ALBERTA TRANSPORTATION GEOHAZARD ASSESSMENT PROGRAM PEACE REGION-GRANDE PRAIRIE 2017 INSPECTION REPORT

Site Number	Location	Name	Hwy	km
GP001	Wapiti Hill South of Grande Prairie	Wapiti Hill (5 km 's S. of Wapiti R. Bridge)	40:42	25.393
Legal Description		UTM Co-ordinates		
NE¹/4 18-070-05 W6M		11 U E 388597	N 6103792	

	Date	PF	CF	Total
Previous Inspection:	9-Jun-2016	7	4	28
Current Inspection:	14-Jun-2017	7	4	28
Road AADT:	3890		Year:	2016
Inspected by:	Ed Szmata, TRANS Ted Prue, TRANS Rocky Wang, TRANS		Renato Clementino, Thurber Shawn Russell, Thurber Nicole Wilder, Thurber	
Report Attachments:	「 Photographs			

Primary Site Issue:	This section of highway $40: 42$ was constructed as a side hill embankment fill crossing through the backscarp of a large landslide on the south valley slope of the Wapiti River. About a 300 m long section of the roadway is currently affected by the landslide and cracks on the pavement structure require regular milling and patching in order to maintain the highway. During the initial construction in 1981, soft and wet ground conditions were encountered on the exposed subgrade which required sub-excavation and placement of about 2 m of additiona fill. Seepage was observed on the backslope cut above the highway and a lateral subdrain pipe was installed along the ditch at the toe of the backslope. As early as 1985 some settlement on the roadway surface and failures on the backslope were observed. In September of 1990, additional lateral and finger subdrains were installed to collect water seeping from the backslope and a berm was built at the toe of the embankment side slope in an effort to improve stability of the embankment. Several geotechnical investigations were conducted by TRANS from 1990 to 1998. Slope inclinometers and piezometers installed at the site indicated slow creep movement of the valley slope and groundwater levels at about 10 m in depth. A quarry has been operated near the bottom of the valley slope in the lower river terrace immediately below this section of the highway.

Assessment:

Over last several years, this site has been relatively dormant with little signs of active slope movement aside from slow development of the cracks on the roadway pavement surface, which have been regularly addressed by TRANS by milling and patching maintenance efforts. The subdrains installed along the backslope ditch appear to have performed as per the designs intent at this site in improving the stability of the embankment and backslope.

The large landslide in the area appears to govern the global stability of the roadway embankment. Due to the size of the landslide, realigning the highway further into the backslope would be prohibitive and would take several years to implement.

There is a possibility that the currently dormant landslide could be activated from the adjacent quarry operation or the erosion of the Wapiti River at the bottom of the valley slope. The global stability of the valley slope in this area should be monitored periodically.

Recommendations:	Ballpark Cost
In the short term, it is recommended that the cracks in the pavement be sealed or overlain with asphalt patches and the drops along the backscarp be milled. The area be closely monitored for early signs of slope movement.	Maintenance (currently about every2 years)
In the long term, the section of the roadway affected by the landslide could be realigned into the backslope, which would require a substantial backslope cut generating a large amount of surplus material for disposal. The estimated length of highway to be realigned would be in the order of about 3 km to 5 km . Alternatively, the backslope cut volumes could be marginally reduced by a combination of partial roadway realignment and construction of tie-back reinforced cast-in-place concrete piles to stabilize the backslope. It should be noted that the latter option only partially solves the landslide issues by diverting roadway alignment away from it. It is possible that the landslide could develop retrogressively and encroach into the realigned highway in the future after the partial realignment.	\$30 Million to \$60 Million (A proper planning study would be required to determine the actual cost of various realignment options)

Photo 4.
Looking west towards dip in the roadway at km 25.51.

