Deck Joints and Bearings

Deck Joints

- Purpose is to:
 - bridge the gap between spans
 - protect the ends of the girders
 - allow for expansion, contraction and rotational movement
 - prevent water and salt from leakage
- Most important features are:
 - watertightness
 - proper anchorage
- Can be fixed or expansion
 - fixed are for rotational movement only
 - expansion accommodate translation in addition to rotation

The main types of joints used on Alberta bridges are:
1. Buffer angles
2. Waterstops
3. Sliding Plates
4. Open Finger Plates
5. Compression Seals
6. Closed Finger Plates with Troughs
7. Gland Joints
 - Open
 - Coverplated
8. Thermoplastic Polymer Modified Asphalt
9. Deck Joint Sealants
10. Other Patented Devices/Processes
 - Fel Span
 - Interspan
 - Jeene
Deck Joints

Closed Finger Plates

Gland

Waterstop Joint

Buffer Angles for Fixed or Minor Expansion

Sliding Plate for Small Expansion Movements
Deck Joints and Bearings

Finger Plate Joint

Deck Joints and Bearings

Gland Cross-section

Deck Joints and Bearings

Close-up View of Gland Joint

Deck Joints and Bearings

“Honel” Gland Joint with Bolted Compression Connection
Cover Plated Joint

“Wabocrete” Joint

Two Component Elastomeric Material

Placing Wabocrete
Completed Installation

“Koch” Joint with Elastomeric Material

Complete Koch Joint

“Jeene” Joint Polymer Hot Pour
RCS Dow Corning Epoxy Joint

“Interspan” Joint

Transflex Joint

Problems and Inspection Considerations

- watertightness of sealed joints
 - loose or torn seals
 - leakage or stains
- freedom of movement
- horizontal alignment
 - evenness of gap
 - fingers in alignment
- vertical alignment
 - joint aligned with deck
 - both sides of joint in alignment
- corrosion
- deteriorating concrete around anchorages, incomplete grout
- loose or missing bolts, coverplates or curb plates
- gouged, torn, cracked or broken
 - extrusions
 - angles
 - plates
 - fingers
 - welds
Finger Plate Joint with Broken Welds and Gap Under Fingers

Unmatched Finger Plate Joint, Snow Plow Guards & Plug Welded Fingers

Testing for Watertightness

Problems and Inspection Considerations
- Observe traffic passing over joints
 - listen for unusual noises and watch for movement of the joint
- Check drainage system
 - plugging of joint opening, troughs and downpipes with debris
 - corrosion
 - cracks, breaks or tears in any component
 - integrity of attachments and connections
 - loose or missing bolts
 - cracked or broken welds
 - loose or open connections
- Check for:
 - signs of ponding on the deck
 - staining or deterioration on the deck, curbs, girders and substructure
 - erosion below downpipe
Hole in Gland Joint

Coverplate Missing Bolts

Wabo-crete Joint with De-bonded Material and Exposed Bars

Inspection Form and Rating

- Record temperature
- Verify joint type
 - fixed
 - expansion
- Measure and record average gap width in millimeters for each joint
Deck Joint Inspection and Rating

- Rate according to existing condition and functionality
- Includes condition and functionality of drainage system
- Leakage of sealed joints is reflected in both the deck joint rating and the deck drainage rating
- Defects in open joints with plumbing features are also reflected in both the deck joint rating and the deck drainage rating
- Leakage problems with open joints without plumbing are rated under deck drainage only
- Curb cover plates are rated with the deck joint and not the curb rating

Bearings

- Bearings must transfer loads from the superstructure to substructure.
- The bearings accommodate movement caused by temperature changes, deflection, earth pressures, etc.
- Bridge bearings are generally classified as fixed or expansion type.
- Fixed bearings allow rotation but no vertical or horizontal movement.
- Expansion bearings allow both rotation and longitudinal movement of the superstructure. Expansion bearings sometimes also permit transverse movement.
Bearings

- The main types of bearings used on Alberta bridges are:
 1. Elastomeric pads
 - Usually neoprene (reinforced or plain) and sometimes incorporating stainless steel and teflon for expansion
 2. Rockers
 - Massive steel "pie-shaped" bearings designed for large movements
 3. Pot
 - Consists of an elastomeric pad confined by a heavy steel ring and loaded vertically by a cover component. Pot bearings can allow movement in one or more directions, can be fixed and can be designed to resist uplift.
 4. Spherical bearings
 - Made of spherical machined steel plates that nest together to allow rotation and may have allowance for horizontal translation.
 5. Rollers
 - Cylindrical steel bearings either in the form of a single roller or in a group (nest). Rollers allow rotation and horizontal movement in one direction.
 6. Others
 - Steel sliding plates (sometimes with a bronze insert)
 - Disc bearings (round, confined polyurethane pad)

Bearings

- **Elastomeric Pad**
- **Pot Bearing**
- **Rocker Bearing**
- **Roller Bearing**
- **Spherical Bearing**
- **Bearing with Sliding Surface**
Elastomeric Bearing Showing Pintel, Anchor Bolts, Sole and Masonry Plates

Elastomeric Expansion Bearing with Teflon & Stainless Steel

Pot Bearing

Sliding Plate Under Truss
Rocker Bearing Under Girder

Expansion Rocker Bearings

Roller Bearing Under Concrete Girder

Three Roller System Under Concrete Girder
Deck Joints and Bearings

Rocker/Roller Bearing Under Truss

Deck Joints and Bearings

Sliding Plate with Self-Lubricating Bronze Plate (Type PO Girders)

Bearings

Problems and Inspection Considerations

- Dirt or debris
 - may inhibit movement
 - promotes corrosion
- Corrosion
 - “frozen” bearing (2016 bulletin regarding “Type O” bearings)
 - deterioration of bearing
 - especially under leaking joints
- Loose or missing connections, cracked or broken welds
- Loss of bearing contact or uneven contact
 - rollers moved off masonry or sole plates
 - neoprene pads creeping out of position
 - can overstress steel or concrete members

Bearings

Problems and Inspection Considerations

- Wear
- Rocker alignment
 - overextension
 - should be approximately vertical at 0° Celsius
- Failure of elastomer
 - splitting, cracks, squeezing out, bulging
 - separation of the elastomer at reinforcing plates
Bearings

Problems and Inspection Considerations

- Anchor bolts
 - corrosion (strike with hammer)
 - bent
 - surrounding concrete cracked
 - nuts not properly secured (jam nut), nuts missing
 - binding on shoe plate or bearing device
- Indications of a non-functioning bearing
 - cracks in the bearing area of the substructure or superstructure
 - uneven gaps at expansion joints
 - bump at joint
 - variable gap in same joint
 - jammed joint
 - joint gap too wide
 - misalignment of superstructure at joint
 - unusual noise or movement under traffic

Bearings

Inspection Form and Rating

- Record temperature
- Record or verify bearing types and locations:
 - expansion
 - fixed
- Record or verify if coating is intact and functioning to protect the bearing from corrosion
- Record or verify whether the bearing is functioning as designed
 - proper bearing
 - proper movement

Bearings

Inspection Form and Rating

- If bearings are functioning properly and are in excellent condition but have inadequate coating
 - rate 7 or 8
- Bearings require resetting
 - rate 4 or less
- Bearings movement inhibited by dirt, debris or corrosion
 - rate 4 or less
- Concrete elements with wide cracks or visual signs of damage (not accessible for sounding) at bearing locations
 - Rate 3 or less (from 2016 Bulletin)
- Cracked hanger bearings
 - rate 2

Displaced Neoprene Pad
Deck Joints and Bearings

Extended Rocker Bearing

Failed Rocker/Roller Bearing

Displaced Roller Nest

Failed Sliding Plate with Self-Lubricating Bronze Plate Bearing
Failed Sliding Plate with Self-Lubricating Bronze Plate Bearing

BIM Advisory Bulletin #3

- Performance issues related to steel sliding plate bearings with self-lubricating bronze plates.
- Primarily found under Type “PO” girders between 1955 and 1965, and detailed on Standard Drawing S-701.
- Inspectors should be completely familiar with the details of this recent bulletin. Refer to the following link:

http://www.transportation.alberta.ca/4827.htm

Questions??