Investigation and Design of Coal-Mine Mitigation below a Highway Chris Grapel, M.Eng., P.Eng. Tri-Party 2018

Acknowledgements

- Alberta Transportation (AT)
 - Roger Skirrow, P.Eng.
 - Ross Dickson
 - Mark Bajar (pavement LiDAR)
- Challenger Geomatics (surveying)
 - Renishaw Canada (downhole-LiDAR camera)
- TetraTech (geophysics)
- 3v Geomatics, Inc. (InSAR)
- Town of Canmore (LiDAR data)
- Gerry Stephenson (Canmore coal-mining expert)
- Previous work (AMEC, Norwest)

Geohazards affecting highway infrastructure

- Numerous geohazards affect the public highway system in Alberta, mostly landslides, but other geohazards have included: rockfalls, erosion, and subsurface voids.
- AT manages over 350 geohazards affecting the public highway system in Alberta
- The S012 Spray Lakes Road site in Canmore, AB crosses a shallow coal-mine void that is a remnant of the Canmore coal-mining industry.

S012 – Spray Lakes Road site

S012 site

By contrast...

Canmore Creek, now and then

Plan of S012 site with coal mine

Mine section through S012 site

Portal to No. 2 Seam Adit

Seepage from mine into Canmore Creek

Nearby foundation for coal-mine fan

Nearby coal-mine-collapse features

Nearby coal-mine-collapse features

- Two drilling investigations
 - Norwest 2003
 - AMEC 2007
- One geophysical investigation (ground –penetrating radar)

Previous investigations by Norwest and AMEC

Klohn Crippen Berger

3D modelling for a 3D problem

2017 investigation work

- Downhole video camera
- Topographic survey (Challenger Geomatics), with
 - Downhole-LiDAR-camera survey (Renishaw Canada Ltd.)
 - 2013 LiDAR data provided by Town of Canmore
- Electrical-resistive tomography (TetraTech)
- InSAR monitoring (3v Geomatics)
- AT pavement LiDAR data review

S012 – Spray Lakes Road site

Downhole-Video Camera

Downhole-Video Camera

Downhole-LiDAR-Camera Survey

Downhole-LiDAR-Camera Survey

Electrical-Resistive Tomography

Electrical-Resistive Tomography

Electrical-Resistive Tomography

Cross-Highway ERT Data

Profile along south edge of pavement

InSAR Monitoring

BEST

 Interferometric-synthetic-aperture radar (InSAR)

InSAR Measurements April – October 2017

AT Pavement-LiDAR Data (2010 to 2013)

AT Pavement-LiDAR Data (2010 to 2013)

lohn Crippen Berger

- No evidence of pavement movement noted in InSAR data or pavement LiDAR data
- Some previous observations of new pavement cracks
- Downhole video camera survey noted cracking in the bedrock exposed in the borehole walls above the open void
- ERT data indicates higher resistivity above void, below highway, which could indicate dilating (i.e. opening) bedrock joints
- Continued monitoring of S012 site without repair not recommended

Candidate Repair Options

- Two types of repair considered
 - Bridge the void
 - Construct reinforced embankment fill over void
 - Buried bridge over void
 - Expose the void and place a geogrid "bean-bag" of rockfill at the head of the void
 - Backfill the void
 - Expose void and backfill with rockfill
 - Urthane foam injection through boreholes
 - Concrete or grout/Cematrix backfill through boreholes

Portal to No. 2 Seam Adit

Seepage from mine into Canmore Creek

Selected Repair Option

- Urethane foam injection
 - Upper portion of mine to be backfilled with urethane foam injected through boreholes drilled from road surface into coal-mine void
 - Open voids and voids in collapse material to be backfilled with urethane foam
 - Extent of foam injection will be limited to upper portions of mine so foam does not impede groundwater discharge from mine
 - Additional drilling conducted in early spring 2018 to assess mine conditions at depth
 - Final design underway for tendering for 2019 construction

Sample of foam-injected coarse gravel

Foam injection method

Thank you for your attention

Questions?

