

BF278 – Hwy 2A over Battle River near Ponoka

- Why does it matter?
- Typical bridge
- Looks like lots of capacity, when flow is low

July 1990 flood:

- More than 20 times the flow
- Water over bridge and approach road closure, potential damage, potential increased flooding upstream

• After flow receded, large void was observed behind

Hwy 734 over Simonette River near Grande Prairie

- 1983 Flood
- Holding up well

Loss of Bridge:

- Hwy 734 over Simonette River near Grande Prairie
- 1987 Flood
- Buoyant and horizontal force

Superstructure carried away and damaged

Hwy 33 over Island Ck near Kinuso

- Post 1983 flood
- Some repairs to abutment

Loss of Road:

- Hwy 33 over Island Ck near Kinuso
- Bridge still standing, but is now an island

Constrictive opening - Note:

• Higher water levels upstream (flooding)

Constrictive opening - Note:

• Higher velocity d/s - erosion

Some basic Definitions:

- Q flow (discharge), volume of water passing section in given amount of time cms
- Y flow depth (m)
- V mean flow velocity (m/s)

Hydrologic Cycle

Many complex parameters affect runoff

Frequency Analysis – no connection with Physics:

- No true distribution
- Most data not floods
- Very sparse data
- Extreme data very inaccurate
- Why 1:100?

Hydrologic Model – too complex:

- Diversity of parameters and inputs
- Calibration data not available
- Input vs output no correlation
- Still need a design input

Stream	Location	Year	Flow (cms)	Stage (m)	Stream	Location	Year	Flow (cms)	Stage (m)
Oldman	Lethbridge	1995	4700	8.5	N. Sask.	Edmonton	1899	6000	13.0
		1908	4500	8.3			1915	5800	12.8
		1948	3500	7.5			1986	4500	11.6
		1953	3100	7.1			1952	3750	10.8
		2013	2400	6.3			2013	2800	9.5
Bow	Calgary	1879	2250	4.5	Athabasca	Athabasca	1954	5700	7.1
		1897	2250	4.5			1944	5000	6.8
		2013	1700	4.1			1971	4600	6.5
		1902	1550	4.0			1986	4500	6.5
		1932	1500	4.0			1980	4300	6.3
Red Deer	Red Deer	1915	1900	6.6	Smoky	Watino	1990	9400	10.4
		2005	1500	5.9			1982	9200	10.2
		1954	1500	5.9			1972	9000	10.0
		2013	1300	5.5			1987	7100	8.7
		1952	1250	5.4			1965	5500	7.6

Actual observations of extreme events:

- Longest records in province
- All major basins represented
- Largest floods trend to a certain range

Extreme Example – Highwood River at High River:

- Within 0.3 0.5m of highest flood ~ 18 times in 100 years
- Assigned frequency is irrelevant, we know the magnitude

Analysis of HIS DB Data:

- Highest observed HW related to bank height
- Most within a certain amount above bank height flood

Physics:

- Most channels have trapezoidal shape up to bankfull
- Beyond this level, much of water goes into storage
- Does runoff make the channel or does channel control the runoff? Yes

Hwy 18 over Pembina River – 1986 flood:

- Significant storage of flood water on floodplain
- Acts as reservoir routes peak flows

Example of flood hydrograph routing:

- Peak drops as flood wave passes
- Hydrograph spreads out
- Water enters floodplain storage before peak and then re-enters stream after peak

HDG:

- Established in 2001
- 3 components
- Examples provided for > 1500 bridge sites in HIS
- Historic HWM seldom >> Qcc, usually confirms
- Runoff Potential seldom governs, important when it does

Typical Channel Parameters:

- Typical
- GIS B,h,T,S
- Airphotos, DEM (Lidar)
- DEM Profiles S
- Survey, Drawings
- Photos

				h	Ycc	Y _{spec}
S		0.00500	Υ	2.5	3.5	
В		10.0	Α	38	58	5.6
h		2.5	d	1.9	2.9	0.5
Th		20	V	2.6	3.4	1.0
Ro	ughness	•	Q	96.1	196.2	5.7

Parameters:

- S,B,h,T geometric
- Roughness Manning (guidance) or AT (B > 10m)

Output

• Y,V,Q for h, cc, and specified

- Depth to activate floodplain storage
- Only include flow area > channel
- Floodplain flow low not d/s, not continous path, high relative roughness, in and out of channel

Typical Rating Curve:

- Qcc >> Qh
- Increase in A and V due to increase in Y

AT Records:

- Access in HIS
- Flood records and file histories
- > 4000 event-site combinations flood records
- Photos, measurements
- Look u/s and d/s for more coverage

WSC Records:

- ~1000 sites, ~ 400 active at any time
- AT got access to raw data in addition to published, built tool to access and display
- Provide published max mean daily Q, highest gaugings, processed hydrographs, and rating curve plots showing actuals

Basin Runoff Potential

- Upper bound check ability of basin to supply water if routing was not a constraint
- Analysis of >3000 runoff events at WSC gauges
- Geographic assignment based on envelope curves for distinct hydrologic districts
- Map created for design use

Application:

- Derive drainage area through GIS/DEM
- Set Tp = 20 hrs (conservative)
- Determine unit discharge 'q' from 'd'
- Classic case:
 - Tributary to large stream
 - Small DA (km2)
 - End of channel steep and deep (ravine) lots of capacity
 - Not enough water to fill it

Putting it all together:

- Hydrotechnical summaries published for >1500 bridges (most of the big ones)
- Combine 3 components to one set of parameters

Don't be too precise:

- Drift
- Ice
- Alignment changes
- Channel changes

Key Messages:

- It matters
- Should match physics, observations
- HDG
- Boundary condition how to design for? another story

Climate change – flooding and storms more frequent, more intense?

Storm frequency:

- Rain events with > 150mm reported at multiple gauges
- 1960 2000 relatively constant number of gauges
- No observable trend in storm frequency

Storm Magnitude:

- Depth (mm) covering same area (10,000km2)
- July 31, 1987 is the largest (Tornado storm, over Simonette River)
- Jun 20, 2013 storm second biggest since 1960, but larger runoff prior 1879, 1987, 1902, 1929, 1932
- No visible trend in rainfall magnitude

Storm Magnitude:

- Depth (mm) vs. Area (km2)
- Red line is prelim June 2013 Storm
- Close to 1975 at eye, close to 1987 at 1000 10,000 km2 range
- Definitely big, not completely out of range
- Don't have good data for late 1800 early 1900 storms, same or more runoff

Flood Frequency:

- ~ 3700 flood records in HIS, back to 1879
- Much fewer structures < 1960
- Something, somewhere every year
- Widest 1974, 1982, 1986, 1990 (2), 1995, 2005 (2), 2013

Flood Magnitude: WSC Gauge – NSR at Edmonton

- Long continuous Record
- Historic event recorded in 1899, other peaks in 1915, and 1952
- No visible trend in peaks

Flood Magnitude: WSC Gauge – Bow River at Calgary

- Long continuous Record
- Significant floods pre-record in 1879, 1897, and 1902 photographic evidence, documented in floodplain studies
- No visible trend in peaks
- Long period between large floods (1995 storm was tracking for Bow basin)

2013 Flood

Hwy 40 (and pedestrian trail) over Evan Thomas Ck (south of Kananaskis Golf Course)

- Note drift impact
- Note lateral instability
- Opening OK, RPW not

Hwy 22 over Sheep River at Black Diamond

- Bridge OK, road not
- Insufficient RPW u/s right bank, campground

Hwy 66 over Elbow River

- Abutment washout and damage
- Seems to be continual slumping, not realignment

Hwy 66 over Elbow River

- Note considerable drop in elevation at abutment (~ 4 feet)
- Will need a re-build of at least end span

Highwood River beside Hwy 541

- Crossing alluvial fan
- Note lateral mobility
- Note lack of development
- Post 1974 flood

- Early in May 1990 flood
- Culvert working OK before plugged
- Note V, colour of water

- Crossing alluvial fan
- Debris flow
- Closed for ~ 1 week
- Note lots of development adjacent to channel

- Crossing alluvial fan
- Debris flow
- Closed for ~ 1 week
- Note damage, debris on top, trucks

- 1 week later, looking d/s
- Highway now open restricted speed, lanes
- Difficulty in holding alignment, handling debris