greater sensitivity of people to noise which occurs during hours when most would like to sleep. For calculating this parameter according to the original definition from the US Environmental Protection Agency (EPA), "nighttime" is defined as being the time between the hours of 22:00 (10 PM) and 07:00 (7 AM).

Table A2 shows the adjustment factors used to approximate the equivalent L_{eq} (day), L_{eq} (night) and L_{DN} from the L_{eq} (24 Hours) based on the percentage of the total daily volume on the roadway at night. Previous studies on arterial roads and highways have shown that a typical range is between 10 and 15 percent of daily traffic occurring over the nighttime period.

Note: Table A2 assumes that vehicles are traveling at the same speed and the vehicle classification mix is unchanged throughout the day.

Percentage of	L _{eq} (day)	L _{eq} (night)	L _{DN}		
Vehicles at Night (%)	(07:00-22:00)	(22:00-07:00)	(dBA)		
5	1.8	-8.8	1.6		
6	1.8	-8.0	1.9		
7	1.7	-7.3	2.1		
8	1.7	-6.7	2.4		
9	1.6	-6.2	2.6		
10	1.6	-5.7	2.8		
11	1.5	-5.3	3.0		
12	1.5	-5.0	3.2		
13	1.4	-4.6	3.4		
14	1.4	-4.3	3.5		
15	1.3	-4.0	3.7		
16	1.3	-3.7	3.9		
17	1.2	-3.4	4.0		
18	1.2	-3.2	4.2		
19	1.1	-3.0	4.3		
20	1.1	-2.7	4.5		
21	1.0	-2.5	4.6		
22	1.0	-2.3	4.7		
23	0.9	-2.1	4.9		
24	0.8	-1.9	5.0		
25	0.8	-1.8	5.1		
26	0.7	-1.6	5.2		
27	0.7	-1.4	5.4		
28	0.6	-1.3	5.5		
29	0.6	-1.1	5.6		
30	0.5	-1.0	5.7		
31	0.4	-0.8	5.8		
32	0.4	-0.7	5.9		
33	0.3	-0.6	6.0		
34	0.2	-0.4	6.1		
35	0.2	-0.3	6.2		
36	0.1	-0.2	6.3		
37	0.0	-0.1	6.4		
37.5	0.0	0.0	6.4		
38	0.0	0.1	6.5		
39	-0.1	0.2	6.5		
40	-0.2	0.3	6.6		

 Table A2 – Adjustment Factors from Leq (24 Hours)

Leq (Day) = Leq (24 Hours) + Adjustment (Leq (day)) Leq (Night) = Leq (24 Hours) + Adjustment (Leq (night)) Ldn = Leq (24 Hours) + Adjustment (Ldn)

Appendix B

Noise Attenuation Guidelines for Provincial Highways Under Provincial Jurisdiction within Cities and Urban Areas

NOISE ATTENUATION GUIDELINES FOR PROVINCIAL HIGHWAYS UNDER PROVINCIAL JURISDICTION WITHIN CITIES AND URBAN AREAS

Definition:

Noise is defined as the sounds generated by vehicles operating on the highway. It includes but is not limited to engine/exhaust sounds and road contact sounds.

Guidelines:

- For construction or improvements of highways through cities and other urban areas, Alberta Transportation will adopt a noise level of 65 dBA Leq₂₄ * measured 1.2 metres above ground the level and 2 metres inside the property line (outside the highway right-of-way). The measurements should be adjusted to the 10 year planning horizon value, as a threshold to consider noise mitigation measures.
- The mitigation of noise issues could include constructing noise walls and/or berms. The decision to implement noise mitigation must consider whether mitigation is cost-effective, technically practical, broadly supported by the affected residents, and fits into overall provincial priorities.
- Any accepted noise mitigation measures consistent with this guideline will be the responsibility of Alberta Transportation. Where established local noise mitigation policies are more stringent than this guideline, the local policy may be considered on a shared responsibility basis.
- Alberta Transportation will be responsible for noise attenuation, in accordance with this guideline, in areas where Alberta Transportation is undertaking widening (by at lease one lane width) or major realignment of an existing road or constructing a new road adjacent to an existing residential development.
- In areas where a residential subdivision is constructed adjacent to an existing roadway, the development proponent will be responsible for noise attenuation consistent with these guidelines.
- In areas where a residential subdivision is constructed adjacent to a designated highway that has not been constructed, Alberta Transportation will request that the development proponent and approving authority address future noise concerns consistent with these guidelines.

* Noise level expressed in decibels (dB) is taken to mean the A-weighted 24-hour equivalent sound level.

October 2002

Appendix E Traffic Volumes and Truck Percentages

Southeast Stoney Trail

DBFO

Source: Calgary East Ringroad Functional Pllaning Study 2006 And Information Notice # 9, #10 & # 14 (July 8, 10 & 16, 2009)

Note: Numbers in Blue are revised numbers from AT (Synchro File) and Black numbers are from FPS Report NBL, NBT & NBR = Northbound Left, Northbound Through & Northbound Right Turning Movements All Volumes are vehicles per hour (vph)

Southeast Stoney Trail and 17 Avenue SE Interchange

		NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
Short Term	AM Peak	950	2480	390	380	3690	450	310	310	660	810	1140	740
	PM Peak	440	2840	1030	660	4070	440	420	1240	440	570	370	530
Long Term	AM Peak	430	3093	1060	1280	4380	640	140	450	880	880	680	850
	PM Peak	970	4868	1040	900	2962	120	630	740	450	1130	500	1260

Southeast Stoney Trail and Peigan Trail SE Interchange

		NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
Short Term	AM Peak	410	3780	140	200	3340	2160	140	130	200	260	130	210
	PM Peak	120	4350	240	190	4740	380	420	380	910	200	220	250
Long Term	AM Peak	720	3768	140	1270	3480	1530	320	380	170	510	530	210
	PM Peak	140	3878	500	230	3704	340	1330	580	790	130	410	1290

Southeast Stoney Trail and Glenmore Trail SE Interchange

					<u> </u>								
		NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
Short Term	AM Peak	1510	3530	400	330	2170	1310	210	500	160	260	1380	130
	PM Peak	230	2830	210	380	4880	420	1210	1430	450	360	740	210
Long Term	AM Peak	1050	3768	900	525	1980	1350	300	1050	75	150	675	300
FPS Numbers	PM Peak	83	2228	165	330	3704	330	1485	743	1155	990	1155	578

Southeast Stoney Trail and 114 Avenue SE Interchange (New Numbers July 16, 09)

		NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
Short Term	AM Peak	820	4680	620	580	1210	1100	100	250	110	180	200	230
	PM Peak	200	1890	360	340	5250	130	650	230	610	540	160	920
Long Term	AM Peak	250	5493	750	900	1830	650	380	150	210	140	150	380
	PM Peak	330	2063	510	260	5602	250	450	165	410	660	165	900

	AADT on Mai Based on Fac			om nearby	Traffic Data	a 2008) AAI	DT = (AM+F	PM)/0.2
		Peak Hour					AA	DT
	NorthSide		SouthSide					
	AM	PM	AM	PM				SouthSide
NB	3530	3790	3820	4310		NB	36,600	40,650
SB	4520	5170	5160	5080		SB	48,450	51,200
NB	4083	6758	4583	6878		NB	54,210	57,310
SB	6300	3982	6140	4542		SB	51,410	53,410
NB	4130	5020	4330	4710		NB	45,750	45,200
SB	5700	5310	3800	5850		SB	55,050	48,250
NB	4298	6498	4628	4518		NB	53,980	45,730
SB	6280	4274	4160	4624		SB	52,770	43,920
	0070	4050	5440	0070			40.000	40.550
NB	3870	4250	5440	3270		NB	40,600	43,550
SB	3810	5680	2590	5690		SB	47,450	41,400
NB	4368	4291	5718	2476		NB	43,300	40,970
SB	3855	4364	2205	5849		SB	41,100	40,270
NB	5010	3460	6120	2450		NB	42,350	42,850
SB	2890	5720	1500	6400		SB	43,050	39,500
NB	6253	3413	6493	2903		NB	48,330	46,980
SB	3380	6112	2180	6672		SB	47,460	44,260

Southeast Stoney Trail

DBFO

Source: Calgary East Ringroad Functional Pllaning Study 2006 And Information Notice # 9, #10 & # 14 (July 8, 10 & 16, 2009)

Note: Numbers in Blue are revised numbers from AT (Synchro File) and Black numbers are from FPS Report NBL, NBT & NBR = Northbound Left, Northbound Through & Northbound Right Turning Movements All Volumes are vehicles per hour (vph)

Southeast Stoney Trail and 130 Avenue SE Interchange - Long Term Only

		NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
Short Term	AM Peak	NA	4790	NA	70	1140	190	930	50	NA	NA	20	20
FPS	PM Peak	NA	1945	NA	20	5090	1070	360	30	NA	NA	210	50
Long Term	AM Peak	NA	5793	NA	110	1830	970	500	110	NA	NA	320	200
	PM Peak	NA	2063	NA	170	5744	380	960	230	NA	NA	100	140

NA - Not Applicable

Hw 22X and East Freeway/88 Street Interchange

		NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
Short Term	AM Peak	400	2070	NA	330	410	400	2220	960	180	NA	480	500
FPS Numbers	PM Peak	40	400	NA	630	2360	2100	895	970	370	NA	650	650
Long Term	AM Peak	75	2175	225	75	225	1530	3168	525	8	8	375	450
FPS Numbers	PM Peak	8	248	8	495	2849	2400	1705	413	83	360	653	110
NA - Not Applicable	2												

NA - Not Applicable

Southeast Stoney Trail and 52nd Street SE Interchange

		NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
Short Term	AM Peak	1170	1440	1440	100	560	600	560	2350	560	60	1110	140
	PM Peak	820	600	430	100	1130	900	550	1725	1140	600	2130	300
Long Term	AM Peak	1170	1500	970	160	400	520	320	3000	1300	840	1080	240
	PM Peak	1140	440	770	220	1650	370	660	1210	1680	660	2291	190

Hw 22X and Deerfoot Trail SE Interchange

		NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
Short Term	AM Peak	840	3440	890	220	1700	200	1500	2000	740	770	1890	100
FPS Numbers	PM Peak	780	1100	810	220	4810	750	1000	2295	1200	1400	1870	300
Long Term	AM Peak	600	3300	1000	600	1100	600	2100	2400	500	600	1180	600
FPS Numbers	PM Peak	550	1210	660	660	3630	2310	660	1320	660	1100	1631	660

	AADT on Ma Based on Fa			rom nearby	Traffic Dat	a 2008) ۵۵I		PM)/0.2
	Dasca on ra	Peak Hou		Tom nearby		a 2000) AAI	AA	
	NorthSide		SouthSide					
	AM	PM	AM	PM			NorthSide	SouthSide
NB	5740	2355	4790	1945		NB	40,480	33,680
SB	1400	6180	1140	5090		SB	37,900	31,150
NB	6493	3163	5793	2063		NB	48,280	39,280
SB	2910	6294	1830	5744		SB	46,020	37,870
NB	4790	1945	2470	440		NB	33,680	14,550
SB	1140	5090	590	2730		SB	31,150	16,600
NB	5793	2063	2475	264		NB	39,280	13,700
SB	1830	5744	241	3292		SB	37,870	17,670
	WestSide		EastSide					
	westolde		EasiSide				WestSide	EastSide
EB	3470	3415	3890	2255		EB	34,430	30,730
WB	2880	3850	1310	3030		WB	33,650	21,700
EB	4620	3550	4130	2200		EB	40,850	31,650
WB	2770	3801	2160	3141		WB	32,860	26,510
EB		4495	3110	3325		EB	43,680	32,180
WB	2930	3400	2760	3570		WB	31,650	31,650
EB	5000	2640	4000	2640		EB	38,200	33,200
WB	2380	4491	2380	3391		WB	34,360	28,860

Southeast Stoney Trail

DBFO

Source: Calgary East Ringroad Functional Pllaning Study 2006 And Information Notice # 9, #10 & # 14 (July 8, 10 & 16, 2009)

Note: Numbers in Blue are revised numbers from AT (Synchro File) and **Black** numbers are from FPS Report NBL, NBT & NBR = Northbound Left, Northbound Through & Northbound Right Turning Movements **All Volumes are vehicles per hour (vph)**

Southeast Stoney Trail and Cranston Blvd SE Interchange

		NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
Short Term	AM Peak	980	100	950	100	330	780	220	4325	100	110	3330	110
	PM Peak	440	120	240	100	190	380	430	4205	350	750	3400	320
Long Term	AM Peak	400	200	600	100	100	400	1100	ND	300	200	ND	100
	PM Peak	300	100	300	100	300	700	300	ND	400	300	ND	100

ND - Data not Available

Southeast Stoney Trail and 196 Avenue SE Interchange

		NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
Short Term	AM Peak	100	3090	130	970	1510	310	890	520	1400	200	280	160
	PM Peak	160	1170	180	1340	3900	1110	270	400	1300	180	540	50
Long Term	AM Peak	100	ND	150	1050	ND	380	960	620	ND	240	330	ND
	PM Peak	210	ND	240	1300	ND	1440	560	480	ND	220	650	ND

ND - Data not Available

Southeast Stoney Trail and Sunvalley Blvd SE Interchange

		NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
Short Term	AM Peak	400	300	1600	610	100	200	100	ND	300	900	ND	400
	PM Peak	100	100	800	400	100	200	200	ND	600	1100	ND	600
Long Term	AM Peak	400	300	1600	600	0	200	100	ND	300	900	ND	400
	PM Peak	100	100	800	400	100	200	200	ND	600	1200	ND	400

ND - Data not Available

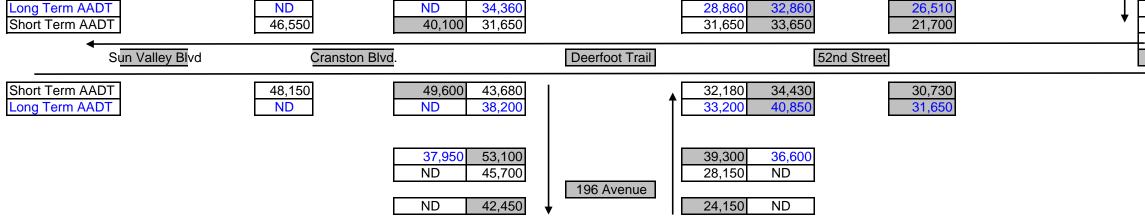
	lain Line St					~~ /	
Based on F	Peak Hou		rom nearby	I raffic Dat	a 2008) AAI		/M)/0.2 DT
WestSide		EastSide					
AM	PM	AM	PM			WestSide	EastSide
4645	4985	5375	4545		EB	48,150	49,600
5090	4220	3550	4470		WB	46,550	40,100
1400	700	700	400		EB	10,500	5,500
800	1000	300	400		WB	9,000	3,500
NorthSide		SouthSide				NorthSide	SouthSide
4140	1490	3320	1510		NB	28,150	24,150
2790	6350	3110	5380		SB	45,700	42,450
	= = = =	0.50	150				0.500
960	560	250	450		NB	7,600	3,500
1430	2740	240	220		SB	20,850	2,300
WestSide		EastSide					
westolde		Eastoide				WestSide	EastSide
400	800	2210	1200		EB	6,000	17,050
400 600	300	1300	1700		WB	4,500	15,000
000	500	1300	1700		VVD	4,500	13,000
400	800	2200	1200		EB	6,000	17,000
600	300	1300	1600		WB	4,500	14,500

EB WB

EB WB

NB SB

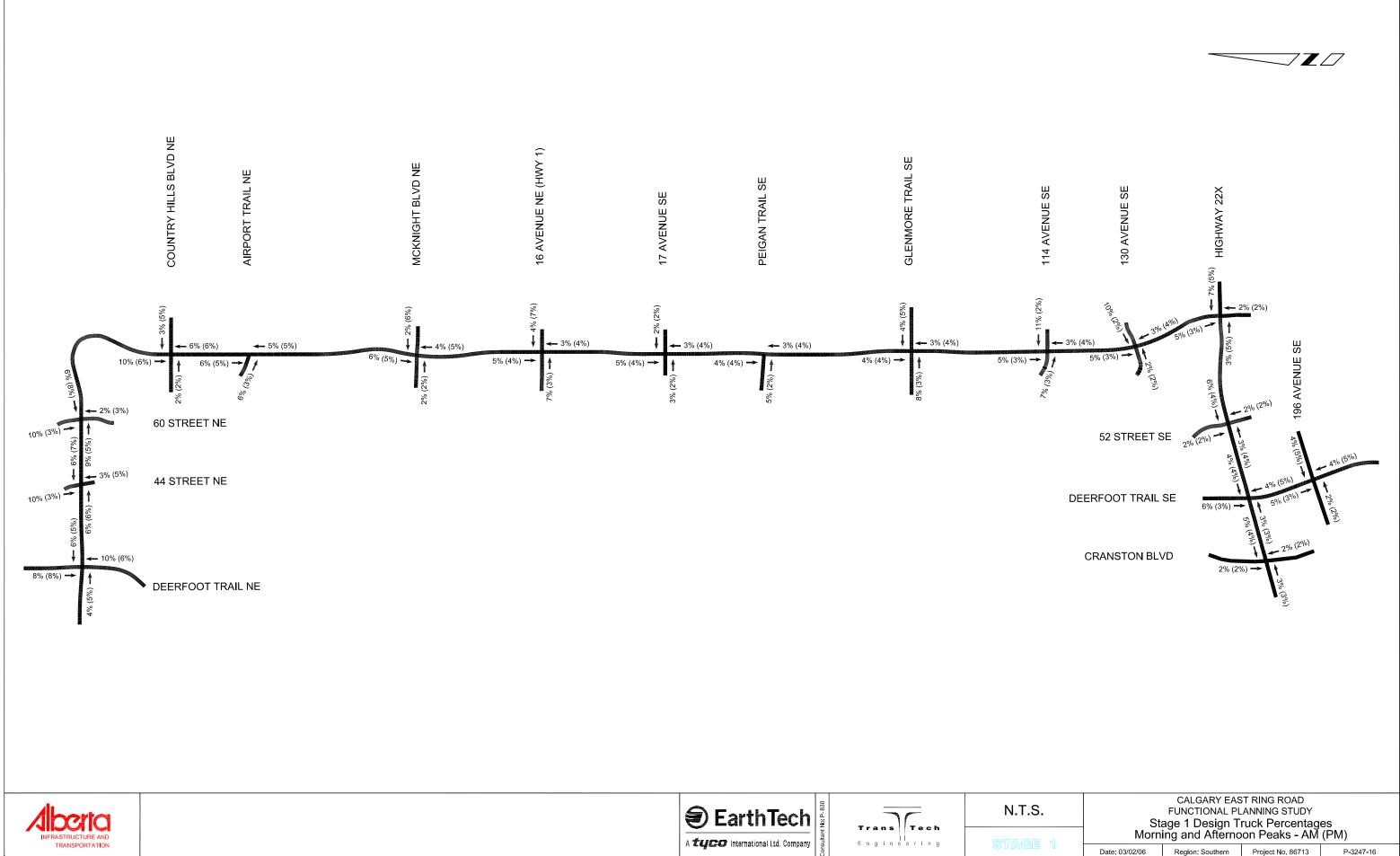
NB SB


EB WB

EB WB

SOUTHEAST STONEY TRAIL AADT on Main Line Stoney Trail North/South and East/West Revised Date: July 23, 2009

Use Numbers in Shaded Box for Short Term and Long Term AADT shown is directional ND = Data Not Available


	Long Term	Short Term				Short Term	Long Term
	AADT	AADT				AADT	AADT
-							
				16th Avenue			
					T		
ſ	51,410	48,450	-			36,600	54,210
-				17th Avenue			
	53,410	51,200				40,650	57,310
ſ	52,770	55,050				45,750	53,980
-				Peigan Trail			
Γ	43,920	48,250				45,200	45,730
ſ	41,100	47,450				40,600	43,300
-				Glenmore Trail			
ſ	40,270	41,400				43,550	40,970
Ī	47,460	43,050				42,350	48,330
-				114th Avenue			
ſ	44,260	39,500				42,850	46,980
	46,020	37,900				40,480	48,280
-				130th Avenue			
ſ	37,870	31,150				33,680	39,280
ſ	37,870	31,150				33,680	39,280
L	,	,				,	, ,
26,510							
21,700			•				
_1,.00							
				Highway 22X			
30 730							

AADT Calculation Based on Factor of 0.20 which was derived from nearby Traffic Data 2008.

7/23/2009

Page E-5

Calgary Southeast Stoney Trail- Noise Impact Assessment