Inspection of Steel Girder Bridges

Course Outline

- Bridge superstructure systems
- Defects in steel members
- Failure mechanics
- Fatigue
- Constrained Induced fracture (CIF)
- Inspection
- Inspection of Pin & Hanger

Bridge Superstructure Systems

1. Rolled beams
 - Manufactured from one piece of steel
 - Webs are stocky, therefore no intermediate stiffeners.
 - Used as simple spans with span length from 9 to 15 m

2. Rolled beams with cover plates
 - Cover plates were added to increase the capacity
 - Cover plates were welded or riveted to the flanges
 - Welded cover plates created fatigue prone detail
3. Built-up Girders
 - Similar in appearance as rolled beams
 - Custom fabricated, not produced in rolling mills
 - Fabricated from thin plates, hence require stiffeners
 - Older built-up girders were riveted, the new are welded plates
 - Continuous girders can have spans over 150 m

4. Girders with Pin and Hanger
 - Analysis is simplified for a hinged structure
 - It moves drainage away from piers
 - Only one pin is required for rotation
 - For translation and rotation, two pins and hanger are provided

5. Steel Arches
 - Three types of arches: deck, through and tied
 - Arch spans range from 300 to 500 m
Bridge Superstructure Systems

6. Suspension Bridges

7. Trusses
 • Through Truss
 • Pony Truss
 • Deck Truss
Steel Girder Bridges

Bridge Superstructure Systems

Through Truss

Technical Standards Branch
Class A Bridge Inspection Course

12

Steel Girder Bridges

Bridge Superstructure Systems

Pony Truss

Technical Standards Branch
Class A Bridge Inspection Course

12

Steel Girder Bridges

Bridge Superstructure Systems

Deck Truss

Technical Standards Branch
Class A Bridge Inspection Course

14

Steel Girder Bridges

Primary and Secondary Members

Primary Members for Bridge Systems 1 to 4
- Fabricated girders / Rolled beams
- Diaphragms for curved girders
- Pin and hanger

Secondary Members for Bridge Systems 1 to 4
- Diaphragms
Steel Girder Bridges

Primary and Secondary Members

Primary Members for Bridge System 7
- Trusses (chords, web members)
- Floor beams
- Stringers

Secondary Members for Bridge System 7
- Bracing

Steel Damage and Deterioration

- Corrosion
 - Environmental corrosion
 - Stray current corrosion
 - Stress corrosion

- Cracking
 - Fatigue
 - Impact
 - Excessive loading

Steel Damage and Deterioration

- Deformation
 - Excessive loading
 - Heat damage
 - Impact

Steel Girder Bridges
Steel Damage and Deterioration

Corrosion

Fatigue Crack

Impact Damage

Impact Damage
Steel Damage and Deterioration

Fire Damage

Steel Damage and Deterioration

Fire Damage

Steel Damage and Deterioration

Overload Damage

Fatigue & Fracture in Steel Members

Fatigue
- Tendency of a member to fail at a stress level below its yield stress when subjected to repeated loading

Fracture Critical Member (FCM)
- Member is in tension
- Member is non-redundant, its failure causes partial or total collapse of a structure
Failure Mechanics

Describing the process by which a member fails when subjected to fatigue.

Types of Fractures in Steel Members

Brittle Fracture
Ductile Fracture

Fatigue Failure Process

Fatigue failure process consists of three stages:

1. Crack initiation
2. Crack propagation
3. Fracture

Fatigue Crack Categories

- Details and defects
- Out-of-plane distortion
Factors Affecting Fatigue Crack Initiation – (Details & Defects)

1. Plug welds
2. Tack welds
3. Material flaws
 - External flaws (Surface scabs)
 - Internal flaws (Non-metallic inclusions, Rolled in plate defects)
4. Weld flaws
 - Non-visible flaws (IP welds, Porosity, Slag inclusions)
 - Visible flaws (Undercut, Overlap)

Factors Affecting Fatigue Crack Initiation – (Details & Defects)

5. Fabrication Flaws
 - Cutting of plates, Holes, Coping
6. Transportation & Erection Flaws
 - Nicks
 - Notches
 - Indentation
7. In-Service Flaws
 - Collision damage
 - Improper heat straightening
 - Torched or notched holes

Plug Weld

Tack Weld
Steel Girder Bridges

Material External Flaw

Material Internal Flaw

Incomplete Penetration Weld
Weld Crack Due to Slag Inclusion

Fillet Weld Draws

UNDERCUT

OVERLAP

Improper Web Coping

Correct Web Coping
Steel Girder Bridges

Torched Hole

Torched Damage

Factors Affecting Fatigue Crack Initiation – (Out-of-plane Distortion)

Girder Differential Deflection
Factors Affecting Fatigue Crack Propagation

- Stress range
- Number of cycles
- Types of details
 - Flange cover plates
 - Transverse stiffeners
 - Bolted joints
 - Longitudinal stiffeners

Stress Range

- Compression
- Tension

Girder Web Gap Distortion

Girder Web Gap Distortion
Flange Crack Growth Process

Through Crack at a Cover Plate

Crack Propagation Into the Web

Crack Growth at Transverse Stiffener Welded to Web
Constrained Induced Fracture (CIF)

- Fracture is not due to fatigue or number of cycles
- Occurs suddenly with no prior signs
- Fractures are at intersecting welds or at small gaps between intersecting welds
- Girder fracture at Hoan bridge Milwaukee was due to CIF
Constrained Induced Fracture (CIF)

Inspection Procedures & Locations

Procedures
- Visual
 - Hands-on inspection
- Physical
 - Removal of dirt, paint etc
- Identification
 - Fatigue crack may be identified by the development of rust stains
- Advanced Inspection Techniques

Locations
- Bearing areas
- Shear zones
- Flexure zones
- Fatigue prone details
- Out-of-plane distortion
- Constrained induced fracture detail
- Secondary members
- Areas that trap water and debris
- Areas exposed to traffic

Corroded Shear Zone & Diaphragm
What to do if a Crack is Detected?

- Determine significance of crack on load carrying capacity
- Evaluate cause of cracking
- Show sketches with details of size and location
- Drill hole at the tip to arrest the growth
- Check with dye penetrant
- Take good photographs showing all the details

Note: Cracks perpendicular to primary stresses are very serious
 Cracks parallel to primary stresses are less serious

Inspection of Pin & Hanger

Pin Location

Pin Detail
Design Stresses in Pin

Actual Stresses in Pin

High Stress in Pin Due to Corrosion

High Stress in Pin Due to Corrosion
Hanger Location

Hanger Details

Stresses in Hanger

Deterioration of Pin & Hanger

Pin
- Frozen
- Corroded
- Cracks in welded shear plates

Hanger
- Twisted or bent
- Ceased
- Cracks in edges
Inspection of Pins

Procedure

• Determine if pins are functioning
• Visual inspection not very effective
• Ultrasonic inspection is required
• Remove nuts if possible

Pin Measurements

Removal of Nuts
U/T Inspection

Inspection of Hangers

Procedure

- Report any corrosion
- Hanger plate is as critical as pin.
- Examine edges
- Check hangers for bowing, out of plane bending

Measurements in Pin & Hanger

END