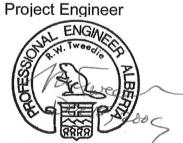


NORTHEAST EDMONTON RING ROAD ADVANCED FUNCTIONAL PLANNING STUDY MANNING DRIVE TO WHITEMUD DRIVE GEOTECHNICAL INVESTIGATION VOLUME 1 of 2

Report

to


ISL Engineering and Land Services Ltd.

Don W. Stefanyk, B.Sc., P.Eng. Project Engineer

Shawn G. Russell, B.A.Sc, P.Eng.

Robin Tweedie, M.Sc., P.Eng. Review Principal

	TO PRACTICE Engineering Ltd.				
-	Philiweedie				
Date	Dec 15, 2009				
PERMIT N	UMBER: P 5186				
The Association of Professional Engineers, Geologists and Geophysicists of Alberta					
Data: Dagar	abor 15 2000				

Date: December 15, 2009 File: 19-598-298

TABLE OF CONTENTS

1.	INTR	ODUCT	ION		1
2.	PRO	POSED	DEVELOP	PMENT	2
3.	METI 3.1 3.2 3.3 3.4	Review Site Re Drilling	v of Existin econnaissa Program.	GATION ng Geotechnical Information ance ng	5 5 5
4.	GEO 4.1 4.2 4.3	Bedroo Coal M	k Geology lines	y	7
5.	SITE 5.1 5.2 5.3	Surfac Subsu	e Condition face Conc raphy Section	ns ditions 1 (Hwy 216, Hayter Road/CNR to Yellowh	
		5.3.2 5.3.3 5.3.4	Section 2 Section Freeway Section	2 (Hwy 216, Yellowhead Trail to Petroleum 3 (Hwy 216, Petroleum Way to Sherw /) 4 (Hwy 216, Sherwood Park Freeway to	n Way) 12 vood Park 13 Whitemud
		5.3.5	Section	5 (Hwy 216, Sherwood Park Freeway to	17 Street
		5.3.6 5.3.7	Section 6	6 (Hwy 16, Sherwood Drive to Hwy 216) Properties Topsoil Fill Clay Till	

		5.3.7.5 Empress Formation (Sand and Gravel)	
		5.3.7.6 Bedrock	
	5.4	Groundwater Conditions	
	5.5	Frost Effects	
6.	GEOT	FECHNICAL EVALUATION AND RECOMMENDATIONS -	- NEERR
	AND `	YELLOWHEAD TRAIL ROAD ALIGNMENTS	
	6.1	General	
	6.2	Stripping	
	6.3	Cut Slopes	
	6.4	Fill Slopes	30
	6.5	Temporary Drainage	32
	6.6	Permanent Drainage	32
	6.7	Subgrade Treatment and Frost Design	33
	6.8	Erosion	
7.		FECHNICAL EVALUATION AND RECOMMENDATION	
		GE FOUNDATIONS	
	7.1	General	
	7.2	Cast-in-Place Concrete End Bearing Piles	
	7.3	Driven Steel Piles	
	7.4	MSE Walls	
	7.5	Cement Type	39
8.	HWY2	216/CNR-HAYTER ROAD (BRIDGES 27 & 28)	40
	8.1	Project Description	40
	8.2	Stratigraphy and Groundwater Conditions	40
	8.3	Geotechnical Evaluation and Recommendations	40
		8.3.1 General	40
		8.3.2 Driven Steel Piles	41
		8.3.3 Approach Embankments	42
9.	HWY	216/HWY16 INTERCHANGE (BRIDGES 14 TO 18)	42
	9.1	Project Description	42
	9.2	Stratigraphy and Groundwater Conditions	43
	9.3	Geotechnical Evaluation and Recommendations	
		9.3.1 General	

		9.3.2	Driven S	teel Piles	45
		9.3.3	Cast-in-F	Place Concrete End Bearing Piles	49
		9.3.4	Existing	Structures	53
		9.3.5	Approacl	n Embankments	53
			9.3.5.1	Bridges 14 and 15	53
			9.3.5.2	Bridge 16	53
			9.3.5.3	Bridges 17 and 18	54
10.	HWY	216/CPF	R GRADE	SEPARATION (BRIDGES 11, 12 & 13)	55
	10.1		•	on	
	10.2			Groundwater Conditions	
	10.3	Geotec	hnical Eva	Iuation and Recommendations	56
		10.3.1	General.		56
		10.3.2	Cast-in-F	Place Concrete End Bearing Piles	57
		10.3.3	Driven S	teel Piles	58
		10.3.4	Existing	Structures	59
		10.3.5	Approact	n Embankments	59
11	HWY	216/PET	ROLEUM	I WAY (BRIDGES 32, 34 & 35)	59
	11.1	Project	Descriptio	on	59
	11.2	Stratigr	aphy and	Groundwater Conditions	60
	11.3	Geotec	hnical Eva	luation and Recommendations	61
		11.3.1	General.		61
		11.3.2	Driven S	teel Piles	61
		11.3.3	Cast-in-F	Place Concrete End Bearing Piles	63
		11.3.4	Existing	Structures	64
		11.3.5	Embankr	ment Slopes	65
12.	HWY	216/SHE	ERWOOD	PARK. FWY (BRIDGES 5, 6, 7 AND 8)	65
	12.1	Project	Descriptio	on	65
	12.2	Stratigr	aphy and	Groundwater Conditions	66
	12.3	Geotec	hnical Eva	Iuation and Recommendations	66
		12.3.1	General.		66
		12.3.2	Bridge 5.		66
			12.3.2.1	Bridge Foundations	66
			12.3.2.2	Driven Steel Piles	67
			12.3.2.3	Cast-in-Place Concrete End Bearing Piles .	68

			12.3.2.4	Approach Fills	69
		12.3.3	Bridge 6.		70
			12.3.3.1	Bridge Foundations	70
			12.3.3.2	Driven Steel Piles	70
			12.3.3.3	Cast-in-Place Concrete End Bearing Piles	71
			12.3.3.4	Approach Fills	72
		12.3.4	Bridges 7	' and 8	73
			12.3.4.1	Bridge Foundations	73
			12.3.4.2	Driven Steel Piles	73
			12.3.4.3	Cast-in-Place Concrete End Bearing Piles	75
			12.3.4.4	Existing Structures	76
			12.3.4.5	Approach Cuts	77
13.	17 ST	- NW/SH	ERWOOD	PK. FREEWAY (BRIDGE 4)	77
	13.1			n	
	13.2	-	•	Groundwater Conditions	
	13.3	-		luation and Recommendations	
		13.3.1			
		13.3.2		eel Piles	
		13.3.3		Structures	
		13.3.4	-	n Embankments	
14.		216/\\/HI	ם חוואד	RIVE INTERCHANGE (BRIDGES 1, 2 & 3)	80
14.	14.1			n	
	14.2	•	•	Groundwater Conditions	
	14.3	-		luation and Recommendations	
	14.5				
		14.3.2	••••••	Place Concrete End Bearing Piles	
		14.3.3		eel Piles	
		14.3.4		Structures	
			0	n Embankments	
15.		16/0UE			05
15.	15.1			DRIVE (BRIDGE 31) n	
	15.1	•	•		
	15.2 15.3	-		Groundwater Conditions	
	10.3				
		15.3.1	General.		00

		15.3.2	Driven Steel Piles	86
		15.3.3	Cast-in-place Concrete End Bearing Piles	87
		15.3.4	Approach Embankments	
16.			ADMOOR BOULEVARD (BRIDGES 23 & 24)	80
10.	16.1		Description	
	16.2	-	aphy and Groundwater Conditions	
	16.3	•	hnical Evaluation and Recommendations	
	10.5	16.3.1		
			Cast-in-Place Concrete End Bearing Piles	
		16.3.3	Driven Steel Piles	
		16.3.4	Existing Structures	
		16.3.5	Approach Embankments	93
17.	HWY	16/CPR	GRADE SEPARATION (BRIDGES 19, 20, 21, 22 & 33).	93
	17.1	Project	Description	93
	17.2	Stratigr	aphy and Groundwater Conditions	94
	17.3	Geotec	hnical Evaluation and Recommendations	95
		17.3.1	General	95
		17.3.2	Cast-in-Place Concrete End Bearing Piles	95
		17.3.3	Driven Steel Piles	96
		17.3.4	Existing Structures	97
		17.3.5	Approach Embankments	97
18.	HWY	16/HWY	216 INTERCHANGE RAMPS (BRIDGES 25 & 26)	98
	18.1		Description	
	18.2		aphy and Groundwater Conditions	
	18.3		hnical Evaluation and Recommendations	
	10.0	18.3.1	General	
			Cast-in-Place Concrete End Bearing Piles	
		18.3.3	Driven Steel Piles	
		18.3.4	Approach Embankments	
		10.0.1		. 102
19.	PREL		Y SURFACING STRATEGY	
	19.1	Backgro	ound Information	. 103
	19.2	Paveme	ent and Subgrade Modulus	. 104
	19.3	Traffic \	/olumes	. 104

	19.4	Pavem	ent Structure for New Construction	106
19.5 Prelin		Prelimi	nary Overlay Design	108
		19.5.1	General	108
		19.5.2	Highway 216:04	109
		19.5.3	Highway 16:18	112
20.	LIMIT		AND USE OF REPORT	113

STATEMENT OF GENERAL CONDITIONS

APPENDIX A

Drawings 19-598-298 –0 to 5

APPENDIX B

- Modified Unified Soils Classification System
- Symbols and Terms Used on the Test Hole Logs
- Table B-1 Summary of 2008 & 2009 Test Hole Locations
- Test Hole Logs

APPENDIX C

Laboratory Test Results

TABLE OF CONTENTS (Cont'd)...

APPENDIX D

Slope Stability Analyses

APPENDIX E

Selected Photos

APPENDIX F

- Figures 19-598-297-1 to 6
- Design Traffic Levels

APPENDIX G

- Graphs of Subgrade Resilient Modulus Pavement Resilient Modulus and
- Overlay Thickness
- IRI Graph
- Wheel Path Rutting Graph

APPENDIX H

DARWin Pavement Design Printouts

APPENDIX I

Recommended Construction Procedures

VOLUME 2 of 2

APPENDIX J

- Previous Test Hole Logs
- Selected Relevant Information from AT Files

THURSER ENGINEERING LTD.

1. INTRODUCTION

This report presents the results of a preliminary geotechnical investigation that was carried out as part of the functional planning study for the Northeast Edmonton Ring Road (NEERR) in Edmonton, Alberta.

The project limits consisted of two separate highway alignments as follows:

- Along the NEERR (Hwy 216) from the intersection with Manning Drive in the northeast end of the City of Edmonton to the intersection with Whitemud Drive in the southeast part of the city in a north-south direction, and; and
- Along Hwy 16 from the intersection with Hwy 216 to Sherwood Drive, in the city's east end in an east-west direction.

The portion of Hwy 216 from Manning Drive to Hayter Road, including the North Saskatchewan River bridge crossing, was not part of the current scope of work.

The scope of work was detailed in our proposal letter to ISL Engineering and Land Services Ltd. (ISL) dated March 25, 2008. Briefly, the scope of work was to obtain soils and groundwater information along the NEERR alignment and specifically at the proposed grade separations in order to identify geotechnical issues that may impact the design and construction.

Preliminary foundation recommendations were to be provided for the bridge abutments at all major structures; geotechnical investigation and recommendations for bridge pier locations were not included in the current scope of work.

Authorization to proceed with the work was given at a meeting with ISL on May 27, 2008.

Use of this report is subject to the statement of general conditions, which is included at the end of the text of this report. The reader's attention is specifically

drawn to these conditions as it is considered essential that they be followed for the proper use and interpretation of this report.

2. PROPOSED DEVELOPMENT

The Northeast Edmonton Ring Road (Hwy 216) will connect to the Northwest portion of Hwy 216 that is currently under construction with the previously constructed southeast section of the Anthony Henday Drive (Hwy 216).

The portion of the NEERR investigated under the current scope of work is approximately 12 km in length and spans from Hayter Road/CNR to Whitemud Drive in a north to south direction. In addition, a 4 km portion of Hwy 16, spanning east to west from Sherwood Drive to the Hwy 216 interchange was also investigated under the current scope (See Drawing Nos. 19-598-298-0 through -5 in Appendix A).

The locations and designations of bridge structures along the Hwy 216 corridor from north to south are summarized in Table 2.1. The bridge structures investigated along the Hwy 16 corridor are listed from east to west in Table 2.2.

Proposed bridge structures 9 and 10, situated at the Hwy 216/Baseline Road Interchange, and bridge structures 29 and 30, situated at the North Saskatchewan River Crossing, were not investigated under the current scope of work. The North Saskatchewan River Crossing is part of a separate scope of work undertaken by others.

HWY 216 INTERSECTION	INVESTIGATION\BRIDGE NUMBER	AT BRIDGE FILE (EXISING STRUCTURES)
CNR/Hayter Road	27 & 28	BF78972-1
	11	BF76650 S-2
CPR Railway Overpass	12	New
	13	BF76650 N-1
Petroleum Way Underpass Culvert	32	BF77416-1
	5	New
Sherwood Park Freeway	6	New
Sherwood Fark Freeway	7	BF75543 W-2
	8	BF75543 E-1
	1	New
Whitemud Drive	2	New
	3	New
17 St. NW/Sherwood Park Freeway ⁽¹⁾	4	New

TABLE 2.1 HWY 216 CORRIDOR GRADE SEPERATION/BRIDGE STRUCTURES

Note: ⁽¹⁾ Bridge is over Sherwood Park Freeway not Hwy 216.

HWY 16 INTERSECTION	INVESTIGATION/BRIDGE NUMBER	AT BRIDGE FILE (EXISTING STRUCTURES)
Sherwood Drive	31	New
	24	BF76648-1
Broadmoor Boulevard	23	BF76649 W-1
	22	New
	33	New
CPR Railway Overpass	21	BF76339 W-2
CFR Railway Overpass	20	BF76339 E-1
	19	New
	26	BF76651 W-1
Hwy 216	25	New
11wy 210	14 & 15	BF76652-1
	16, 17 & 18	New

TABLE 2.2 HWY 16 CORRIDOR GRADE SEPERATION/BRIDGE STRUCTURES

3. METHOD OF INVESTIGATION

3.1 Review of Existing Geotechnical Information

A review of available geological and geotechnical information was carried out to provide preliminary information on the soil and groundwater conditions along the alignment. Information was obtained from published geotechnical and geological reports, Alberta Transportation library, and in-house files. A list of references use in preparation of this report is presented at the end of the text.

A copy of relevant borehole logs obtained from these reports is provided in Appendix J (Volume 2).

A review of the Atlas of Coal Mine Workings of the Edmonton Area (R. Spence Taylor, 1971) was also undertaken to check for the presence of any former underground coal mines along the corridor.

3.2 Site Reconnaissance

A site reconnaissance was carried out by Mr. Shawn Russell, P.Eng. of Thurber on June 4, 2008 to visually inspect the existing conditions at the proposed bridge abutment sites. This included a visual assessment of the approach fill slopes at the existing grade separation structures. Results of the site reconnaissance are discussed in Sections 8 to 18 and selected photographs are presented in Appendix E.

3.3 Drilling Program

Forty-three (43) deep test holes (TH08-01-01 to TH08-31-02) were drilled between July 24 and November 21, 2008 to investigate the subsurface conditions at the proposed bridge abutments locations. This included six (6) deep test holes that were drilled at the revised bridge abutment locations for Bridges 5, 6, and 22. The test holes located at the bridge structure abutments were advanced to depths ranging from 10.5 m (auger refusal) to 31.7 m below existing ground surface.

In addition, twenty-one (21) shallow probe holes were drilled to depths ranging between 4.6 m to 5.3 m along the Hwy 216 and Hwy 16 corridors between November 26 and December 2, 2008 to investigate the subsurface conditions along the proposed roadway alignments.

The field drilling program was carried out under the supervision of Thurber personnel using both truck and track mounted drill rigs operated by Mobile Augers and Research Ltd. of Edmonton.

The locations of the deep test holes were chosen in conjunction with ISL prior to commencing the field program and were staked in the field by ISL prior to drilling.

The roadway shallow probe holes were drilled at approximate 500 m intervals at locations between the bridge abutment test holes. The locations of the roadway probe holes were selected by Thurber and were later surveyed by ISL for as-built elevation and location.

Standard Penetration Tests (SPT's) were carried out at selected depths in all of deep bridge abutment test holes (TH08-01-01 through TH08-32-03) and disturbed SPT samples were obtained during drilling in all test holes. In addition, Shelby tube samples were taken at select intervals during the drilling of the bridge abutment test holes.

Water levels were noted during and after completion of the drilling. Standpipe piezometers were installed in all of the test holes, (except for TH08-04-01, TH08-06-01, TH08-07-02, TH08-16-01 and TH08-32-03) to permit future monitoring of the groundwater levels. The piezometers were backfilled with cuttings above the slough level, and the upper portion of each borehole was capped with bentonite. Groundwater levels in the standpipe piezometers were measured between September 17 and December 9, 2008, approximately two to six weeks following completion of drilling.

The test hole locations are shown on the site plans, Drawing Nos. 19-598-298-1 through 19-598-298-5, in Appendix A and are summarized in Table B-1, in Appendix B.

THURBER ENGINEERING LTD.

3.4 Laboratory Testing

Laboratory testing consisted of a visual classification and determination of the natural moisture content on all the soil samples. Atterberg Limit tests and water-soluble sulphate content tests were also carried out on selected soil samples. In addition, one dimensional consolidation, direct shear and unconfined compression tests were conducted on selected undisturbed soil samples.

The results of the laboratory testing are summarized on the test hole logs in Appendix B and presented in Appendix C. A summary of Atterberg Limits tests and interpreted geotechnical properties based on AT correlations is presented in Table C.1 in Appendix C. Sulphate test results are summarized in Table C-2, Appendix C.

4. GEOLOGY

4.1 Bedrock Geology

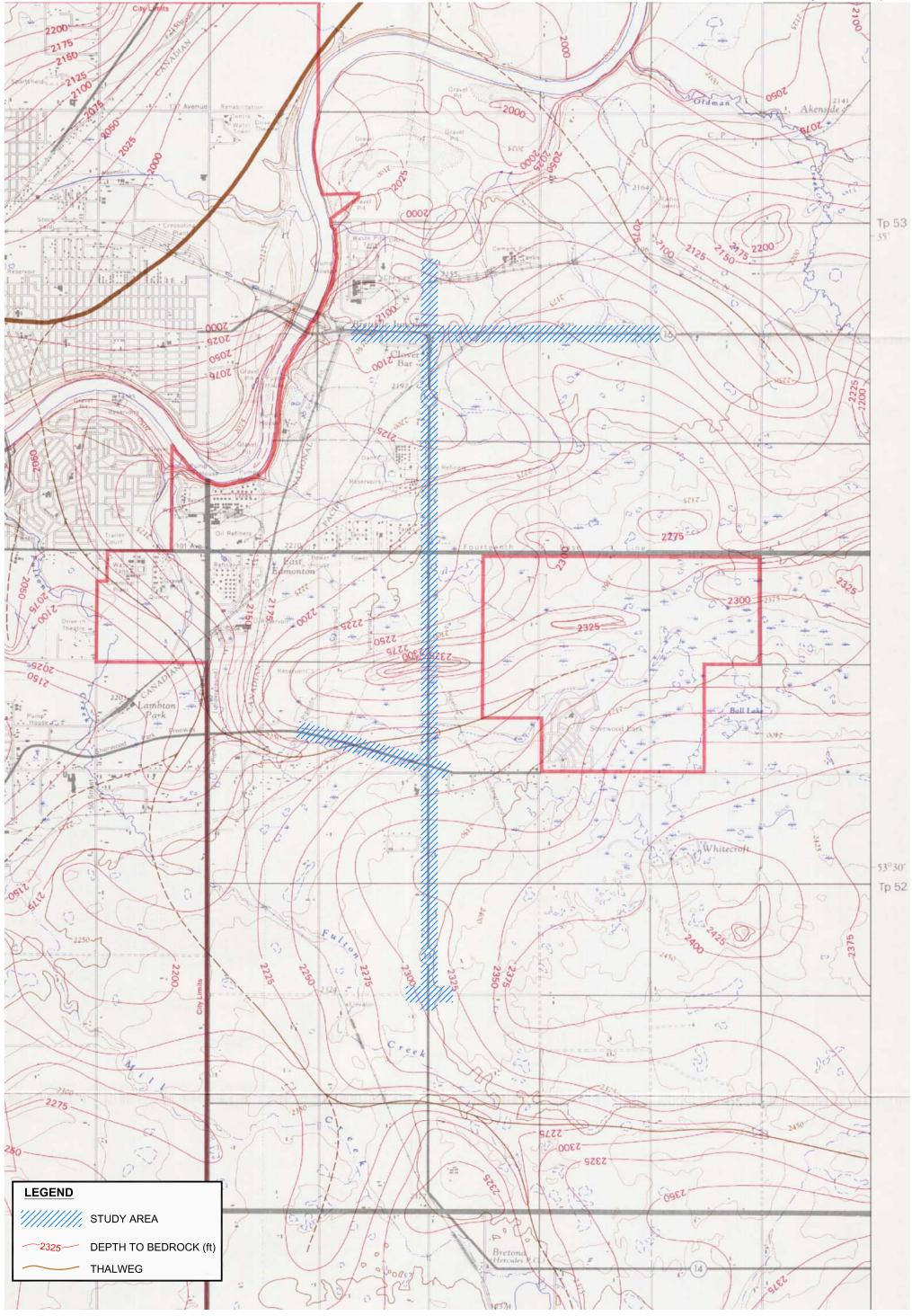
Bedrock geology in the study area consists of Upper Cretaceous fine grained calcareous and bentonitic sandstone, bentonitic and carbonaceous clay shale and siltstone with coal layers and bentonite seams of the Edmonton Group.

Based on the published geological information (Kathol and McPherson, Figure 20 and L.D. Andriashek, NTS 83H map), the bedrock surface along the alignment varies from a high elevation of about 700 m at the southern extent of the NEERR near Whitemud Drive to an elevation of 610 m at the northern limits in the vicinity of Hayter Road. The elevation of bedrock along the Hwy 16 corridor between Sherwood Drive and 17 Street NW is expected to range from about 640 m to 645 m.

The depth to bedrock is expected to range from about 5 m to 75 m below existing ground surface.

The preglacial Beverly Channel traverses the Edmonton area to the north of the NEERR alignment. In addition, several tributary thalwegs to the Beverly Channel

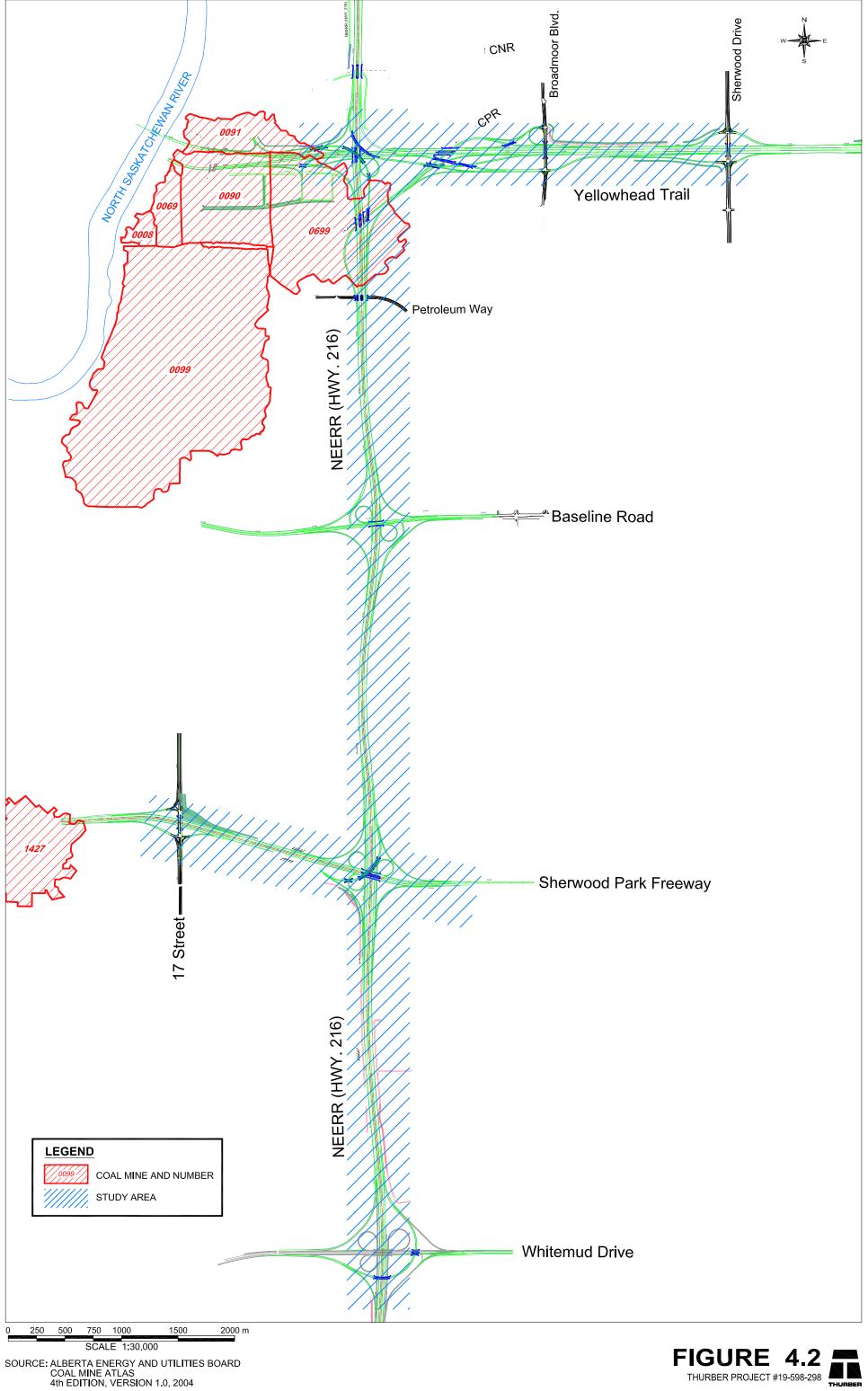
intersect the NEERR in an east to west direction, notably in the vicinity of Sherwood Drive and to the south of Whitemud Drive in the vicinity of Fulton Creek (also known as the Bretona Valley Channel). The locations of these preglacial thalwegs are shown on Figure 4.1, as obtained from Kathol and McPherson 1975 Geology of the Edmonton Area, Map 20.


These bedrock valleys, or thalwegs, were formed during preglacial times, and preglacial sand and gravel of the Empress Formation is found in the base and terraces of these preglacial valleys. The preglacial valleys were subsequently infilled with glacial till and lake deposits in glacial and post glacial times.

4.2 Coal Mines

A review of the Atlas of Coal Mine Workings (Spence Taylor, R., 1971), the Catalogue of Coal Mines of the Alberta Plains (Campbell, J.D., 1964) and the Coal Mine Atlas, (EUB, 2004) indicated that there are possibly underground coal mines along the investigated portions of Hwy 216 and Hwy 16.

The approximate locations of these coal mine workings are shown on Figure 4.2, as obtained from EUB, Coal Mine Atlas, 2004. Table 4.1 below indicates where the proposed bridge structures may be located over the coal mine workings. It should be noted, however, that the coal mine workings are relatively deep, between 25 m and 43 m below original ground surface. Potential impacts of coal mine workings on bride structures, where present, are further addressed in Sections 9.2, 10.2, 11.2, and 18.2.

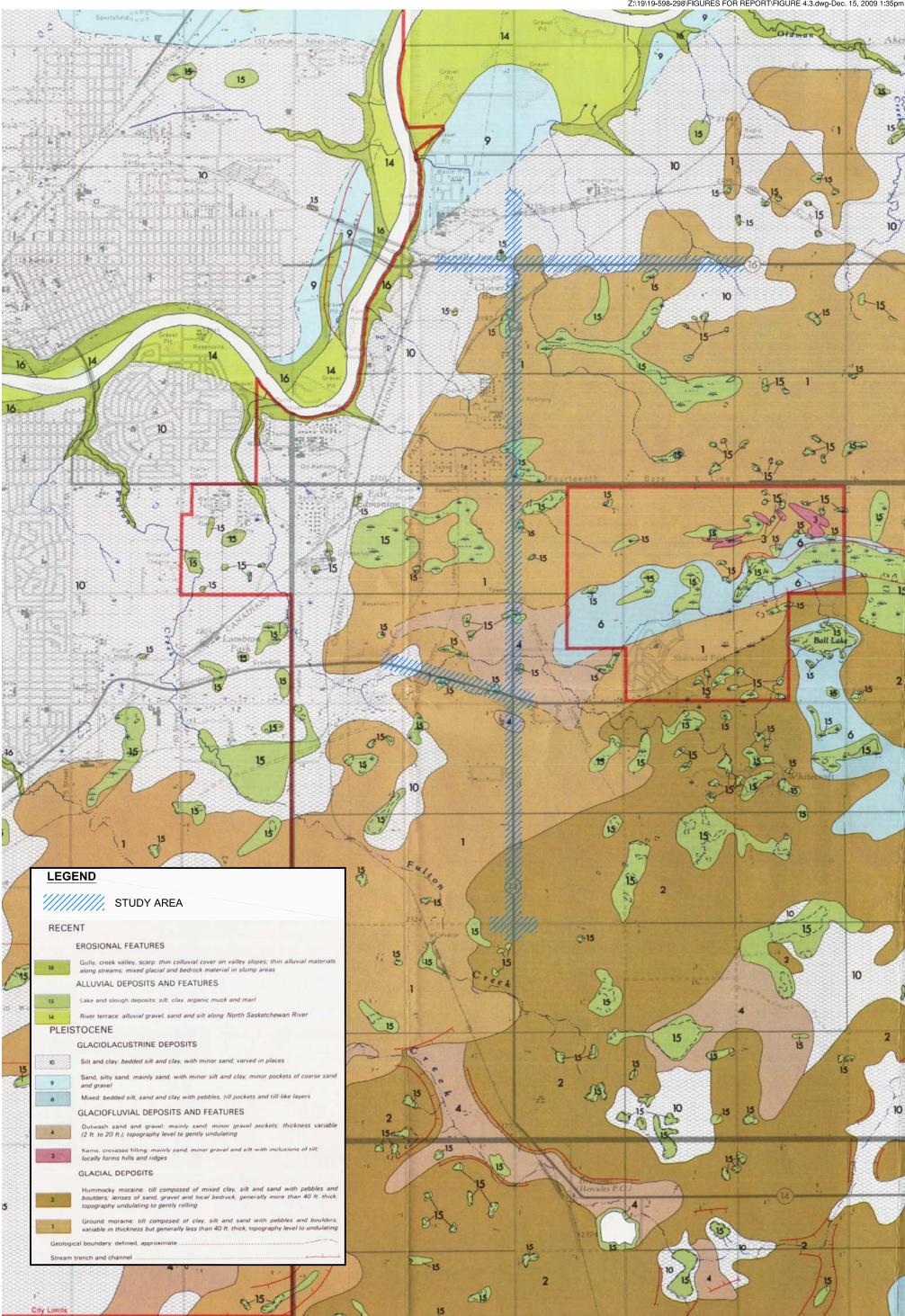

Z:\19\19-598-298\FIGURES FOR REPORT\FIGURE 4.1.dwg-Dec. 15, 2009 1:31pm

0 500 1000 1500 2000 2500 3000m SCALE 1:50000

SOURCE: KATHOL AND McPHERSON FIGURE 20 - BEDROCK TOPOGRAPHY AND PREGLACIAL THALWEGS IN THE EDMONTON AREA

MINE NO.	TYPE OF MINE	ANTICIPATED DEPTH OF COVER (m)	LEGAL LAND DESCRIPTION (LSD of SEC-TWP-RGE-MER)	POSSIBLY AFFECTED BRIDGES
			8 & 9 of 8-53-23-4	11 & 32
699	Underground	33 to 43	15 & 16 of 8-53-23-4	25
			5, 12 & 13 of 9-53-23-4	12, 13, 16 & 32
91	Underground	25	15 of 8-53-23-4	25
31	Underground	20	2, 3 & 4 of 17-53-23-4	26

TABLE 4.1 LIST OF DOCUMENTED COAL MINE WORKINGS⁽¹⁾


Note: ⁽¹⁾Spence Taylor, R., 1971, Campbell, J.D., 1964 & EUB, 2004

4.3 Surficial Geology

The expected surficial deposits in the study area are shown on Figure 4.3 as obtained from Kathol and McPherson 1975 Geology of the Edmonton Area, Map 23. Briefly, the surficial deposits along the Hwy 216 are expected to consist of the following units, from north to south:

- From the North Saskatchewan River Valley south to Hwy 16, the surficial deposits generally consist of glaciolacustrine deposits, consisting of bedded silts and clays overlying clay till and sand deposits.
- From Hwy 16 to 82 Avenue NW, the surficial deposits generally consist of glacial till underlain by bedrock. The till consists of a clay matrix containing sand, silt, pebbles, coal fragments and occasional cobbles and boulders.
- From 82 Avenue NW to south of Sherwood Park Freeway, the surficial deposits generally consist of glaciofluvial outwash sand and gravel overlying glacial clay till.
- From south of Sherwood Park Freeway to north of Whitemud Drive, the surficial deposits generally consist of glacial till underlain by bedrock. The

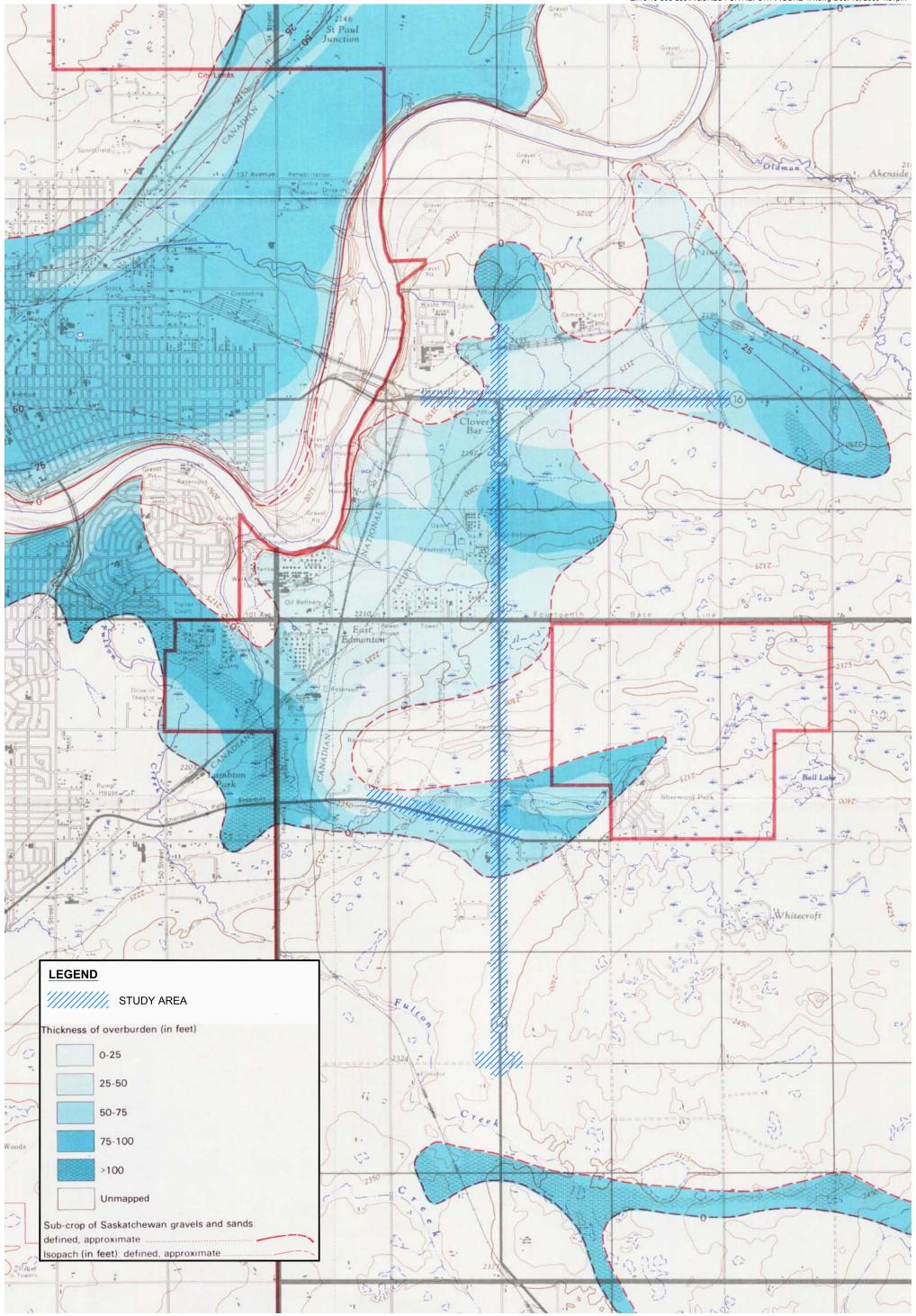
2500 3000m SCALE 1:50000

SOURCE: KATHOL AND McPHERSON FIGURE 23 - SURFICIAL GEOLOGY OF THE EDMONTON AREA

till consists of a clay matrix containing sand, silt, pebbles, coal fragments and occasional cobbles and boulders.

- From north of Whitemud Drive southwards, the surficial deposits generally consists of undulating to gently rolling glacial till composed of mixed clay, silt and sand with pebbles, boulders, lenses of sand, gravel and local bedrock.
- In the vicinity of the Baseline Road Interchange, and at other select locations, lake slough deposits, consisting of silt, clay, organic muck and marl overlying clay and clay till are likely to be present.

As noted above, sand and gravel of the Empress Formation is found below the till and above the bedrock within the preglacial valleys/thalwegs. Locations and thicknesses of the Empress Sand Formation are shown on Figure 4.4, as obtained from Kathol and McPherson, 1975, *Geology of the Edmonton Area, Figure 27*.


5. SITE CONDITIONS

5.1 Surface Conditions

As the proposed NEERR alignment will consist of upgrades to the existing Hwy 216 and Hwy 16 corridors, the surficial conditions are expected to consist of either existing roadway and bridge embankment structures or man-made ditches.

The topography is relatively flat to gently undulating along most of the NEERR alignment. The ground surface slopes from approximate elevation 710 m at the south end of the Hwy 216 corridor (Whitemud Drive) to about 655 m at the north end (Hayter Road/CNR) and from 675 m at the east end along the Hwy 16 corridor (Sherwood Drive) to 655 m at the west end (Hwy 216).

Surface drainage is typically towards existing sloughs, creeks and roadway ditches, as well as the North Saskatchewan River.

0 500 1000 1500 2000 2500 3000m SCALE 1:50000

SOURCE: KATHOL AND McPHERSON FIGURE 27 - THICKNESSES OF SASKATCHEWAN GRAVELS AND SANDS AND OVERBURDEN IN THE EDMONTON AREA

5.2 Subsurface Conditions

5.3 Stratigraphy

The following section provides a summary of the soils conditions and materials properties of the main stratigraphic units at the grade separation structures investigated along the Hwy 216 and Hwy 16 corridors investigated.

Subsurface conditions along the NEERR alignment are shown on the stratigraphic cross sections in Drawing Nos. 19-598-298-1 to 5 in Appendix A and on the test hole logs in Appendix B of Volume 1. Site specific stratigraphic and groundwater conditions at the individual grade separations are further discussed in Sections 8 to 18.

The results of the laboratory testing are summarized on the test hole logs in Appendix B and presented in Appendix C. A summary of Atterberg Limits tests and interpreted geotechnical properties based on AT correlations is presented in Table C.1 in Appendix C.

The results of the geotechnical investigation indicate that the NEERR can be subdivided into the following sections of similar stratigraphy and groundwater conditions:

- Section 1 (Hwy 216, Hayter Road/CNR to Yellowhead Trail);
- Section 2 (Hwy 216, Yellowhead Trail to Petroleum Way);
- Section 3 (Hwy 216, Petroleum Way to Sherwood Park Freeway);
- Section 4 (Hwy 216, Sherwood Park Freeway to Whitemud Drive);
- Section 5 (Hwy 216, Sherwood Park Freeway to 17 Street NW); and
- Section 6 (Hwy 16, Sherwood Drive to Hwy 216).

Following is a brief summary of the generalized stratigraphy for each of these sections:

5.3.1 Section 1 (Hwy 216, Hayter Road/CNR to Yellowhead Trail)

A stratigraphic section along the alignment between Hayter Road and Yellowhead Trail (Test Holes TH08-27-01, TH08-27-02, TH08-14-01, TH08-18-01 and previous Test Holes TH06-41 and 42) is presented in Drawing No.19-598-298-3 in Appendix A.

The soil stratigraphy is quite variable within the depth of investigation and consists of the following generalized sequence in descending order:

- Topsoil;
- Fill;
- Lacustrine Clay;
- Clay Till;
- Empress Formation (Sand & Gravel); and
- Bedrock.

The depth to bedrock along this section increases in a southerly direction from about 10 m at the Hayter Road/CNR crossing to about 20 m at the Hwy 216/Hwy 16 interchange. Empress Formation sand is present above the bedrock throughout this section and rafted bedrock is also present within the clay till layer.

5.3.2 Section 2 (Hwy 216, Yellowhead Trail to Petroleum Way)

A stratigraphic section along the section between Hwy16/Yellowhead Trail and Petroleum Way (Test Holes TH08-14-02, TH08-12-01, TH08-12-02, TH08-S19 and TH08-32-02) is provided in Drawing No. 19-598-298-3 in Appendix A.

The soil stratigraphy consists of the following generalized sequence within the depth of investigation, in descending order:

- Topsoil;
- Fill;
- Lacustrine Clay;

- Clay Till;
- Empress Formation (Sand & Gravel); and
- Bedrock.

Fill consisting predominately of clay was encountered in most of the test holes along the alignment as it passes through the existing Hwy 216 corridor and bridge abutment fills.

Fill thicknesses ranging from about 11 m to 19 m, and consisting primarily of interbedded sand and clay fills, were encountered at test holes TH08-16-01, TH08-16-02 and TH08-17-02 in the vicinity of the Hwy 216/Hwy 16 interchange.

Clay shale and sandstone bedrock was encountered in the Yellowhead Trail interchange test holes at depths ranging from about 16 m to 24 m. Based on the geological maps, the clay till is anticipated to be underlain by bedrock throughout this section at depths ranging from 25 m to 17 m below existing ground, surface typically decreasing in depth in a southerly direction.

Rafted clay shale and sandstone bedrock were encountered within the clay till layer at depths ranging from 1.3 m to 11.5 m. A layer of Empress Formation sand and gravel (up to 2 m in thick) was encountered between the clay till and bedrock layers in test hole TH08-14-02 and is also expected to be encountered in thin layers between the till and bedrock throughout this section based on the geological literature.

5.3.3 Section 3 (Hwy 216, Petroleum Way to Sherwood Park Freeway)

A stratigraphic section along the section between Petroleum Way and Sherwood Park Freeway (test holes TH32-02, TH08-S18, TH08-S17, TH08-S16, TH08-S15, TH08-S14, TH08-S12, TH08-S9 and TH08-06-01) is provided in Drawing Nos. 19-598-298-2 and -3 in Appendix A.

The soil stratigraphy consists of the following generalized sequence within the depth of investigation, in descending order:

- Topsoil;
- Fill;
- Clay Till; and
- Bedrock.

Fill material consisting of predominately clay was encountered in most of the test holes along the alignment as it passes through the existing Hwy 216 corridor and bridge abutment fills.

Peat layers were encountered underlying the fill in test holes TH08-S12 and TH08-S14.

Sandstone and clay shale bedrock was encountered underlying the clay till at depths ranging from about 12 m to 20 m at the Sherwood Park Freeway interchange test holes; in addition, rafted bedrock layers were encountered within the clay till at depths ranging from 6 m to 12 m at the Petroleum Way interchange test holes.

Based on the geological maps, an unnamed preglacial thalweg, which is a tributary to the Beverly preglacial channel, dissects this section in an east-west direction immediately north of Sherwood Park Freeway. The clay till is anticipated to be underlain by undulating bedrock throughout this section at depths ranging from 20 m to 30 m at Petroleum way and from 15 m to 20 m at Sherwood Park Freeway. Thin layers of Empress Formation sand and gravel are anticipated to be encountered between the till and bedrock layers throughout this section according to the same geological literature.

5.3.4 Section 4 (Hwy 216, Sherwood Park Freeway to Whitemud Drive)

A stratigraphic section along the section between Sherwood Park Freeway and Whitemud Drive (test holes TH08-08-2, TH08-SI to TH08-S8 and TH08-1-2) is provided in Drawing Nos. 19-598-298-1 and -2 in Appendix A.

The soil stratigraphy consists of the following generalized sequence within the depth of investigation, in descending order:

- Topsoil,
- Fill,
- Lacustrine clay,
- Clay Till, and,
- Bedrock.

Fill material consisting of predominately clay was encountered in most of the test holes along most of the alignment as it passes through the existing Hwy 216 corridor and bridge abutment fills.

Bedrock was encountered at depths of about 12 m to 20 m in the test holes drilled at the Sherwood Park Freeway interchange and at depths of about 21 m to 30 m at the Whitemud Drive interchange. Sand layers and thin rafted bedrock lenses were encountered within the clay till layers throughout this section.

Based on the geological maps, the depth to bedrock is anticipated to vary between 6 m and 18 m through this section.

5.3.5 Section 5 (Hwy 216, Sherwood Park Freeway to 17 Street NW)

A stratigraphic section along the alignment of Hwy 216 from Sherwood Park Freeway to 17 Street NW is shown on Drawing No. 19-598-298-5 in Appendix A.

The soil stratigraphy along this section consists of the following generalized sequence within the depth of investigation, in descending order:

- Topsoil;
- Fill;
- Lacustrine Clay;
- Clay Till; and
- Bedrock.

Fill consisting of predominately clay was encountered in most of the test holes along most of the alignment.

Topsoil layers ranging from about 600 mm to 1200 mm thick were encountered underlying the fill material in test holes TH08-04-02, TH08-05-01 and TH08-07-01.

Bedrock was encountered at depths of about 12 m to 20 m in the test holes drilled at the Sherwood Park Freeway interchange. Based on the geological maps, the bedrock topography is dominated by an un-named preglacial thalweg tributary to the Beverly preglacial channel, that crosses through this section in a east-west direction immediately north of Sherwood Park Freeway. The depth to bedrock is expected to vary between 15 m and 20 m, typically increasing from east to west. Thin layers of Empress Formation sand and gravel are expected to be present between the till and bedrock layers throughout this section according to the same geological literature.

5.3.6 Section 6 (Hwy 16, Sherwood Drive to Hwy 216)

A stratigraphic section along the alignment of Hwy 16 between Sherwood Drive and 17 Street NW is provided in Drawing No. 19-598-298-4 in Appendix A.

The soil stratigraphy consists of the following generalized sequence within the depth of investigation, in descending order:

- Topsoil;
- Fill;
- Lacustrine clay;
- Sand;
- Clay Till;
- Empress Formation (Sand and Gravel); and
- Bedrock.

Fill consisting of predominately clay was encountered in most of the test holes along the alignment as it passes through the existing Hwy 16 corridor and bridge abutment fills.

Bedrock was encountered at depths ranging from about 15 m to 25 m in the test holes drilled at the Hwy 216/Hwy 16 interchange and CPR railway overpass structures. Sand and rafted bedrock layers were encountered within the clay till layers throughout this section. Based on the geological maps, the depth to bedrock is expected to vary between about 8 m and 30 m through this section.

Empress Formation sand and gravel layers were encountered at depths ranging from about 10 m to 15 m. Thin layers of Empress sand and gravel are expected to be encountered between the till and bedrock layers throughout this section according to the geological literature.

Two test holes (test holes TH06-43 and 44) were also drilled along this section during Thurber's previous 2006 geotechnical investigation.

5.3.7 Material Properties

Following is a brief summary of the material properties of the various strata based on the available geotechnical data. For site specific information refer to the individual test hole logs and Sections 8 through 18 of this report.

5.3.7.1 Topsoil

Topsoil was encountered at ground surface along the NEERR alignment, either overlying fill material or native soil, except for test holes that were drilled through roadway structures and gravel surfaced embankments.

Topsoil was also encountered underlying fill layers in some test hole locations. A summary of the topsoil thicknesses observed during the field investigation is provided in Table 5.2.

The topsoil was typically brown to black, silty, and contained trace to some clay, organics, roots and rootlets. The natural moisture content of the topsoil samples ranged from 9% to 66%.

It should be noted that the depth of topsoil may vary between the locations of the test holes. Additional shallow test pits may be required if a more accurate topsoil quantity estimate is required.

5.3.7.2 Fill

An organic fill layer about 4.6 m thick was encountered at the ground surface elevation at test hole TH08-22-2.

An asphalt layer of about 50 mm to about 330 mm in thickness was encountered at ground surface at bridge abutment test holes TH08-02-02 and TH08-26-02 as well as at most of the roadway alignment test holes.

A 120 mm thick asphalt layer was also encountered underlying the fill layers at a depth of approximately 8.8 m at test hole TH08-12-02.

Sand and gravel layers ranging from 150 mm to 800 mm thick were encountered at test holes TH08-02-02, TH08-12-01, TH08-14-02, TH08-31-2 and in most of the roadway survey test holes, either underlying the asphalt layer or as embankment fill material. The sand and gravel fill was light brown to brown, fine to coarse grained, with varying quantities of silt, clay, gravel, oxides and organics.

Clay fill was encountered in several test holes, and the individual test holes should be referred to for the clay fill properties. The clay fill is generally brown to grey, silty with variable quantities of gravel with silt layers, and some organic intrusions throughout. Atterberg Limits test carried out on selected samples of the clay fill indicated it was medium to high plastic, with plastic limit values ranging from 14% to 24% and a liquid limit values ranging from 32% to 68% (Table 5.1). The corresponding field moisture contents obtained on samples of the clay fill ranged from of 5% to 37% indicating that the moisture content of the clay fill varies from dry of optimum to wet optimum moisture content SPT 'N' values ranged from 4 to 31 indicating a firm to very stiff consistency.

The sand fill was typically brown, fine to coarse grained with varying quantities of gravel, silt and clay. The corresponding field moisture contents obtained on samples of the sand fill ranged from of 2% to 23%. SPT 'N' values typically ranged from 9 to 48 indicating a loose to dense compactness.

TABLE 5.2A

SUMMARY OF TOPSOIL THICKNESS AT 2008 THURBER TEST HOLE LOCATIONS

TEST HOLE	TOPSOIL THICKNESS (m)	TEST HOLE	TOPSOIL THICKNESS (m)
TH08-01-01	-	TH08-24-01	0.18
TH08-01-02	0.8*	TH08-24-02	0.3
TH08-02-01	0.3	TH08-25-01	-
TH08-02-02	-	TH08-25-02	0.8
TH08-03-01	0.15	TH08-26-01	0.18
TH08-03-02	0.13	TH08-26-02	-
TH08-04-01	-	TH08-27-01	0.8
TH08-04-02	0.6*	TH08-27-02	0.8
TH08-05-01	1.2*	TH08-31-01	-
TH08-05-02	0.3	TH08-31-02	0.8
TH08-06-01	-	TH08-32-01	0.45
TH08-07-01	0.3 & 0.75*	TH08-32-02	0.61
TH08-07-02		TH08-32-03	0.23
TH08-08-01	-	TH08-S01	-
TH08-08-02	0.61	TH08-S02	-
TH08-12-01	0.1	TH08-S03	0.3
TH08-12-02	0.2	TH08-S04	-
TH08-14-01	-	TH08-S05	0.3
TH08-14-02	-	TH08-S06	-
TH08-15-01	0.1	TH08-S07	-
TH08-16-01	-	TH08-S08	-
TH08-17-01	0.13	TH08-S09	
TH08-17-02	-	TH08-S10	
TH08-18-01	-	TH08-S11	
TH08-18-02	0.15	TH08-S12	
TH08-19-02	0.15	TH08-S14	
TH08-20-01	0.18 & 0.45*	TH08-S15	0.46
TH08-20-02	0.28	TH08-S16	
TH08-21-02	0.13 & 0.45*	TH08-S17	0.61
TH08-22-01	0.15	TH08-S18	-
TH08-23-01	-	TH08-S20	-
TH08-23-02	0.3	TH06-S21	-

(*) Not at ground surface, underneath fill.

TEST HOLE	TOPSOIL THICKNESS (m)	TEST HOLE	TOPSOIL THICKNESS (m)
TH09-05-1A	0.15	TH09-22-1	0.15
TH09-05-2A	0.25	TH09-22-2	0.15
TH09-06-1A	0.6		
TH09-06-2A	0.1		

TABLE 5.2BSUMMARY OF TOPSOIL THICKNESS AT 2009 THURBER TEST HOLE LOCATIONS

(*) Not at ground surface, underneath fill.

5.3.7.3 Clay

Lacustrine clay was encountered in the majority of test holes below the topsoil, and/or fill and ranged from 0.7 m to 6.4 m in thickness. The clay was typically dark brown to grey, silty, sandy and contained, trace of oxides, gravel, coal, white salts and occasional ironstone inclusions. Sand, silt and coal lenses were encountered within the clay layer in several test holes. Some organics and rootlets were also encountered near the surface.

Natural moisture contents in the clay generally ranged from 9% to 47%. Atterberg limits tests carried out on selected samples indicate that the clay was medium to high plastic, with plastic limits ranging between about 18% and 26% and liquid limits ranging between about 48% and 75% (Table 5.1).

SPT 'N' values typically ranged from 5 to 37 blows per 300 mm penetration indicating a firm to hard consistency.

5.3.7.4 Clay Till

Clay till was encountered below the topsoil or lacustrine clay and fill layers in the majority of deep test holes. The clay till was typically brown to grey, silty, sandy, medium to low plastic, and contained trace to some amount of gravel, clay shale and sandstone inclusions, trace coal, oxides, and gravel with occasional sand and silt lenses.

Natural moisture contents in the clay till ranged from 8% to 35%. Atterberg limit tests conducted on samples of the clay till indicated plastic limits varying between about 12% and 20% and the liquid limits varying between about 26% and 52%, indicating that the clay till is low to high plastic.

SPT 'N' values ranged from 6 blows per 300 mm penetration to 75 blows per 75 mm penetration, indicating firm to very hard consistency. Although not frequently encountered in the test holes, it should be noted that the clay till may contain cobbles and boulders.

Sand and gravel layers were frequently found within the clay till. These inter-till sand and gravel layers were light grey to brown, poorly graded; fine to medium grained and contained trace amounts of silt, clay, oxides, and coal. Natural moisture contents in the inter-till sand and gravel varied between 2% and 25%, with values greater than 10% typically encountered below zones of seepage. SPT 'N' values typically varied between 10 blows and 93 blows per 300 mm penetration, indicating a compact to very dense state.

Ice rafted (reworked) bedrock layers consisting mainly of weathered clay shale and sandstone with siltstone and coal layers were encountered within the clay till in several test holes. With respect to foundation conditions, the ice rafted bedrock can be considered similar to the clay till.

The rafted clay shale was typically grey to brown, silty, bentonitic, and contained pebbles, varying quantities of sand and occasional coal lenses. Natural moisture contents in the rafted clay shale ranged from 15% to 43%. SPT 'N' values ranged from 13 to 90 blows per 300 mm penetration, indicating a variable stiff to very hard consistency in soil mechanics terminology.

The rafted sandstone bedrock was typically brown to black, fine grained, bentonitic and contained trace quantities of silt and oxides. Natural moisture contents ranged from 8% to 35% and SPT 'N' values ranged from 13 to 87 blows per 300 mm penetration, indicating a compact to very dense state in soil mechanics terminology.

Rafted coal layers were also encountered in test holes TH08-14-01, TH08-22-02, TH08-23-01, TH08-23-02, TH08-24-01 and TH08-32-01. The rafted coal layers were black and varied in thickness from about 0.2 m to 0.8 m. Moisture contents typically ranged from 44% to 85%. One SPT 'N' value of 32 blows per 300 mm penetration indicates a hard consistency in soil mechanics terminology.

5.3.7.5 Empress Formation (Sand and Gravel)

Empress Formation sand and gravel deposits were found underlying the clay till in approximately half of the bridge abutment test holes drilled along the Hwy 16 corridor.

The sand was typically light grey to yellowish brown with varying quantities of gravel and contained trace oxides, occasional coal, silt lenses. The natural moisture contents of the sand varied from 2% to 27%, with values greater than 10% typically encountered below zones of seepage. SPT 'N' values ranged from about 8 blows per 300 mm penetration to 110 blows per 300 mm penetration indicating a compact to very dense state.

5.3.7.6 Bedrock

Bedrock consisting predominantly of clay shale and sandstone with occasional siltstone layers and coal seams was encountered either underlying the clay till, or Empress sand in most of the bridge abutment test holes.

The clay shale was typically grey to bluish grey, silty, bentonitic, high plastic and contained siltstone layers, ironstone inclusions and occasional coal layers. Natural moisture contents in the clay shale ranged from 11% to 39%. Plastic limits ranged from about 14% and 29% and liquid limits varied between about 38% and 85%, indicating that the clay shale is medium to high plastic. SPT 'N' values ranged from 14 blows to 91 blows per 300 mm penetration, indicating a stiff to very hard consistency in soil mechanics terminology.

The sandstone bedrock was typically brown to grey fine grained, bentonitic and contained trace quantities of silt and oxides. Natural moisture contents in the sandstone ranged from 13% to 31%. SPT 'N' values ranged from 18 to 97 blows

per 300mm of penetration indicate a compact to very dense compactness in soil mechanics terminology.

Coal layers were encountered underlying the clay shale and sandstone bedrock in test holes TH08-18 and TH08-27. The coal layer was black and varied in thickness from about 0.2 m to 0.5 m. Moisture contents in the coal typically ranged from 37% to 47%. One SPT 'N' value of 50 blows per 250 mm penetration indicates a very hard consistency in soil mechanics terminology.

5.4 Groundwater Conditions

Depths of sloughing and groundwater levels encountered at the test hole locations are shown on the test hole logs in Appendix B and are summarized in Table 5.3.

Standpipe piezometers were installed in the majority of the bridge abutment test holes to allow for future monitoring of groundwater levels.

Groundwater levels were measured at the completion of drilling and after approximately two to six weeks following the completion of drilling. Groundwater levels measured in the test holes varied from 0.7 m to 22.6 m below current ground elevations.

It should be noted that the groundwater levels are relatively short term and may not represent stabilized groundwater levels in some test holes. Further, the groundwater levels may fluctuate due to seasonal variations in precipitation and other climatic factors. Hence, the actual groundwater conditions at the time of construction could vary from those recorded during this investigation.

Further groundwater level readings should be performed to provide long term stabilized water level readings.

	DRILL DEPTH (m)	SLOUGH DEPTH (m)	GROUNDWATER LEVEL OBSERVATIONS (METRES BELOW GROUND SURFACE)				
TEST HOLE NUMBER							
			SEEPAGE DURING DRILLING	FIRST READING	DATE OF THE FIRST READING	LAST READING	DATE OF THE LAST READING
TH08-01-01	30.2	-	7.6	3.1	Sept. 5, 08	2.4	Sept. 19, 08
TH08-01-02	30.2	-	7.3	24.6	Sept. 4, 08	4.1	Sept. 19, 08
TH08-02-01	24.1	11.6	-	-	Aug. 29, 08	2.8	Sept. 19, 08
TH08-02-02	27.1	-	-	10.7	Aug. 28, 08	9.2	Sept. 19, 08
TH08-03-01	19.5	17.7	-	15.2	Sept. 2, 08	7.4	Sept. 19, 08
TH08-03-02	19.5	17.2	7.6	15.2	Sept. 2, 08	3.5	Sept. 19, 08
TH08-04-01B	14.9	13	5.8	N/A	N/A	N/A	N/A
TH08-04-02	22.6	18.7	2.5	15.1	Aug. 27, 08	3.0	Sept. 19, 08
TH08-05-01A	22.6	21.3	3.4	4.4	Aug. 19, 08	4.4	Sept. 19, 08
TH08-05-02	22.6	-	2.3	0.7	Aug. 19, 08	0.9	Sept. 19, 08
TH08-06-01	21.0	-	4.6	N/A	N/A	N/A	N/A
TH08-07-01B	14.9	-	8.4	-	-	7.8	Sept. 19, 08
TH08-07-02	19.5	-	2.3	N/A	N/A	N/A	N/A
TH08-08-01B	22.6	16.2	7.0	4.9	Aug. 19, 08	1.3	Sept. 19, 08
TH08-08-02	22.6	22.1	2.4	6.5	Aug. 19, 08	5.0	Sept. 19, 08
TH08-12-01	20.9	20.0	19.8	DRY	Jul. 25, 08	19.8	Sept. 19, 08
TH08-12-02	24.1	-	13	10.6	Aug. 19, 08	10.0	Nov. 14, 08
TH08-14-01B	19.5	-	0.9	-	-	0.7	Oct. 21, 08
TH08-14-02C	25.6	25.0	24.1	17.2	Sept. 29, 08	17.2	Oct. 21, 08
TH08-15-01C	19.5	9.1	1.8	-	-	1.6	Oct. 21, 08
TH08-16-01	30.2	16.5	DRY	N/A	N/A	N/A	N/A
TH08-16-02	22.1	15.2	DRY	-	-	DRY	Oct. 21, 08
TH08-17-01A	19.5	17.4	13.4	9.1	Oct. 3, 08	8.9	Oct. 21, 08
TH08-17-02A	31.7	18.3	29.7	-	-	19.8	Oct. 21, 08
TH08-18-01B	22.6	4.6	3.5	N/A	N/A	N/A	N/A
TH08-18-02B	19.5	-	3.7	-	-	8.4	Oct. 21, 08
TH08-19-02	18.0	15.2	11.3	-	-	15.9	Oct. 21, 08
TH08-20-01A	22.6	21.5	18.0	20.8	Sept. 29,08	21.3	Oct. 21, 08
TH08-20-02A	22.6	18.9	7.9	-	-	15.5	Oct. 21, 08
TH08-21-02A	19.5	-	16.8	12.7	Sept. 30, 08	11.1	Oct. 21, 08
TH08-22-01	21.0	17.4	-	-	-	6.8	Oct 21, 08
TH08-22-02	20.9	11.7	8.1	DRY	Oct. 1, 08	DRY	Oct 21, 08

TABLE 5.3 GROUNDWATER CONDITIONS

Client: ISL Engineering and Land Services Ltd.

File: 19-598-298

e-file: 08\19\598-298 FINAL rpt

Date: December 15, 2009 Page 24 of 115

					TER LEVEL OF		-
TEST HOLE	DRILL	SLOUGH		(METRES B	ELOW GROUN	D SURFACE)	
NUMBER	DEPTH (m)	DEPTH (m)	SEEPAGE DURING DRILLING	FIRST READING	DATE OF THE FIRST READING	LAST READING	DATE OF LAST READING
TH08-23-01A	14.5	13.6	-	14.1	Oct. 8, 08	14.1	Oct. 21, 08
TH08-23-02A	13.7	10.7	-	1.5	Oct. 8, 08	10.6	Oct. 21, 08
TH08-24-01C	14.9	14.3	4.3	12.6	Oct. 2, 08	14.0	Oct .21, 08
TH08-24-02D	18.0	9.9	-	-	-	4.3	Oct .21, 08
TH08-25-01	18.0	6.1	-	4.9	Sept. 10, 08	2.0	Oct .21, 08
TH08-25-02	19.5	16.5	-	11.4	Sept. 11, 08	18.1	Oct .21, 08
TH08-26-01A	16.5	16.3	3.1	16.2	Oct .3, 08	4.6	Oct. 21, 08
TH08-26-02A	16.5	-	-	-	-	1.9	Oct. 21, 08
TH08-27-01	16.3	-	6.9	6.7	Aug. 19, 08	6.6	Sept. 19, 08
TH08-27-02	15.5	-	13.0	10.6	Aug. 19, 08	7.4	Sept. 19, 08
TH08-31-01	22.6	21.0	21.0	22.4	Jul. 25, 08	22.6	Sept. 19, 08
TH08-31-02	19.1	-	-	N/A	N/A	N/A	N/A
TH08-32-01	21.0	18.0	7.6	-	-	7.2	Dec. 9, 08
TH08-32-02	21.0	-	10.0	-	-	6.1	Dec. 9, 08
TH08-32-03	20.6	10.8	6.9	N/A	N/A	N/A	N/A
TH09-05-01A	19.7	18.7	-	7.7	Aug. 11, 09	1.7	Aug. 20, 09
TH09-05-02A	21.0	19.5	1.8	14.6	Aug. 6, 09	3.5	Aug. 20, 09
TH09-06-01A	22.6	19.8	2.9	10.5	Aug. 5, 09	3.3	Aug. 20, 09
TH09-06-02A	18.3	17.7	1.7	1.5	Aug.7, 09		Aug. 20, 09
TH09-22-01	19.1	17.2	4.3	10.7	Sep. 9, 09	16.1	Sep. 23, 09
TH09-22-02	22.6	21.0	7.2	DRY	Sep. 10, 09	8.7	Sep. 23, 09

TABLE 5.3 GROUNDWATER CONDITIONS (Continued)

Note: * (N/A No Standpipe installed).

5.5 Frost Effects

Table 5.4 presents the expected depths of frost penetration for the various soil types expected along the Hwy 216 and Hwy 16 corridors. The depths of frost penetration have been estimated for the in-situ soils for both the mean annual Air Freezing Index (AFI) and the 50-year return period AFI of 1400°C days and 2200°C days, respectively.

SOIL TYPE	MEAN ANNUAL AFI (1650°C DAYS)	50 YEAR RETURN AFI (2350°C DAYS)
Clay	1.5 m	2.2 m
Clay (Till)	2.0 m	2.8 m
Silt	2.2 m	3.2 m
Sand/ Gravel	2.4 m	3.5 m

TABLE 5.4ESTIMATED DEPTH OF FROST PENETRATION

The mean annual depth of frost penetration could be used for short-term construction cases with some risk; the 50-year return depth is usually chosen for long-term design.

These depths of frost penetration are estimated assuming no insulation cover. If the area is covered with topsoil or significant snow cover, the depth of frost penetration will be less.

6. GEOTECHNICAL EVALUATION AND RECOMMENDATIONS – NEERR AND YELLOWHEAD TRAIL ROAD ALIGNMENTS

6.1 General

The NEERR (Hwy 216) is approximately 12 km in length while the section of Yellowhead Trail (Hwy 16) under the current scope is approximately 4 km in length. The preliminary design gradeline is presented in Drawing Nos. 19-598-298-01 to 19-598-298-05 in Appendix A.

A generalized description of the soil conditions along the alignment is presented in Section 5.

Tables 6.1 and 6.2 present a summary of the estimated ranges of cuts and fills based on the preliminary ultimate grade line drawings as well as the expected soil strata. Deep cuts and high fills associated with grade separations are addressed individually in Sections 8 through 18.

GRADE L	INE SECTION		OSED E LINE	GENERAL STRATIGRAPHY	то	D DISTANCE GWT m)
From	То	Cut (m)	Fill (m)	BELOW ORIGINAL GROUND SURFACE	Below Original Ground Surface	Below Proposed Grade Line
Hayter Road/ CNR	Petroleum Way	1.0	12	See Drawing 19-598-298-3 Up to 10 m of Fill; over 0.5 m to 6 m of Clay; over Silt/gravel/sand; over Clay till; over Empress sand, over Bedrock	6 m to 20 m	9 m to 23 m
Petroleum Way	Sherwood Park Freeway (Including 17 Street NW)	5	6	See Drawings 19-598-298-2, 3 & 5 Up to 8 m of Fill; over 0.5 m to 4 m of Clay; over Clay till; over Empress sand, over Bedrock	2 m to 8 m	2 m to 9 m
Sherwood Park Freeway	Whitemud Drive	3	3	See Drawings 19-598-298-1 & 2 Up to 8 m of Fill; over 0.5 m to 2 m of Clay; over Clay till; over Empress sand, over Bedrock	2 m to 9 m	2 m to 9 m

TABLE 6.1 SUMMARY OF CUT AND FILL ALONG THE NEERR (HWY 216)

GRADE LI	INE SECTION PROPOSED GRADE LINE		GENERAL STRATIGRAPHY	то	D DISTANCE GWT m)	
From	То	Cut (m)	Fill (m)	BELOW ORIGINAL GROUND SURFACE	Below Original Ground Surface	Below Proposed Grade Line
Sherwood Drive	17 Street NW	3	2	See Drawing No. 19-598-298-4 Up to 10 m of Fill; over 0.5 to 8 m of Clay; over Clay till; over Empress sand, over Bedrock	2 m to 15 m	2 m to 23 m

TABLE 6.2 SUMMARY OF CUT AND FILL ALONG YELLOWHEAD TRAIL (HWY 16)

NOTES:

- 1. All depths referred to are approximate, and are in m below existing ground surface referenced to the nearest test holes (except where noted otherwise).
- 2. Groundwater levels were based on November 2008, December 2008, August 2009 & September 2009 piezometer measurements, and may vary during the time of construction from the values reported herein.
- 3. GWT = Groundwater Table.

6.2 Stripping

All topsoil or peat and any unsuitable materials, such as soft and organic-rich soils, should be removed from under the road alignment and beneath fill areas.

As noted in Section, 5.2.3, the depths of topsoil at the test hole locations were quite variable, and the individual test hole logs should be referred to for site-specific information. An organic fill layer with a thickness of 4.5 m was encountered at test hole TH08-22-02.

Further investigation of topsoil and buried organic clay thickness should be carried out during the detailed investigation phase.

THURBER ENGINEERING LTD.

6.3 Cut Slopes

The estimated depths of cuts along the alignment are shown on the profile drawings in Appendix A and summarized in Tables 6.1 and 6.2. The available test holes indicate that the cut slopes will be through mainly firm to stiff clay and clay till, but may also extend through some sand, gravel and clay fill, depending on the cut depths and locations. Table 6.3 summarizes the cut sections based on the proposed alignment.

STATION	LENGTH (m)	CUT DEPTH (m)	MATERIAL WITHIN CUT DEPTH
59+400 to 60+030	630	Up to 1	Clay Fill and Sand Fill
60+500 to 61+250	750	Up to 1	Clay Fill
63+000 to 63+500	500	Up to 3	Sand Fill, Clay Fill and Clay Till
63+700 to 64+500	800	Up to 5	Clay Fill, Clay and Clay Till
65+200 to 65+750	550	Up to 1	Sand Fill and Clay Fill
66+000 to 67+000	1000	Up to 0.5	Sand Fill, Clay Fill, Topsoil and Clay Till
67+000 to 67+300	300	Up to 0.5	Sand Fill and Clay Fill
67+800 to 68+200	400	Up to 0.5	Sand Fill and Clay Fill
68+800 to 68+900	100	Up to 1	Topsoil and Clay Fill

TABLE 6.3SUMMARY OF CUT SLOPE SECTIONS HWY 216

The groundwater levels are generally below the expected depths of cut, except at a few sections as follows where they encroach within about 2 m of the finished grade line:

- Along Sherwood Park Freeway (between Station 20+500 and 21+000, i.e. about 500 m in length);
- Along Hwy 216, near Whitemud Drive (between Stations 59+500 and 61+000, i.e. about 1500 m in length); and
- Along Hwy 216, near Sherwood Park Freeway (between Stations 63+000 to 64+500, i.e. 1500 m in length).

Temporary and permanent drainage may be required in the above sections along Hwy 216 and Hwy 16, as discussed in Sections 6.5 and 6.6 respectively.

Permanent cut slopes of 3H: 1V, or flatter, are recommended in view of the soil and groundwater conditions and long term slope maintenance.

Flatter slopes may be required where cuts extend into silt/sand soils below groundwater. This should be confirmed based on detailed investigations once the locations of such cuts are finalized.

6.4 Fill Slopes

The fill sections along the proposed grade line are shown on the profile drawings in Appendix A. In general, the foundation soils under embankments fills are expected to consist of firm to stiff clay and existing clay and sand fill overlying clay till or rafted clay shale and sandstone bedrock. The depths to groundwater are variable along the alignment.

It is anticipated that the fill materials will come from the cut sections along the alignment and/or from borrow pits and storm ponds adjacent to the alignment. These locations have yet to be determined and were not assessed under the current scope of work.

The on-site fill is expected to consist of mainly clay, silt and sand and clay till which may contain rafted clay shale and sandstone layers depending on the locations and depth of cut. The native clay and clay fill along the cut sections of the alignment are generally wet of Optimum Moisture Content (+2% to +10%) and will therefore require moisture conditioning and/or modification as discussed in Section 6.7.

Silt, where encountered, should be avoided as backfill material since it is frost susceptible and it is not easy to compact. It may be possible to incorporate the silt lower in the embankment cross sections where it will not be subject to frost action or surface erosion.

Permanent fill side slopes comprised of clay soils should be constructed at no steeper than 3H:1V.

Head slopes at grade separation structures constructed of common clay fill may be sloped at 2H:1V for fill heights up to about 10 m, unless specifically noted under the individual grade separations in Section 8 to 18. For fill heights greater than 10 m, the slopes should generally be flattened to 2.5 H:1V, or alternatively stronger fill (e.g. granular fill) or geogrid reinforcement should be used in the head slope area to maintain a head slope of 2H:1V. Results of stability analyses for typical slopes and fill heights are presented in Table D-2 of Appendix D.

It should be noted that high groundwater conditions, i.e. within 2 m of ground surface elevations or at the base of existing fill material, were encountered at the abutment locations for Bridges 1, 4, 5, 7, 8, 14, 15, 25, 26. These may result in the generation of high construction induced excess pore pressure that might affect the global stability of the approach fill embankments.

Installation of wick drains may be required in areas of high fills with high groundwater table to accelerate dissipation of excess construction pore pressures, and accommodate relatively fast construction schedules. Staged construction and/or installation of wick drains are also beneficial in decreasing the amount of long term settlement remaining after fill construction.

Further information on approach fill designs is provided under the individual interchange recommendations, in Sections 8 to 18 of this report. Settlement, stability and construction requirement of high fills should be checked during the detailed design stage.

THURBER ENGINEERING LTD.

Fill slopes consisting of granular fill, reinforced fill or retained fill could be constructed at steeper slope angles at specific locations where required. These slope options should be evaluated during the detailed design.

6.5 Temporary Drainage

Groundwater seepage may be encountered from cut slopes and excavations at locations of expected high groundwater, as identified in Section 6.1 and 6.3 above (refer to stratigraphic cross sections and individual test hole logs to determine expected groundwater conditions).

The seepage may occur at varying depths below the upper few meters. The rate of seepage is expected to be relatively low in the clay, clay fill, and clay till. Therefore, it is expected that the groundwater seepage during construction can be handled by conventional grading practices and temporary ditching along the toe of the cut slopes, if necessary.

However at the locations where extensive wet sand are encountered in deep cuts below the groundwater table, such as found in the test holes drilled for Bridges 14 to 18 at the Hwy216/Hwy 16 interchange, seepage rates could be greater. In such areas, greater attention to controlling drainage during construction will be required

It should be also noted that winter freezing can create icings and block slope drainage, which can trigger instability.

6.6 Permanent Drainage

It is understood that the NEERR roadway will be designed as a rural section with ditches on both sides of the alignment. Groundwater seepage is expected in several cut locations along the proposed alignments, as identified in Section 6.3. Where possible, the gradeline should be raised to avoid deep cuts below the expected groundwater table.

In general, slope seepage should be relatively slow from the clay and clay till materials encountered in the test holes within the depth of expected cut depths, and should not be a significant long-term drainage problem.

Where thick sand layers are encountered below the water table, greater seepage flow rates may be encountered and slope erosion could be a long term problem. In such areas a granular drainage blanket may be required over the lower portion of cut slopes in sand deposits, to control and minimize erosion from groundwater seepage. This may consist of a layer of coarse pit run gravel placed on a non-woven geotextile over the sand. French drains (i.e. gravel filled trenches with or without subdrain pipes) installed down the slope may also be required to control drainage locally.

In areas of high groundwater table, subdrains should also be provided on each side of the roadway near the toe of the cut slopes, where cuts extend below the groundwater table in sand deposits. Subdrains may consist of subdrain pipes placed at least 2 m below ditch level in a trench backfilled with free draining gravel and should be connected to appropriate drainage system. Based on the available roadway grading and test hole information, we anticipate that subdrains may be required in the vicinity of Bridges 4, 5, 7, 8, 14 and 15.

Requirements for permanent slope drainage should be assessed during detailed investigation, when the vertical alignment has been finalized.

6.7 Subgrade Treatment and Frost Design

In general, the subgrade conditions in the cut sections are expected to consist of firm to stiff clay and clay till. In some instances a near surface silt layer and silt lenses that may be present within clay till and are considered to be frost susceptible.

Where subgrades are close to the groundwater table (See Section 6.3) frost action may therefore be a concern for pavement structures constructed on the clay till subgrade. Methods of reducing frost heave effects include:

- raise the vertical alignment to avoid areas of high groundwater;
- subdrainage to lower the groundwater table;
- additional sub-excavation of frost susceptible soils and replacement with non-frost susceptible material in identified problem areas; and

• insulation of the subgrade.

Subgrade drainage was discussed previously and is imperative for the long term performance of the pavement subgrade.

Where the exposed subgrade consists of frost susceptible materials (i.e. silts, clayey silts and sandy silts) in areas of high groundwater, these materials should be subcut to a minimum depth of about 1.0 m below the proposed subgrade elevation. Further investigation of cut areas should be carried out during detailed design. Frost susceptible materials derived from the subcut operations should be wasted or possibly incorporated within the embankment fills elsewhere. The fill should be placed in 150 mm lifts and compacted to Alberta Transportation compaction standards, spread and cross graded to obtain the maximum soil mixing.

The subgrade should be graded with a minimum cross fall of 2% towards side ditches to promote subgrade drainage.

Insulation has been used in previous sections of Anthony Henday Drive to reduce frost effects in the subgrade. Insulation is generally not expected to be required for the NEERR except possibly in some specific areas of deep cuts in frost susceptible soils. These should be reviewed during detailed design.

6.8 Erosion

The native clay and clay till are generally erodible. Permanent cut and fill slopes should be topsoiled and revegetated as soon as possible to reduce potential slope erosion. In deep cuts, installation of erosion mats or other appropriate erosion control measures may be provided to limit erosion. Final grading above the slope should be graded to direct runoff water to areas away from the slope. In addition, water flow in roadway ditches should be evaluated and appropriate erosion protection measures should be provided.

7. GEOTECHNICAL EVALUATION AND RECOMMENDATIONS FOR BRIDGE FOUNDATIONS

7.1 General

The following sections provide general recommendations for foundation types for grade separation structures along the NEERR (Hwy 216) and Yellowhead Trail (Hwy 16) alignments. Site-specific recommendations regarding expected pile depths and basing elevations, and geotechnical capacities are provided for the individual structures in Sections 8 to 18. General recommended construction procedures for foundations are also provided in Appendix I.

Considering the size of this project and number of structures involved it is recommended that a comprehensive pile load test program should be carried out to confirm and optimize the design loads for the NEERR and Yellowhead Trail grade separation structures. A similar program was used recently for the Southeast Anthony Henday Drive and proved to be very beneficial in optimising the pile designs.

Further, the pile design recommendations given in Sections 8 to 18 should be considered preliminary and should be reviewed based on detailed site specific investigations.

The following foundation types are considered feasible for the grade separation structures along the NEERR & Yellowhead Trail, unless noted otherwise in the individual sections.

- Cast-in-Place Concrete End Bearing Piles; and
- Driven Steel Piles.

Where high groundwater conditions and sloughing soils are expected at the bridge structures, driven steel piles would generally be the preferred foundation type for ease of construction.

THURBER ENGINEERING LTD.

Cast-in-place concrete piles are generally more economical choice where competent clay till or bedrock is present at shallow depth. These have been used extensively for grade separations along the Southeast Anthony Henday Drive.

7.2 Cast-in-Place Concrete End Bearing Piles

Cast-in-place concrete end bearing piles may be designed and installed according to the following recommendations:

- a) End bearing piles should be founded at the suggested minimum depths and specified soil or bedrock types for each site, as provided in Sections 8 through 18.
- b) The design values assume a minimum center-to-center pile spacing of 3 pile diameters. The geotechnical resistance of the pile may need to be reduced for piles installed with a closer spacing.
- c) Where sand is encountered within the depth of pile installations temporary steel casing(s) will be required to advance the pile excavations and the pile bases may have to be extended deeper into the underlying clay till in order to form the bases.
- d) Piles constructed through new embankment fills should be evaluated for down drag forces during the detailed design stage, depending on the schedule of construction and details of the pile installations.
- e) Straight shaft or belled piles may be used. In the case of belled piles the bell diameter to shaft diameter ratio should not exceed 3:1, and the bell should not be sloped at more than 30° to the vertical.
- f) A minimum pile depth of 2.5 times the bell diameter has been assumed in calculating the above bearing capacity. If less cover is provided, the specified bearing capacity should be reviewed.
- g) A minimum pile shaft diameter of 400 mm is recommended to prevent voids from forming during pouring of the concrete.

h) As a minimum, and not including structural requirements, a nominal percentage of longitudinal reinforcement (0.5% of the sectional area of the shaft) is required for the full pile length to resist potential uplift forces on the pile due to frost action or seasonal moisture variations. If piles are designed as tension elements, longitudinal reinforcing steel should extend into the pile bells, and the piles should be designed to resist the anticipated uplift stresses.

- i) Concrete should be poured immediately after the completion of drilling and inspection in order to reduce the risk of groundwater seepage and sloughing soil.
- j) Casing should be used if seepage and sloughing conditions become significant during pile installation, as previously described above.

7.3 Driven Steel Piles

THURBER ENGINEERING LTD.

Driven steel piles may be designed and installed according to the following recommendations:

- a) Steel piles (H-section or pipe) should be driven to specified termination set criteria in the very hard clay till, very dense sand or bedrock depending on the site specific geotechnical conditions.
- b) Piles may be designed based on a combination of skin friction and end bearing resistance, using the values given for the individual structures in Sections 8 to 18. Skin friction should be neglected to a minimum depth of 1.5 m below design grade or to the depth of new fills in the calculation of shaft resistance.
- c) The skin friction values should be applied to the plugged (net) perimeter of the steel section and the end bearing resistance should be applied to the plugged end area of the pile tip.

- d) For preliminary design, the factored ULS geotechnical capacity should be limited to a compressive stress of 110 MPa times the cross-sectional area of the steel pile.
- e) Piles constructed through new embankment fills should be evaluated for down drag forces during the detailed design stage.
- f) Steel H-piles and pipe piles should be installed at a minimum pile spacing of three diameters (or flange width) center-to-center.
- g) Driven steel piles should be driven with an appropriately sized hammer depending on the design loads. As a general guideline, the maximum driving energy should not exceed 630 J/cm² of steel cross sectional area to avoid damage to the pile section. The proposed hammers piling rig and methodology should be approved in advance of construction and set criteria should be determined by WEAP analyses.
- h) Piles are expected to set up with time. Where required, selected driven steel piles should be re-driven after a specified period, to confirm set-up capacity.
- Pile driving records should be maintained during driving of all piles and should be assessed by driving analyses to confirm the design load capacity of the piles.
- j) Heave of adjacent piles is a concern for close pile spacing, and should be monitored throughout the driving. All piles indicating heave should be re-driven to at least the former embedment depth. Pile heaving may be reduced by pre-boring, but this may reduce the allowable skin friction.
- k) An out-of-plumb tolerance of 2% is typically specified for driven steel piles. Care will be required in set-up and driving of the piles to meet these objectives.

 Driving of deep steel piles may cause a void near grade surface due to pile "flutter" during driving. Voids should be grouted to maintain contact between the pile and ground resistance to vertical and lateral loads.

7.4 MSE Walls

Mechanically Stabilized Earth (MSE) walls have been used extensively for retention of abutment fills at grade separation structures along the previous sections of the Anthony Henday Drive and are also considered feasible for grade separations along the NEERR and the 5 km section of Yellowhead Trail.

In general, the stability of MSE Walls is governed by the near surface lacustrine clay that is present along most of the proposed NEERR & Yellowhead Trail alignments. This will generally require wider reinforcing zones than the typical minimum widths to satisfy global stability, and also wick drains may be required in some sections. The exception is in underpass structures, where the MSE walls will be depressed below present grade and may be founded on more competent clay till or bedrock.

The internal and global stability, bearing capacity and settlement of MSE walls should be assessed on a site specific basis during the detailed design.

7.5 Cement Type

Thirty-two (32) water soluble sulphate content tests were performed on selected soil samples obtained from the proposed interchanges/grade separation location test holes, in addition to the three from the 2007 investigation. The results of the laboratory water soluble sulphate content tests are summarized on the test hole logs in Appendix B and are presented in Table C-2 in Appendix C.

The results indicate a range in water-soluble sulphate contents from 0% to 0.71% indicating potentially high concentrations of sulphates at several grade separations structures.

THURSER ENGINEERING LTD.

Further testing will be required for individual structures during detailed design and appropriate concrete type and strength will be required in accordance with Table 3 of CSA A23. 1-04, depending on the degree of exposure and sulphate content.

8. HWY216/CNR-HAYTER ROAD (BRIDGES 27 & 28)

8.1 **Project Description**

Preliminary layout of the CNR and Hayter Road grade separations indicates that there will be two new bridge structures carrying Anthony Henday Drive northbound and southbound over the CNR and Hayter Road at this location. It is understood that up to 10 m high approach fills will be required.

8.2 Stratigraphy and Groundwater Conditions

The results of the field drilling program (TH08-27-1 and TH08-27-2) and information provided from previous test holes drilled during the 2007 investigation (TH06-D41 and TH06-D42) indicate that the subsurface conditions generally consist of stiff to very stiff lacustrine clay to a depth of about 2.5 m below existing ground surface over interbedded sand and gravel layers to a depth of about 11.5 m overlying clay shale and sandstone bedrock.

The groundwater table measured on September 19, 2008 was at a depth of about 6.6 m below existing ground surface.

8.3 Geotechnical Evaluation and Recommendations

8.3.1 General

Driven steel piles are expected to be the most appropriate foundations type in view of the presence of thick sand and gravel layers overlying bedrock.

Cast-in-place concrete end bearing piles founded in the underlying clay shale and sandstone bedrock could also be considered; however, these will require temporary casing to extend the piles through the thick sand and gravel into the

bedrock. Recommendations for cast-in-place concrete end bearing piles can be provided upon request.

8.3.2 Driven Steel Piles

Driven steel piles may be designed and installed according to the recommendations contained in Section 6.3 and the following site specific recommendations:

- a) Driven steel piles should be driven to specified termination set criteria in the very hard clay shale or very dense sandstone at expected depths of about 14 m, or greater, below existing ground surface.
- b) Driven steel pipe and H-section piles may be designed based on the factored ULS geotechnical end bearing and skin friction values provided in Table 8.1 below.
- c) Skin friction should not be included within the depth of new abutment fill.

TABLE 8.1 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRIVEN STEEL PILES (HWY 216/CNR & HAYTER ROAD (BRIDGES 27 AND 28)

	AVERAGE	VERTICAL STATIC LOADING				
	DEPTH	Skin Frict	ion (kPa)	End Bearing (kPa)		
SOIL TYPE	BELOW EXISTING GROUND SURFACE	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)	
	(m)					
Clay/Clay Till	0-4	50	20	N/A	N/A	
Sand/Gravel	4-12	95	38	N/A	N/A	
ClayShale/Sandstone	>12	150	60	12000*	4800*	

Note: * For piles founded in very hard clay shale/sandstone below 14 m depth and confirmed by pile driving records.

Client: ISL Engineering and Land Services Ltd. File: 19-598-298 e-file: 08\19\598-298 FINAL rpt

8.3.3 Approach Embankments

Preliminary stability analyses were carried out to assess the short term and long term stability of the bridge head slopes. Results of the stability analyses are represented on Figures 8.1 and 8.2 in Appendix D. Target factors of safety of 1.3 for short term (end of construction) and 1.5 long term were assumed in the stability analyses.

Stability of the approach fill slopes will be governed by the quality of the fill material and by the existing clay underneath in the area near test holes TH08-27-01 and TH08-27-02. Use of better quality fill, staged construction, geogrid reinforcement or a gravel wedge at the base of the fill may be required to achieve an adequate short term factor of safety.

Based on the results of the stability analyses, and observations of existing bridge head slopes in the vicinity, approach fill head slopes and side slopes may be designed at a maximum of 2H:1V and 3H:1V, respectively.

Soil reinforcement and/or gravel wedges may be required to improve the head slope stability depending on the quality of the embankment fill, and the stability should be confirmed during detailed design.

Before fill placement, the upper 0.75 m of soil in the area near TH08-01-02 should be removed as it appears to contain organics (topsoil).

Approach fills should be built with suitable clay fill placed and compacted to AT standards.

9. HWY 216/HWY16 INTERCHANGE (BRIDGES 14 TO 18)

9.1 **Project Description**

The preliminary layout of the Hwy 216/Hwy 16 interchange indicates that Hwy 216 will be elevated over Hwy16 as shown in Drawing No. 19-598-298-3. The existing bridge structure (BF76652) will be replaced with individual bridge structures

carrying the southbound (Bridge 14) and northbound (Bridge 15) lanes of Hwy 216. In addition, two (2) fly over bridge structures will be built to carry the Hwy 216 northbound to Hwy 16 westbound ramp (Bridge 17) and Hwy 216 southbound to Hwy 16 eastbound ramp (Bridge 18) over the Hwy 216 mainline bridges. Bridge 16 will carry the Hwy 216 northbound to Hwy 16 westbound ramp over a loop.

Approach fills up to about 17 m high will be required for the new ramps for the two-level fly over structures.

9.2 Stratigraphy and Groundwater Conditions

The results of the geotechnical investigation, supplemented by the results from previous test holes drilled in 2007 (TH06-D43 and TH06-D44) and information obtained from AT files, indicate that the subsurface conditions are quite variable and consist of mixed layers of lacustrine clay, clay till, gravel and sand and rafted bedrock, overlying Empress Sand over bedrock. The depth to bedrock ranges from about 16 m to 20 m below the original ground surface.

In addition, approach ramps have been previously constructed at the southeast portion of the interchange corresponding to the locations of Bridge 16 and the south abutment of Bridge 17. The height of these existing fills is up to about 17 m. Test holes advanced through the existing approach ramp fills (TH08-16-01, TH08-16-02 and TH08-17-02) indicate that the fill consists of layers of sand fill interbedded with clay fill.

In the southwest portion of this interchange (TH08-14-02C) the soil profile consists of clay and gravel fill to a depth of about 7m over stiff clay of about 1.5 m thickness overlying clay till to a depth 22.1 m. The clay till is underlain by a dense sand layer to a depth of 23.7 m, then clay shale to the end of the test hole at a depth of 25.6 m below existing ground level.

Test holes advanced for the north abutments of Bridges 14, 15, 17 and 18 indicate a thin layer of stiff to very stiff clay and/or clay till underlain by loose to very dense sand and gravel ranging in thickness from 2 m to 13 m overlying clay till interbedded with rafted clay shale and sandstone bedrock layers to depths of approximately 18 m to 20 m, where competent bedrock was encountered.

Where encountered, the underlying bedrock consisted of hard clay shale and very dense sandstone in soil mechanics terminology. Occasional coal layers were also present in the bedrock.

A review of the Atlas of Coal Mine Workings (Spence Taylor, R., 1971) indicated that there are possibly abandoned underground coal mine workings along the Hwy 216 corridor in the vicinity of Bridge 16. According to the literature, a coal mine, identified as No. 0699, was operated by Marcus Collieries Ltd. from 1917 to 1940, to the south of the current Hwy 216/Hwy 16 interchange and had a cover of approximately 33 m to 43 m. No definite information is available regarding the actual north extent of Mine No. 0699, but it is likely to be near the location of Bridge 16. Some cave-in activity, categorized as minor to major, was observed during the operation of Mine No. 0699. No evidence of coal mine workings was noted during the drilling of the test holes that were advanced through about 10 m to 11 m of fill to depths of 22.6 m to 30.1 m for Bridge 16.

The groundwater levels measured in the standpipes ranged from 1.6 m (el. 658 m) to 8.9 m (el. 649 m) below the existing ground surface on October 21, 2008. The groundwater level measured in test hole TH06-D43 on July 31, 2006 was at a depth of about 9.7 m (el. 651.8 m) below existing ground surface.

In the southwest portion of this intersection the groundwater level measured in TH08-14-02C on October 21, 2008 was at a depth of 17.2 m (el. 650 m).below the existing ground level.

9.3 Geotechnical Evaluation and Recommendations

9.3.1 General

Review of the existing Highway 216/Hwy 16 East Bridge drawings (AT bridge file BF76652) indicates that the existing bridges are founded on driven steel H-piles. The design pile depths are noted as being relatively shallow, with tip elevations of 650 m to 652 m, which would place the tips in the upper dense sands and gravels or the underlying clay till and rafted clay shale.

The following foundation types are considered feasible for the new structures:

- Driven Steel Piles; and
- Cast-in-Place Concrete End Bearing Piles.

Due to the variable stratigraphic conditions that include variable thickness and depths of sand layers, and the thickness of some of the abutment fills, driven steel piles are expected to be the most suitable foundation type for the new bridges.

Temporary casing will be required for cast-in-place concrete pile installations due to the presence of the relatively thick sand layers above the bedrock.

- 9.3.2 Driven Steel Piles
 - a) Steel piles should be driven to specified termination set criteria in the very hard clay shale.
 - b) Due to the variation in soil and bedrock conditions and the presence of existing embankment fills at some locations, the pile penetration depths will vary and the recommendations are presented for the separate bridge sites noted above.
 - c) Driven steel pipe and H-section piles may be designed based on the factored ULS geotechnical end bearing and skin friction values provided in Tables 9.1 (Bridges 14 & 15), 9.2 (Bridge 16) and 9.3 (Bridges 17 & 18).
 - d) Skin friction should not be included within the depth of new abutment fill.

TABLE 9.1 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRIVEN STEEL PILES (HWY 216/HWY 16 INTERCHANGE, BRIDGES 14 AND 15)

	AVERAGE DEPTH	VERTICAL STATIC LOADING					
	(ELEVATION)	Skin Fric	tion (kPa)	End Bearing (kPa)			
SOIL TYPE	BELOW EXISTING GROUND SURFACE ⁽¹⁾ (m)	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)		
Existing Fill	2-6 (664-660)	30 ⁽²⁾	12	N/A	N/A		
Clay Till, Sand and rafted Clay Shale	6 – 24 (660 – 642)	60	24	1500 ⁽³⁾	600 ⁽³⁾		
Clay Shale and Sandstone Bedrock	>24 (< 642)	150	60	6000 ⁽⁴⁾	2400 ⁽⁴⁾		

Notes:

- $^{(1)}\,$ Assumed existing average ground elevation of 666 m.
- ⁽²⁾ Applies to existing embankment fill only; ignore skin friction in new fill.
- (3) For piles based in stiff clay till at minimum embedment depth of 10 m and confirmed by pile driving analysis.
- ⁽⁴⁾ For piles based in hard clay shale and sandstone bedrock at el 642 m or lower and confirmed by pile driving analysis.

TABLE 9.2 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRIVEN STEEL PILES (HWY 216/HWY 16 INTERCHANGE, BRIDGE 16)

	AVERAGE	VERTICAL STATIC LOADING				
	DEPTH (ELEVATION)	Skin Fric	tion (kPa)	End Bearing (kPa)		
SOIL TYPE	BELOW EXISTING GROUND SURFACE ⁽¹⁾ (m)	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)	
Existing Fill	2 – 12 (675 – 665)	40 ⁽²⁾	16	N/A	N/A	
Clay Till, Sand and rafted Clay Shale	12 – 34 (665 – 643)	60	24	1500 ⁽³⁾	600 ⁽³⁾	
Clay Shale and Sandstone Bedrock	>34 (< 643)	150	60	6000 ⁽⁴⁾	2400 ⁽⁴⁾	

Notes:

- $^{(1)}$ Assumed existing average ground elevation of 677 m.
- ⁽²⁾ Applies to existing embankment fill only; ignore skin friction in new fill.
- ⁽³⁾ For piles based in stiff clay till at minimum embedment depth of 15 m and confirmed by pile driving analysis.
- ⁽⁴⁾ For piles based in hard clay shale and sandstone bedrock at el 643 m or lower and confirmed by pile driving analysis.

TABLE 9.3 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRIVEN STEEL PILES (HWY 216/HWY 16 INTERCHANGE, BRIDGES 17 AND 18)

	AVERAGE	VERTICAL STATIC LOADING				
	DEPTH (ELEVATION)	Skin Fric	tion (kPa)	End Bearing (kPa)		
SOIL TYPE	BELOW EXISTING GROUND SURFACE ⁽¹⁾ (m)	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)	
Embankment Fill		N/A ⁽²⁾	N/A ⁽²⁾	N/A	N/A	
Clay Till, Sand and rafted Clay Shale	0 –19 (661 – 642)	60	24	1500 ⁽³⁾	600 ⁽³⁾	
Clay Shale and Sandstone Bedrock	>19 (< 642)	150	60	6000 ⁽⁴⁾	2400 ⁽⁴⁾	

Notes:

⁽¹⁾Assumed existing average ground elevation of 661 m.

- ⁽²⁾ Ignore skin friction in new fill.
- ⁽³⁾ For piles based in stiff clay till at minimum embedment depth of 10 m below existing ground and confirmed by pile driving analysis.
- ⁽⁴⁾ For piles based in hard clay shale and sandstone bedrock at el 642 m or lower and confirmed by pile driving analysis.

9.3.3 Cast-in-Place Concrete End Bearing Piles

Cast-in-place concrete end bearing piles may be designed and installed according to the general recommendations provided in Section 7.2 and the following site specific recommendations:

- a) End bearing pile bases should be founded in the very stiff clay till or underlying bedrock at the suggested minimum basing depths or elevations noted in Tables 9.4 to 9.6.
- b) Due to the variation in soil and bedrock conditions and the presence of existing embankment fills at some locations, the pile recommendations are presented for the separate bridge sites noted above.
- c) It should be noted that the piles are expected to extend through sand layers present in the clay till, and hence temporary casings will be required to extend the piles through the sand and allow basing in the underlying clay till or bedrock.
- d) Drilled cast-in-place concrete piles may be designed based on the factored ULS skin friction and end-bearing values provided in Tables 9.4 (Bridges 14 and 15), 9.5 (Bridge 16) and 9.6 (Bridges 17 and 18).
- e) Skin friction should not be included within the depth of new abutment fill.

TABLE 9.4 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR CAST-IN-PLACE CONCRETE PILES (HWY 216/HWY 16 INTERCHANGE, BRIDGES 14 AND 15)

	AVERAGE DEPTH	VERTICAL STATIC LOADING				
	(ELEVATION)	Skin Fric	tion (kPa)	End Bearing (kPa)		
SOIL TYPE	BELOW EXISTING GROUND SURFACE ⁽¹⁾ (m)	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)	
Eviatia e Fill	• •					
Existing Fill	2 – 6 (664 – 660)	30 ⁽²⁾	12	N/A	N/A	
Clay Till, Sand	6 – 24					
and rafted Clay	(660 – 642)	60	24	900 ⁽³⁾	360 ⁽³⁾	
Shale						
Clay Shale and	>24					
Sandstone	(< 642)	200	80	3000 ⁽⁴⁾	1200 ⁽⁴⁾	
Bedrock						

Notes:

 $^{(1)}$ $\,$ Assumed existing average ground elevation of 666 m.

- ⁽²⁾ Applies to existing embankment fill only; ignore skin friction in new fill.
- ⁽³⁾ For piles founded in very stiff clay till or rafted clay shale at suggested tip elevation of 646 m.
- ⁽⁴⁾ For piles founded at least 2 m into hard clay shale and sandstone bedrock at suggested base elevation of 640 m or lower.

TABLE 9.5

RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR CAST-IN-PLACE CONCRETE PILES (HWY 216/HWY 16 INTERCHANGE, BRIDGE 16)

	AVERAGE DEPTH	VERTICAL STATIC LOADING				
	(ELEVATION)	Skin Fric	tion (kPa)	End Bearing (kPa)		
SOIL TYPE	BELOW EXISTING GROUND SURFACE ⁽¹⁾	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)	
	(m)					
Existing Fill	2 – 12 (675 – 665)	40 ⁽²⁾	16	N/A	N/A	
Clay Till, Sand	12 – 34					
and rafted Clay Shale	(665 – 643)	60	24	1350 ⁽³⁾	540 ⁽³⁾	
Clay Shale and Sandstone Bedrock	>34 (< 643)	200	80	3000 ⁽⁴⁾	1200 ⁽⁴⁾	

Notes:

- $^{(1)}$ $\,$ Assumed existing average ground elevation of 677 m.
- ⁽²⁾ Applies to existing embankment fill only; ignore skin friction in new fill.
- ⁽³⁾ For piles based in very stiff clay till at suggested basing elevation of 660 m or lower (note that sand layers are present and pile bases may need to be extended to underlying clay till with temporary casings.
- ⁽⁴⁾ For piles founded at least 2 m into hard clay shale and sandstone bedrock at suggested basing elevation of 640 m.

TABLE 9.6 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR CAST-IN-PLACE CONCRETE PILES (HWY 216/HWY 16 INTERCHANGE, BRIDGES 17 AND 18)

	AVERAGE DEPTH	VERTICAL STATIC LOADING					
	(ELEVATION)	Skin Fric	tion (kPa)	End Bearing (kPa)			
SOIL TYPE	BELOW EXISTING GROUND SURFACE ⁽¹⁾ (m)	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)		
Embankment Fill		N/A ⁽²⁾	N/A	N/A	N/A		
Clay Till, Sand and rafted Clay Shale	0 –19 (661 – 642)	60	24	900 ⁽³⁾	360 ⁽³⁾		
Clay Shale and Sandstone Bedrock	>19 (< 642)	200	60	3000 ⁽⁴⁾	1200 ⁽⁴⁾		

Notes:

- ⁽¹⁾ Assumed existing average ground elevation of 661 m.
- ⁽²⁾ Ignore skin friction in new fill.
- (3) For piles based in stiff clay till at a suggested tip elevation of 646 m or lower (note that sand layers are present and pile bases my need to be extended to underlying clay till or bedrock with temporary casings.
- ⁽⁴⁾ For piles founded at least 2 m into hard clay shale and sandstone bedrock at suggested basing elevation of 640 m (west abutments) and 644 m (east abutments).

9.3.4 Existing Structures

The existing Hwy 216 bridge abutments, over Hwy 16 East, (AT bridge file BF76652-1) were inspected on November 14, 2008 and they appear to be in good condition, as can be seen in Photo 10 of Appendix E. No signs of slope movement or excessive settlement were observed. Some cracks were observed in the head slope concrete panels but they do not appear to be related to slope movements.

The slope angles for the northern abutment at this intersection were estimated with a clinometer and are approximately 2H:1V for the head and 3H:1V for side slopes.

The existing abutment fills in the southeast quadrant of the interchange are up to about 17 m high and have head slopes inclined at approximately 2H:1V.

9.3.5 Approach Embankments

9.3.5.1 Bridges 14 and 15

Approach fill design head slopes and side slopes will be constructed within the existing embankment fills with minor amounts of new fill. Head slopes and side slopes of 2H:1V and 3H:1V, respectively, are considered feasible for the new bridge abutments. Results of the stability analyses are represented on Figures 9.1 and 9.2 in Appendix D. Target factors of safety of 1.3 for short term (end of construction) and 1.5 long term were assumed in the stability analyses.

9.3.5.2 Bridge 16

Approach embankments were constructed through the proposed Bridge 16 site during the original site construction. The existing approach fills are up to about 11 m high and the head slopes are sloped at 2H:1V. The existing embankment is within about 1.5 m of the design embankment level. The existing embankment fill will be cut down about 10 m for the new Bridge 16 head slopes.

Head slopes and side slopes of 2H:1V and 3H:1V, respectively, are considered feasible for the new bridge abutments. Results of the stability analyses are presented on Figures 9.3 and 9.4 in Appendix D. Target factors of safety of 1.3 for short term (end of construction) and 1.5 long term were assumed in the stability analyses.

9.3.5.3 Bridges 17 and 18

The Bridge 17 north abutment fill will be approximately 17 m high, and may comprise of a 14 m retaining wall with a 3 m high toe slope at 2H:1V. The south abutment will be approximately 20 m high and there is an existing approach fill up to within about 2 m of final grade at this location, which is sloped at 2H:1V.

Results of the stability analyses are represented on Figures 9.5 to 9.10 in Appendix D. Target factors of safety of 1.3 for short term (end of construction) and 1.5 long term were assumed in the stability analyses.

Head slopes and side slopes of 2H:1V and 3H:1V, respectively, are considered feasible for the new bridge abutments. However, the north head slope area (up to 17 m high) may have to be constructed using a combination of clay fill and granular fill, or alternatively using slope reinforcement (e.g. geogrids) to achieve the specified factor of safety. In addition, the high fill may need to be stage constructed to maintain the short term and long term stability of the head slopes. An MSE retaining wall is also considered feasible at this location, subject to satisfying global stability and bearing capacity requirements..

The Bridge 18 north abutment head slope will be approximately 9 m high and sloped at 2H:1V. The south abutment head slope will be approximately 12 m high and may comprise of a vertical MSE wall approximately 7 m high and a toe slope approximately 5 m high sloped at 2H:1V.

Head slopes and side slopes of 2H:1V and 3H:1V, respectively, are considered feasible for the new bridge abutments. An MSE wall is considered feasible for the south abutment slope.

The MSE walls will have to be founded on the stiff clay till or underlying sand and the MSE reinforcing zone dimensions should be designed to provide adequate internal and global stability and bearing capacity.

All topsoil must be removed from below the new fills. It is noted that there was up to 0.8 m of topsoil in TH08-18-01B.

10. HWY 216/CPR GRADE SEPARATION (BRIDGES 11, 12 & 13)

10.1 **Project Description**

The preliminary layout of the CPR grade separation indicates that the NEERR will be elevated over the CPR tracks and the westbound to southbound ramp from Hwy 16 to the NEERR, as shown in Drawing No.19-598-298-3.

The enhancements will consist of the replacement of Bridge 11 (Hwy 216 Southbound) and possible upgrades and extensions to Bridge 13 (Hwy 216 north to Hwy 16 access ramp). In addition, a new bridge, identified as Bridge 12, will carry the Hwy 16 northbound lanes.

It is understood that up to 10 m high embankments will be required at the bridge locations with up to 5 m of new fill over the existing bridge abutment fills.

10.2 Stratigraphy and Groundwater Conditions

The results of the field investigation (TH08-12-01 and TH08-12-02), and previously obtained information (AT bridge file BF76650), indicate that the subsurface conditions vary from the north side to the south side of the CPR tracks.

The soil stratigraphy encountered in test hole TH08-12-01, situated on the north side of the CPR railway, generally consisted of clay fill interbedded with sand fill layers to a depth of approximately 4 m, overlying stiff to very stiff clay till interbedded with rafted clay shale and sandstone layers to a depth of 18 m overlying very dense sand and gravel extending to the termination depth of 20.9 m.

The soil stratigraphy encountered in test hole TH08-12-02, situated on the south side of the CPR railway, consisted of a thin topsoil layer overlying clay fill interbedded with thin organic layers to a depth of 8.7 m, underlain by an asphalt layer (expected previous pavement) over stiff to very stiff lacustrine clay with organics over stiff to hard clay till to a depth of 23.8 m overlying a sand layer which extended to the test hole termination depth of 24.1 m.

Based on the available geological maps (Kathol and McPherson, 1975), the subsurface strata may be variable across this site and may include clay till overlying glacial sand and gravel and/or Empress sand overlying bedrock. The estimated depth to bedrock at this site is about 25 m below the original ground level.

A review of the Atlas of Coal Mine Workings (R. Spence Taylor, 1971) indicated that there are possibly abandoned underground coal mine workings along the NEERR corridor in the vicinity of Bridges 11, 12 and 13 at the Hwy 216/CPR overpass with the legal land description of Sections 8 and 9 of 53-23-W4M. According to this literature, a coal mine, identified as No. 0699, was operated by Marcus Collieries Ltd. from 1917 to 1940 and had a cover of approximately 33 m to 43 m. Some cave-in activity categorized as minor to major was observed during the operation of Mine No. 0699. No evidence of coal mine workings and galleries were encountered during the drilling of the test holes for Bridge 12.

Water levels measured in the standpipe piezometers in test holes TH08-12-01 and TH08-12-02 on September 19, 2008 were at depths of 19.8 m and 10.6 m respectively below the existing ground surface.

10.3 Geotechnical Evaluation and Recommendations

10.3.1 General

The following foundation types are considered feasible for the new structures:

- Cast-in-Place Concrete End Bearing Piles; and
- Driven Steel Piles.

10.3.2 Cast-in-Place Concrete End Bearing Piles

Cast-in-place concrete end bearing piles may be designed and installed according to Section 7.2 and the following site specific recommendations:

- a) End bearing piles should be founded in the very stiff clay till at a suggested minimum basing depth of 16 m below existing ground level.
- b) It should be noted that the piles may extend through sand layers present in the clay till, and hence temporary casings will be required to extend the piles to allow basing in the very stiff clay till.
- c) Cast-in-place reinforced concrete piles may be designed based on the factored ULS skin friction and end-bearing values provided in Table 10.1.
- d) Skin friction should not be included within the depth of new abutment fill.

TABLE 10.1 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRILLED CONCRETE END BEARING PILES (HWY 216/CPR GRADE SEPARATION; BRIDGES 11 TO 13)

SOIL TYPE	AVERAGE DEPTH BELOW EXISTING GROUND SURFACE (m)	VERTICAL STATIC LOADING				
		Skin Friction (kPa)		End Bearing (kPa)		
		Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)	
Clay Fill/Clay, Clay Till or Rafted Bedrock	0-16	60	24	1800*	720	

Note: * For piles based in clay till/rafted bedrock at a minimum basing depth of 16 m below existing ground level.

10.3.3 Driven Steel Piles

Driven steel piles may be designed and installed according to Section 7.3 and the following site specific recommendations:

- a) Steel piles should be driven to the specified termination set criteria in the very dense gravel or underlying bedrock. Bedrock was not encountered in the test holes; however based on available geological information (Kathol and McPherson, 1975, Figure 20 and L.D. Adriashek, NTS 83H map), the depth to bedrock is expected to be about 25 m below ground level at this site.
- b) Driven steel pipe and H-section piles may be designed based on the factored ULS geotechnical end bearing and skin friction values provided in Table 12.1 following. The skin friction values should be applied to the plugged (net) perimeter of the steel section and the end bearing resistance should be applied to the plugged end area of the pile tip.
- c) Skin friction should not be included within the depth of new abutment fill.

SOIL TYPE	AVERAGED EPTH BELOW EXISTING GROUND SURFACE (m)				
		Skin Friction (kPa)		End Bearing (kPa)	
		Ultimate	ULS Factored(0.4)	Ultimate	ULS Factored (0.4)
Clay Fill/Clay, Clay Till	0-10	30	12	N/A	N/A
Clay Till/ Rafted Bedrock	10 – 24	60	24	N/A	N/A
Very dense sand and gravel or bedrock	>24	95	38	9000*	3600*

TABLE 10.2 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRIVEN STEEL PILES (HWY 216/CPR GRADE SEPARATION; BRIDGES 11 TO 13)

* For piles based in sand and gravel or hard bedrock below 24 m depth and confirmed by pile driving analysis.

10.3.4 Existing Structures

The existing bridge abutments (AT bridge files BF76650 N-1 and S-2) at this location were inspected on November 14, 2008 and they appear to be in good condition, as can be seen in Photo 11 of Appendix E. No signs of movement or settlement were observed and there are no records or repairs done for this structure. However, some minor bulging was observed at the toe of the head slope at the BF 76650–S2 south abutment.

The slope angles of the south abutments at this intersection were estimated with a clinometer and are approximately 2H:1V for the head and 3H:1V for the side slopes.

10.3.5 Approach Embankments

Stability analyses were carried out to assess the short term and long term stability of the bridge head slopes. Results of the stability analyses are represented on Figures 10.1 and 10.2 in Appendix D. Target factors of safety of 1.3 for short term (end of construction) and 1.5 long term were assumed in the stability analyses.

Approach fill design head slopes and side slopes of 2H:1V and 3H:1V, respectively, are considered feasible for the bridge abutments. It is assumed that the approach fills will be built with suitable clay fill placed and compacted to AT standards.

11 HWY 216/PETROLEUM WAY (BRIDGES 32, 34 & 35)

11.1 **Project Description**

The preliminary layout of the Hwy 216/Petroleum Way grade separation structure is shown in Drawing No.19-598-298-3.

The existing Hwy 216/Petroleum Way underpass structure (BF77416) consists of a steel arch culvert with an approximate span of 11.2 m and a rise of 6 m, supported on spread footings.

It is understood that the existing structure will be replaced by three bridges (BF77416 Structures 2, 3 & 4) that will span over the existing Petroleum Way roadway.

It is also understood that cuts of up to about 6 m in depth into the existing embankment will be required and that this may require staged construction and temporary shoring of the slopes.

Hwy 216 may also be raised by about 1 m over the existing fill at the new bridge locations.

11.2 Stratigraphy and Groundwater Conditions

The results of the field investigation indicate that the subsurface conditions in this area consist of clay fill overlying clay till containing rafted clay shale and sandstone layers interbedded with sand layers extending to the maximum depth of drilling of about 21 m.

The estimated depths of fill ranged from 6 m to 7.5 m below the top of the highway embankment at the test hole locations. The fill consisted of stiff medium to high plastic clay.

The underlying clay till was stiff to very stiff, medium plastic and the rafted bedrock layers consisted of very stiff to hard high plastic clay shale and compact to very dense sandstone in soil mechanics terminology.

Based on the available geological maps (Kathol and McPherson, 1975), the subsurface strata may be variable across the site and may include clay till overlying glacial sand overlying bedrock. The estimated depth to bedrock at this site is about 31 m below the original ground level which is at approximate elevation 677 m.

A review of the Atlas of Coal Mine Workings (Spence Taylor, R., 1971) indicated that there are possibly abandoned underground coal mine workings along the Hwy 216 corridor in the vicinity of Bridge 32. According to this literature, a coal mine, identified as No. 0699, was operated by Marcus Collieries Ltd. from 1917 to 1940, to the south of the current Hwy 216/Hwy 16 interchange and had a cover of approximately 33 m to 43 m. There is some discrepancy as to the actual southern extent of the Mine No. 0699 workings, estimated to be immediately to the north of the current Petroleum Way roadway, as it is stated that the southern limits may have been overestimated by as much as 43 m. Some cave-in activity categorized as minor to major was observed during the operation of Mine No. 0699. No evidence of coal mine workings and galleries were encountered during the drilling of the test holes drilled to depths of 20.6 m to 21 m for Bridges Nos. 32, 34 & 35.

The groundwater level measured in standpipes TH08-32-01 and TH08-32-02 on December 9, 2008 was at a depth of about 6 m and 7.7 m below existing ground surface respectively.

11.3 Geotechnical Evaluation and Recommendations

11.3.1 General

The following foundation types are considered feasible for the new structures:

- Driven Steel Piles; and
- Cast-in-Place Concrete End Bearing Piles.

Due to the variable stratigraphic conditions that include variable thicknesses and depths of sand layers, driven steel piles are expected to be the most suitable foundation type for the new bridges.

Temporary casing will be required for cast-in-place concrete pile installations due to the presence of the relatively thick sand layers within the clay till.

11.3.2 Driven Steel Piles

Driven steel piles may be designed and installed according to section 7.3 and the following site specific recommendations:

- a) Steel piles should be driven to specified termination set criteria in the very dense sand and gravel or underlying bedrock. Bedrock was not encountered in the test holes; however, based on the available geological information (Kathol and McPherson, Figure 20 and L.D. Adriashek, NTS 83H map), the depth to bedrock is expected to be at about 31 m below ground level at this site.
- b) Driven steel pipe and H-section piles may be designed based on the factored ULS end bearing and skin friction values provided in Table 11.1.
 Skin friction should not be included within the depth of new abutment fill.

TABLE 11.1 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRIVEN STEEL PILES ANX 216/DETROL ELIM WAY CRADE SEDERATION. BRIDGES 22, 24 \$

(HWY 216/PETROLEUM WAY GRADE SEPERATION, BRIDGES 32, 34 & 35)

	AVERAGE	VERTICAL STATIC LOADING				
	DEPTH (ELEVATION)	Skin Fric	tion (kPa)	End Bearing (kPa)		
SOIL TYPE	BELOW EXISTING GROUND SURFACE	ULS Ultimate Factored (0.4)	Ultimate	ULS Factored (0.4)		
	(m)					
Existing Fill	2 – 6 (675 – 671)	30	12	N/A	N/A	
Clay Till/ Rafted Bedrock	6 – 10 (671 – 667)	40	16	N/A	N/A	
Clay Till/ Rafted bedrock	10 – 31 (667 – 646)	60	24	1000	400	
Very Dense Gravel& Bedrock	>31 (<646)	100	40	9000*	3600*	

Note: * For piles based in hard bedrock below 30 m depth and confirmed by pile driving analysis.

11.3.3 Cast-in-Place Concrete End Bearing Piles

Cast-in-place concrete end bearing piles may be designed and installed according to section 7.2 and the following site specific recommendations:

a) End bearing pile bases should be founded in the very stiff clay till at a suggested minimum basing depth of 12 m below the top of the embankment. Alternatively, end bearing piles may be extended into the underlying bedrock at a suggested depth of 31 m below the top of embankment.

b) It should be noted that the soil conditions appear to be highly variable, including clay till, rafted bedrock and sand layers. Hence, piles may extend through sand layers present in the clay till, and temporary casings will be required to extend the piles to allow basing in suitable bearing soil.

- c) Drilled cast-in-place reinforced concrete piles may be designed based on the factored ULS skin friction and end-bearing values provided in Table 11.2.
- d) Skin friction should not be included within the depth of new abutment fill.

TABLE 11.2

RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRILLED CONCRETE END BEARING PILES (HWY 216/PETROLEUM WAY GRADE SEPERATION, BRIDGES 32, 34 & 35)

	AVERAGE	VE	VERTICAL STATIC LOADING				
	DEPTH (ELEVATION)	Skin Fricti	ion (kPa)	End Bear	ring (kPa)		
SOIL TYPE	BELOW EXISTING GROUND SURFACE ⁽¹⁾ (m)	Ultimate	ULS Factore d (0.4)	Ultimate	ULS Factored (0.4)		
Existing Fill	2 – 6 (675 – 671)	30 ⁽²⁾	12	N/A	N/A		
Clay Till, Sand & Rafted Bedrock	6 – 31 (671 – 646)	60	24	900 ⁽³⁾	360 ⁽³⁾		
Clay Shale and Sandstone Bedrock	>31 (< 646)	100	40	3000 ⁽⁴⁾	1200 ⁽⁴⁾		

Notes:

⁽¹⁾ Assumed existing average ground elevation of 677 m.

⁽²⁾ Applies to existing embankment fill only; ignore skin friction in new fill.

⁽³⁾ For piles founded in very stiff clay till or rafted clay shale at suggested tip elevation of 665 m.

⁽⁴⁾ For piles founded at least 2 m into hard clay shale and sandstone bedrock at suggested base elevation of 646 m or lower.

11.3.4 Existing Structures

AT files indicate that longitudinal cracks and seams were grouted along both sides of the culvert in 2003. In addition, longitudinal cracks and seams were repaired with a concrete patch along the west half of the inner south side of the culvert. Transverse steel struts encased in concrete were also installed between the culvert support footings at 15 m intervals and the Petroleum Way roadway was repaved.

The side slope angles at both ends of the culvert were estimated with a clinometer to be at 2H:1V.

11.3.5 Embankment Slopes

Stability analyses were carried out to assess the short term and long term stability of the culvert slopes. Results of the stability analyses are represented on Figures 11.1 and 11.2 in Appendix D. Target factors of safety of 1.3 for short term (end of construction) and 1.5 long term were assumed in the stability analyses.

The embankment head slopes may be designed at 2H:1V. Embankment side slopes in the existing fill should be sloped at 3H:1V. It is assumed that the fills will be built with suitable clay fill placed and compacted to AT standards.

12. HWY 216/SHERWOOD PARK. FWY (BRIDGES 5, 6, 7 AND 8)

12.1 **Project Description**

Preliminary layout of the Sherwood Park Freeway grade separation is shown on Drawing No. 19-598-298-2.

The existing bridges on Sherwood Park Freeway over the NEERR will be lengthened and possibly widened (Bridges 7 and 8). The existing embankment fills are about 8 m high.

There will be two new bridges (Bridges 5 & 6) that will carry the ramp from Sherwood Park Freeway eastbound to the Hwy 216/Anthony Henday Drive northbound.

Bridge 5 will pass over Hwy 216 and will involve approach fills ranging from about 8.5 m high at the west abutment to 10 m at the east abutment.

Bridge 6 will pass over the Sherwood Park Freeway and will require an approach fill heights of about 8 m.

12.2 Stratigraphy and Groundwater Conditions

The results of the field drilling program indicate that the subsurface conditions encountered at this site generally consist of clay fill and topsoil to a depth of about 1 m to 3 m below existing ground surface over clay till interbedded with thin sand layers to depths of about 12 m to 20 m over clay shale and sandstone.

Test Hole TH08-07-01 was drilled from the existing Sherwood Park Freeway level near to the west abutment and encountered approximately 7.3 m of clay fill overlying about 0.8 m of buried topsoil (original ground surface).

The bedrock surface appears to dip from east to west, ranging from about elevation 695 to 700 m on the east side of Anthony Henday Drive to 691 m on the west side. The bedrock was noted to be highly weathered and extremely weak (in rock mechanics terminology) or hard (in soils mechanics terminology), with SPT N values increasing from about 15 to 40 in the upper few metres to over 50 below about elevation 690 m.

The groundwater table as measured in September 2008 and most recently on August 20, 2009 in standpipes installed in the test holes in this area appears to be near to the top of the clay till ranging between elevations 704 m and 708 m.

12.3 Geotechnical Evaluation and Recommendations

12.3.1 General

Due to the variation in soil strata across the site, the pile design parameters and approach fill design requirements are presented separately for Bridges 5, 6 and 7 and 8 in the following sections:

12.3.2 Bridge 5

12.3.2.1 Bridge Foundations

The following foundation types are considered feasible for this structure:

- Driven Steel Piles; and
- Cast-in-Place Concrete End Bearing Piles.

Preliminary recommendations are presented in the following sections:

12.3.2.2 Driven Steel Piles

Driven steel piles may be designed and installed according to the general recommendations provided in Section 7.3 and the following site specific recommendations:

- a) Steel piles should be driven to specified termination set criteria in the hard bedrock. Based on the available information, expected depths of penetration will be greater than about 24 m to 27 m below existing ground surface, resulting in pile tip elevations of 684 m or less at both abutments.
- b) Driven steel pipe and H-section piles may be designed based on the factored ULS geotechnical end bearing and skin friction values provided in Table 12.1 following.
- c) Skin friction should not be included within the depth of new abutment fill.

TABLE 12.1 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRIVEN STEEL PILES (HWY 216/SHERWOOD PARK FREEWAY INTERCHANGE, BRIDGE 5)

	DEPTH		RTICAL STATIC LOADING		
SOIL TYPE	EXISTING GROUND SURFACE (m)	Ultimate	ULS Factored (0.4)	ctored Ultimate	ULS Factored (0.4)
Clay/Clay Till	0-10	45	18	N/A	N/A
Clay Till	10 – 20	60	24	N/A	N/A
Clay Till/ Bedrock	> 20	100	40	6000*	2400*

Note: * For piles driven to practical refusal in hard clay shale bedrock below about 24 m to 27 m depth and confirmed by pile driving analysis.

12.3.2.3 Cast-in-Place Concrete End Bearing Piles

Cast-in-place concrete end bearing piles may be designed and installed according to the general recommendations provided in Section 7.2 and the following site specific recommendations:

- a) End bearing pile bases should be founded at least 3 m into hard bedrock at a suggested basing depth of about elevation 687 m. Required pile embedment depths with therefore be about 20 m to 24 m below existing ground surface (i.e. not including the depth of new abutment fills).
- b) It should be noted that the piles will need to extend through sand layers present in the clay till, and hence temporary casings will be required to extend the piles to allow basing in the bedrock.

- c) Drilled cast-in-place reinforced concrete piles may be designed based on the factored ULS skin friction and end-bearing values provided in Table 12.2.
- d) Skin friction should not be included within the depth of new abutment fill.

TABLE 12.2 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRILLED CONCRETE END BEARING PILES (HWY 216/SHERWOOD PARK FREEWAY INTERCHANGE, BRIDGE 5)

	AVERAGE DEPTH	VERTICAL STATIC LOADING				
	BELOW	Skin Fric	tion (kPa)	End Bea	ring (kPa)	
SOIL TYPE	EXISTING GROUND SURFACE (m)	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)	
Clay fill	0-10	50	20	N/A	N/A	
Clay till	10 – 20	60	24			
Clay Till/Bedrock	> 20	100	40	1800*	720*	

Note: * For piles based in very stiff clay till or hard bedrock below 20 m to 24 m depth below existing ground.

12.3.2.4 Approach Fills

Approach fills up to about 8.5 m to 12 m high are required for Bridge 5.

Stability analyses were carried out to assess the short term and long term stability of the bridge head slopes. Results of the stability analyses are presented on Figures 12.1 to 12.6. Target factors of safety of 1.3 for short term (end of construction) and 1.5 for long term were assumed in the stability analyses.

Based on the results of the stability analyses, and observations of existing bridge head slopes in the vicinity, approach fill design head slopes and side slopes of 2H:1V and 3H:1V, respectively, are considered feasible for the new bridge abutments.

For the east abutment, with a new fill height estimated to be in the order of 12 m, the new fill will either have to be placed in staged construction, or with geogrid reinforcement or a gravel wedge in the head slope area to meet the required fill stability.

All poor quality fill and topsoil should be removed from below the approach fill head slopes.

Approach fills should be constructed with suitable clay fill placed and compacted to AT standards.

12.3.3 Bridge 6

12.3.3.1 Bridge Foundations

The following foundation types are considered feasible for this structure:

- Driven Steel Piles, and
- Cast-in-Place Concrete End Bearing Piles.

Preliminary recommendations are presented in the following sections:

12.3.3.2 Driven Steel Piles

Driven steel piles may be designed and installed according to the general recommendations provided in Section 7.3 and the following site specific recommendations:

a) Steel piles should be driven to specified termination set criteria in the hard bedrock. Based on the available information, expected depth of penetration

will be greater than about 23 m below existing ground surface, resulting in pile tip elevations of 688 m or lower.

b) Driven steel pipe and H-section piles may be designed based on the factored ULS geotechnical end bearing and skin friction values provided in Table 12.3 following. Skin friction should not be included within the depth of new abutment fill.

TABLE 12.3 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRIVEN STEEL PILES (HWY216/SHERWOOD PARK FREEWAY INTERCHANGE, BRIDGE 6)

	AVERAGE DEPTH BELOW	VERTICAL STATIC LOADII Skin Friction (kPa) End Bear				
SOIL TYPE	EXISTING GROUND SURFACE (m)	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)	
Clay/Clay Till	0-10	45	18	N/A	N/A	
Clay Till/Bedrock	10 – 21	60	24	N/A	N/A	
Bedrock	> 21	100	40	6000*	2400*	

Note: * For piles driven to practical refusal in hard clay shale bedrock below 23 m depth and confirmed by pile driving analysis.

12.3.3.3 Cast-in-Place Concrete End Bearing Piles

Cast-in-place concrete end bearing piles may be designed and installed according to the general recommendations provided in Section 7.2 and the following site specific recommendations:

 a) End bearing pile bases should be founded in the very stiff clay till or hard clay shale bedrock at suggested basing elevation of 690 m for both abutments. Required pile embedment depths will therefore be about 21 m

for both abutments, as measured below existing ground surface (i.e. not including the depth of new abutment fills).

- b) It should be noted that the piles will need to extend through sand layers present in the clay till, and hence temporary casings will likely be required to extend the piles to allow basing in the bedrock.
- c) Drilled cast-in-place reinforced concrete piles may be designed based on the factored ULS skin friction and end-bearing values provided in Table 12.4.
- d) Skin friction should not be included within the depth of new abutment fill.

TABLE 12.4 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRILLED CONCRETE END BEARING PILES (HWY 216/SHERWOOD PARK FREEWAY INTERCHANGE, BRIDGE 6)

		VERTICAL STATIC LOADING				
	DEPTH BELOW	Skin Fric	tion (kPa)	End Bearing (kPa)		
SOIL TYPE	EXISTING GROUND SURFACE (m)	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)	
Clay/Clay Till	0-10	50	20	N/A	N/A	
Clay Till/Bedrock	10 – 21	60	24	N/A	N/A	
Bedrock	> 21	100	40	1800*	720*	

Note: * For piles based in very stiff clay till or hard bedrock below 21 m below existing ground surface (Elev. 690 m).

12.3.3.4 Approach Fills

Approach fills up to about 12 m high are required for Bridge 6.

Stability analyses were carried out to assess the short term and long term stability of the bridge head slopes. Results of the stability analyses are presented on Figures 12.3 to 12.6. Target factors of safety of 1.3 for short term (end of construction) and 1.5 for long term were assumed in the stability analyses.

Based on the results of the stability analyses, and observations of existing bridge head slopes in the vicinity, approach fill design head slopes and side slopes of 2H:1V and 3H:1V, respectively, are considered feasible for the new bridge abutments.

The fills will either have to be placed in staged construction, or with geogrid reinforcement or with a gravel wedge in the head slope are to meet the required fill stability.

All poor quality fill and topsoil should be removed from below the approach fill head slopes.

Approach fills should be constructed with suitable clay fill placed and compacted to AT standards.

12.3.4 Bridges 7 and 8

12.3.4.1 Bridge Foundations

The following foundation types are considered feasible for this structure:

- Driven Steel Piles, and
- Cast-in-Place Concrete End Bearing Piles.

Preliminary recommendations are presented in the following sections:

12.3.4.2 Driven Steel Piles

Driven steel piles may be designed and installed according to the general recommendations provided in Section 7.3 and the following site specific recommendations:

a) Steel piles should be driven to specified termination set criteria in the hard bedrock. Based on the available information, expected tip elevations are expected to be about 685 m at the west abutment and 688 m at the east abutment, resulting in pile penetration depths of about 25 m or greater below existing underside of abutment level.

- b) Driven steel pipe and H-section piles may be designed based on the factored ULS geotechnical end bearing and skin friction values provided in Table 12.5 following.
- c) The existing fill has been in-place for a relatively long time period. Therefore, skin friction may be included within the depth of the existing abutment fill.

TABLE 12.5 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRIVEN STEEL PILES

(HWY 216/SHERWOOD PARK FREEWAY INTERCHANGE, BRIDGES 7 AND 8)

	AVERAGE	VE	ERTICAL ST		NG
	DEPTH BELOW Skin Frid		tion (kPa)	End Bearing (kPa)	
SOIL TYPE	ABUTMENT LEVEL (m)	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)
Clay/Clay Till	0-10	45	18	N/A	N/A
Clay Till	10 – 25	60	24	N/A	N/A
Bedrock	> 25	100	40	6000*	2400*

Note: * For piles driven to practical refusal in hard clay shale bedrock at depths of about 25m depth and confirmed by pile driving analysis.

-ILIRBER ENGINI

12.3.4.3 Cast-in-Place Concrete End Bearing Piles

Cast-in-place concrete end bearing piles may be designed and installed according to the general recommendations provided in Section 7.2 and the following site specific recommendations:

- a) End bearing pile bases should be founded in the very stiff clay till or hard clay shale bedrock at suggested basing elevation of 690 m for the west abutment and 695 m for the east abutment. Required pile embedment depths will therefore be about 22 m for the west abutment and 17 m for the east abutment, as measured below the underside of abutment pile cap.
- b) It should be noted that the piles will need to extend through sand layers present in the clay till, and hence temporary casings will likely be required to extend the piles to allow basing in the bedrock.
- c) Drilled cast-in-place reinforced concrete piles may be designed based on the factored ULS skin friction and end-bearing values provided in Table 12.6.
- d) The existing fill has been in-place for a relatively long time period. Therefore, skin friction may be included within the depth of the existing abutment fill

TABLE 12.6

RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRILLED CONCRETE END BEARING PILES (HWY 216/SHERWOOD PARK FREEWAY INTERCHANGE, BRIDGES 7 AND 8)

	AVERAGE DEPTH	VE	ERTICAL ST	RTICAL STATIC LOADING			
			tion (kPa)	End Bearing (kPa)			
SOIL TYPE	ABUTMENT LEVEL (m)	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)		
Clay/Clay Till	0-10	50	20	N/A	N/A		
Clay Till/Bedrock	10 – 20	60	24	N/A	N/A		
Clay Till/Bedrock	> 20	100	40	1800*	720*		

Note: * For piles based in very stiff clay till or hard bedrock at a maximum tip elevation of about 690 m for west abutment and el 695 m for the east abutment.

12.3.4.4 Existing Structures

The existing bridges abutments (Bridges Files at this location were inspected on November 14, 2008 and they appear to be in good condition, as can be seen in Photos 2 to 4 in Appendix E.

At the eastern abutments no signs of movement, settlement or cracks were observed. No signs of movement or settlement were observed at the western abutment as well, however, some cracks were noticed in the concrete panels that cover the head slope. Despite these cracks, which do not appear to be related to slope instability, the abutments appear to be performing well. There are also no records or repairs done for both structures.

The slope angles of the abutments at this intersection were estimated with a clinometer and they are approximately 2H:1V for the abutment head slopes. The side slopes of the east abutments are at around 5H:1V and the west abutments side slopes were estimated at around 3H:1V.

12.3.4.5 Approach Cuts

Approach cuts up to about 8.5 m high through the existing embankment fills will be required for Bridges 7 and 8.

Stability analyses were carried out to assess the short term and long term stability of the bridge head slopes. Results of the stability analyses re presented on Figures 12.1 and 12.2. Target factors of safety of 1.3 for short term (end of construction) and 1.5 for long term were assumed in the stability analyses.

Based on the results of the stability analyses, and observations of existing bridge head slopes in the vicinity, approach fill design head slopes and side slopes of 2H:1V and 3H:1V, respectively, are considered feasible for the new bridge abutments.

13. 17 ST NW/SHERWOOD PK. FREEWAY (BRIDGE 4)

13.1 **Project Description**

Preliminary layout of the 17 Street/Sherwood Park Freeway grade separation indicates that a new bridge will be built to replace the existing bridge structure. (Drawing No. 19-598-298-5 in Appendix A) It is understood that up to 8.5 m high approach fill embankments will be required at the bridge location.

13.2 Stratigraphy and Groundwater Conditions

The results of the field drilling program indicate that the subsurface conditions in Test Hole 08-04-02B consist of clay fill to a depth of 2.5 m below existing ground surface over topsoil and clay to a depth of 4.6 m, overlying clay till interbedded with occasional thin sand layers to a depth of about 22.6 m. Similar subsurface conditions were encountered in TH08-04-01B; however no topsoil or clay layers were observed.

A review of available geological information (Kathol & McPherson, 1975) indicates that the anticipated depth to bedrock at this location may be at about 30 m below the existing ground surface.

The groundwater level measured on September 19, 2008 in TH08-04-02B was at a depth of 3 m below ground level.

13.3 Geotechnical Evaluation and Recommendations

13.3.1 General

Driven steel piles are considered the most feasible foundation type for this bridge. The piles may have to be extended to specified termination set criteria in the bedrock at depths of about 30 m below existing ground surface.

Cast-in-place concrete end bearing piles are not expected to be feasible as the clay till is relatively soft and is not expected to provide adequate end bearing support for cast-in-place concrete pile. In addition, the underlying bedrock is expected to be quite deep and likely not practical for extending end bearing piles to this depth.

13.3.2 Driven Steel Piles

Driven steel piles may be designed and installed according to Section 7.3 and the following site specific recommendations:

- a) Steel piles (H-section or pipe) should be driven to specified termination set criteria in the bedrock at an expected depth of about 30 m below existing ground surface.
- b) Driven steel piles may be designed based on the factored ULS geotechnical end bearing and skin friction values provided in Table 13.2 following.
- c) Skin friction should not be included within the depth of new abutment fill.

TABLE 13.2 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRIVEN STEEL PILES (17 STREET/SHERWOOD PARK FREEWAY GRADE SEPARATION, BRIDGE 4)

	AVERAGE	VE	VERTICAL STATIC LOADING				
	DEPTH BELOW	Skin Fric	tion (kPa)	End Bearing (kPa)			
SOIL TYPE	EXISTING GROUND SURFACE (m)	Ultimate	ULS Factored (0.4)	Ultimate N/A	ULS Factored (0.4)		
Clay Fill	0-2	N/A	N/A	N/A	N/A		
Clay/Clay Till	2 - 10	40	16	N/A	N/A		
Clay Till	10 – 20	60	24				
Clay Till/Bedrock	>20	60	24	2000*	800		

Note: * For pile tips founded in hard clay till or bedrock and confirmed by pile driving records.

13.3.3 Existing Structures

The existing bridge abutments were inspected on November 14, 2008 and they appeared to be in good condition, as can be seen in Photos 5 and 6, Appendix E. No signs of movements or settlements were observed and there are no records or repairs done for this structure. Some cracks were observed in the head slope concrete panels of the north abutment but they not appear to be related to geotechnical problems.

The slope angles of the north abutment were estimated at approximately 2H: 1V for the head slopes and 3H: 1V for the side slopes.

13.3.4 Approach Embankments

Stability analyses were carried out to assess the short term and long term stability of the bridge head slopes. Results of the stability analyses are represented on

Figures 13.1 and 13.2 in Appendix D. Target factors of safety of 1.3 for short term (end of construction) and 1.5 for long term were assumed in the stability analyses.

Based on the results of the stability analyses, and observations of existing bridge head slopes in the vicinity, approach fill design head slopes and side slopes of 2H:1V and 3H:1V, respectively, are considered feasible for the new bridge abutments.

It is recommended that the upper 3 m of soil in the area near TH08-04-02 should be removed as it contains organics (topsoil) and this should be replaced with compacted clay fill meeting AT specifications.

Approach fills should be constructed with suitable clay fill placed and compacted to AT standards.

14. HWY216/WHITEMUD DRIVE INTERCHANGE (BRIDGES 1, 2 & 3)

14.1 **Project Description**

Preliminary layout of the Hwy 216/Whitemud Drive interchange indicates that there will be three new bridges to supplement the existing two bridges over Hwy 216.

Bridge 1 will carry the eastbound to northbound ramp from Whitemud Drive over Hwy 216 and will involve approach fills up to about 8 m to 9 m high.

Bridges 2 and 3 will carry Whitemud Drive east bound and west bound (respectively) over the EB to NB ramp. The bridge approaches will be up to 9 m high and will involve combined cut and fill.

14.2 Stratigraphy and Groundwater Conditions

The results of the field drilling program indicate that the subsurface conditions at the three new bridge sites generally consist of thin clay fill and lacustrine clay layers extending to a depth of about 2 m below the existing ground surface overlying stiff to very stiff clay till.

Clay shale and sandstone bedrock was observed in test holes TH08-01-01 (Bridge 1) at a depth of about 29.7 m below the existing ground. Clay shale and sandstone bedrock were also encountered in TH08-02-01 and -02 at about 21 m depth.

The clay shale and sandstone were very weathered and hard in soils mechanics terminology.

The groundwater levels measured on September 19, 2008 in the standpipes ranged from about 2 m to 10.7 m below ground level depending on the test hole location. Groundwater levels at the existing bridge sites were determined to be within about 2 m of the original ground surface at the time of Thurber's original 1997 investigation.

14.3 Geotechnical Evaluation and Recommendations

14.3.1 General

The following foundation types are considered feasible for support of the abutments of the three proposed bridges:

- Cast-in-Place Concrete End Bearing Piles, and
- Driven Steel Piles.

14.3.2 Cast-in-Place Concrete End Bearing Piles

The existing Whitemud Drive bridge structures over Hwy 216 are founded on cast-in-place concrete end bearing piles founded in the clay till.

Cast-in-place concrete end bearing piles founded in the clay till may be designed and installed according to the recommendations provided in Section 7.2 and the following site specific recommendations:

a) End bearing pile bases should be founded in the clay till at a suggested minimum basing depth of 15 m below existing ground level.

- b) Alternatively, for Bridges 2 and 3, end bearing piles may be extended into the underlying bedrock at a minimum basing depth of about 22 m below existing grade. The bedrock appears to be deeper than 30 m below the existing ground surface at Bridge site 1 and hence, end-bearing piles in bedrock are not considered feasible at this site.
- c) It should be noted that the piles may extend through sand layers present in the clay till, and hence temporary casings will be required to extend the piles to allow basing in the clay till and the underlying bedrock.
- d) Drilled cast-in-place concrete piles may be designed based on the factored ULS skin friction and end-bearing values provided in Table 14.1.
- e) Skin friction should not be included within the depth of new abutment fill.

TABLE 14.1

RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRILLED CONCRETE END BEARING PILES (HWY 216/WHITEMUD DRIVE INTERCHANGE, BRIDGES 1, 2 AND 3)

	AVERAGE	VERTICAL STATIC LOADING				
	DEPTH BELOW	Skin Fric	Skin Friction (kPa)		ring (kPa)	
SOIL TYPE	EXISTING GROUND SURFACE (m)	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)	
Clay fill/ Lacustrine clay	0-2	N/A	N/A	N/A	N/A	
Clay till	2-20	60	24	800*	320*	
Bedrock**	>20	100	40	1800**	720**	

Note: * For pile tips in clay till at a suggested minimum basing depth of 15 m below existing ground surface.

Note: ** For pile tips in bedrock at suggested minimum depth of 22 m below existing ground surface (Bridges 2 and 3 only).

14.3.3 Driven Steel Piles

Driven steel piles (H-section or pipe) may be designed and installed according to Section 7.3 and the following site specific recommendations:

- a) Steel piles should be driven to specified termination set criteria in the hard clay shale and sandstone bedrock. Depths of pile embedment are expected to be in the order of 30 m or greater at all three bridge sites.
- b) Driven steel pipe and H-section piles may be designed based on the factored ULS end bearing and skin friction resistance values provided in Table 14.2 following.
- c) Skin friction should not be included within the depth of new abutment fill.

TABLE 14.2 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRIVEN STEEL PILES (HWY 216/WHITEMUD DRIVE INTERCHANGE, BRIDGES 2 AND 3)

	AVERAG	VERTICAL STATIC LOADING				
	DEPTH BELOW	Skin Fric	tion (kPa)	End Bearing (kPa)		
SOIL TYPE	EXISTING GROUND SURFACE (m)	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)	
Clay Fill/ Lacustrine Clay	0-2	N/A	N/A	N/A	N/A	
Clay Till	2-20	60	24	N/A	N/A	
Clay Till	>20	60	24	2000*	800*	
Clay Shale/ Sandstone Bedrock**	>20	100	40	6000**	2400**	

Notes: * For pile tips in clay till at depths of 20 m or greater below ground level and confirmed by pile driving analysis.

** For pile tips in bedrock at depths of 25 m or greater (Bridge Sites 2 and 3) and 30 m or greater (Bridge Site 1) below ground level and confirmed by pile driving analysis.

14.3.4 Existing Structures

The existing bridge abutments were inspected on November 14, 2008 and appeared to be in good condition, as can be seen in Photo 1, Appendix E. No signs of movement, settlement or cracks were observed and there are no records or repairs done for this structure.

The slope angles of the eastern abutment at this intersection were estimated with a clinometer and they are approximately 2H:1V and 3H:1V for the head and side slopes respectively.

14.3.5 Approach Embankments

Stability analyses were carried out to assess the short term and long term stability of the bridge head slopes. Results of the stability analyses are represented on Figures 14.1 to 14.3. Target factors of safety of 1.3 for short term (end of construction) and 1.5 for long term were assumed in the stability analyses.

Based on the results of the stability analyses, and observations of existing bridge head slopes in the vicinity, approach fill design head slopes and side slopes of 2H:1V and 3H:1V, respectively, are considered feasible for the new bridge abutments.

All poor quality fill and topsoil should be removed from below the approach fill head slopes.

Approach fills should be constructed with suitable clay fill placed and compacted to AT standards.

15. HWY 16/SHERWOOD DRIVE (BRIDGE 31)

15.1 **Project Description**

Preliminary layout for the Hwy 16/Sherwood Drive grade separation indicates that Sherwood Drive will cross over Hwy 16 on a new bridge.

It is understood that up to 8.5 m high embankments will be required at the bridge location and that both 2H:1V head slopes or retaining walls up to 8.5 m in height are considered at this location.

15.2 Stratigraphy and Groundwater Conditions

The results of the field drilling program indicate that the subsurface conditions generally consist of gravel and clay fill to a depth of 1.2 m below existing ground surface overlying clay till to a depth of 13.7 m to 15.2 m, over dense to very dense sand and gravel to a depth of 18.3 m to 22.6 m. Clay shale was encountered in

TH08-31-02 below the lower sand layer at a depth of 22.6 m below ground level. In TH08-31-02, a topsoil layer 0.8 m thick was encountered.

The groundwater level measured in standpipe TH08-31-01 on August 19, 2008 was at a depth of about 22.6 m below existing ground surface.

15.3 Geotechnical Evaluation and Recommendations

15.3.1 General

The following foundation types are considered feasible for this structure:

- Driven Steel Piles; and
- Cast-in-place Concrete End Bearing Piles.

15.3.2 Driven Steel Piles

Driven steel piles may be designed and installed according to Section 7.3 and the following site specific recommendations:

- a) Steel piles should be driven to specified termination set criteria in the dense to very dense sand or gravel layers or underlying bedrock Based on available information, the depth to practical refusal is expected to be in the order of 20 m or greater below existing ground level.
- b) Driven steel pipe and H-section piles may be designed based on the factored ULS geotechnical end bearing and skin friction values provided in Table 15.2 following.
- c) Skin friction should not be included within the depth of new abutment fill.

TABLE 15.2 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRIVEN STEEL PILES (HWY 16/SHERWOOD DRIVE GRADE SEPARATION, BRIDGE 31)

SOIL TYPE	AVERAGE DEPTH BELOW EXISTING	VERTICAL STA SKIN FRICTION (kPa)		DEPTH BELOW (kPa) (kPa		EARING
	GROUND SURFACE (m)	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)	
Clay Fill/Clay Till	0-15	60	24	N/A	N/A	
Dense to very dense sand/gravel	15 -22	95	38	9000*	3600*	
Dense to very dense sand/gravel or hard clay shale	> 22	120	48	9000*	3600*	

Note: * For pile tips founded in very dense sand/gravel or bedrock at depths greater than 15 m below existing ground level or greater, and confirmed by pile driving records.

15.3.3 Cast-in-place Concrete End Bearing Piles

Cast-in-place concrete end bearing piles may be designed and installed according to Section 7.2 and the following site specific recommendations:

- a) Cast-in-place concrete end bearing piles should be founded in the clay till at a suggested minimum basing depth of 10 m below existing ground level.
- b) Cast-in-place concrete end bearing piles founded in the clay till may be designed based on the factored ULS skin friction and end-bearing values provided in Table 15.1.
- c) Skin friction should not be included within the depth of new abutment fill.

TABLE 15.1 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR CAST-IN-PLACE CONCRETE PILES (HWY 16/SHERWOOD DRIVE GRADE SEPARATION, BRIDGE 31)

SOIL TYPE	AVERAGE DEPTH	VERTICAL STATIC LOADING			
	BELOW	SKIN FRICTION (kPa)		END BEARING (kPa)	
	GROUND SURFACE (m)	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)
Clay Till	0 - 10	60	24	1000*	400*

Note: * For pile bell founded in very stiff clay till at a minimum depth of 10 m below existing ground level.

15.3.4 Approach Embankments

Stability analyses were carried out to assess the short term and long term stability of the bridge head slopes. Results of the stability analyses represented on Figures 15.1 and 15.2 in Appendix D. Target factors of safety of 1.3 for short term (end of construction) and 1.5 long term were assumed in the stability analyses.

Based on the results of the stability analyses, and observations of existing bridge head slopes in the vicinity, approach fill head slopes and side slopes may be designed at a maximum of 2H:1V and 3H:1V.

Alternatively MSE retaining walls up to 10 m high are considered feasible. The MSE wall structural backfill zone should be designed to provide adequate global stability factor of safety. Results of the stability analyses are presented in Figures 15.3 and 15.4 in Appendix D.

Before fill placement, the upper 0.75 m of soil in the area near TH08-31-02 should be removed as it contains organics (topsoil).

16. HWY 16/BROADMOOR BOULEVARD (BRIDGES 23 & 24)

16.1 **Project Description**

The preliminary layout of the Hwy 16/Broadmoor Boulevard interchange indicates that the existing two lane bridge structure over Hwy 16 (AT bridge file BF76648-1) will be replaced with a longer wider four lane structure at this location (Bridge 24).

In addition, a new bridge structure (Bridge 23) is planned to the west of Bridge 24. Bridge 23, situated on the north side of Hwy 16, will carry the NB to WB ramp over the Hwy16/Yellowhead Trail NB to WB ramp.

The preliminary layout of the Hwy 16/Broadmoor Boulevard interchange is shown in Drawing No.19-598-298-3. It is understood that the new bridge approach fills will be approximately 8 m to 10 m high.

16.2 Stratigraphy and Groundwater Conditions

The results of the field drilling program indicate that the subsurface conditions generally consist of clay fill, topsoil and clay to depths of 0.2 m to 4.7 m below existing ground surface overlying clay till interbedded with rafted bedrock and occasional sand layers extending to depths ranging from 9.2 m to 17.7 m overlying sand and gravel layers which extended to test hole termination depth.

The groundwater level measured on October 21, 2008 in standpipes varied considerably from 4.3 m in TH08-24-02D to 14.3 in test hole TH08-23-02A. It appears that there may be two distinct water tables in this area. The upper water table appears to be perched within the upper till layer at an elevation between 664 m and 665.2 m. The lower water table was noted at an elevation between 652.4 m and 654.9 m, within the underlying sand.

16.3 Geotechnical Evaluation and Recommendations

16.3.1 General

The following foundation types are considered feasible for these structures:

- Cast-in-Place Concrete End Bearing Piles, and
- Driven Steel Piles.

16.3.2 Cast-in-Place Concrete End Bearing Piles

Cast-in-place concrete end bearing piles may be designed and installed according to the recommendations provided in Section 7.2 and the following site specific recommendations:

- a) End bearing pile bases should be founded in the very stiff clay till or rafted clay shale at a suggested basing elevation of about 660 m. The corresponding pile embedment lengths from the existing ground surface are therefore about 9 m to 14 m for Bridge 24, and about 6 m for Bridge 23.
- b) It should be noted that the piles may extend through sand layers present in the clay till, and hence, temporary casings will be required to extend the piles to allow for basing in the very stiff clay till or rafted bedrock.
- c) Drilled cast-in-place concrete piles may be designed based on the factored ULS skin friction and end-bearing values provided in Table 16.1.

TABLE 16.1

RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRILLED CONCRETE END BEARING PILES (HWY 16/BROADMOOR BLVD, BRIDGES 23 AND 24)

SOIL TYPE	AVERAGE DEPTH BELOW EXISTING GROUND SURFACE (m)	VERTICAL STATIC LOADING				
		SKIN FRICTION (kPa)		END BEARING (kPa)		
		Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)	
Clay Till/ Rafted bedrock	0-10	60	24	1350* 900**	540* 360**	

Notes: * Bridge 24 for pile tips in clay till/rafted bedrock at a minimum depth of 10 m below existing ground surface.

** Bridge 23 for pile tips in clay till/rafted bedrock at a minimum depth of 10 m below existing ground surface.

16.3.3 Driven Steel Piles

Driven steel piles may be designed and installed according to Section 7.3 and the following site specific recommendations:

- a) Steel piles should be driven to specified termination set criteria in the dense to very dense sand and gravel or underlying bedrock. Based on available information, piles tips are expected to extend about 20 m below existing ground surface, resulting in pile tip elevations of about 650 m.
- a) Driven steel pipes and H-section piles may be designed based on the factored ULS end bearing and skin friction values provided in Table 16.2.

TABLE 16.2 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRIVEN STEEL PILES (HWY 16/BROADMOOR BLVD, BRIDGES 23 AND 24)

SOIL TYPE	AVERAGE DEPTH BELOW EXISTING GROUND SURFACE (m)	VERTICAL STA SKIN FRICTION (kPa)		ATIC LOADING END BEARING (kPa)	
		Ultimate	UL Factored (0.4)	Ultimate	ULS Factored (0.4)
Clay Till/					
Rafted Bedrock	0-12	60	24	N/A	N/A
Sand/Gravel*					
	>12*	95	38	9000**	3600**

Notes: * Depth to sand and gravel layer varies, refer to nearest test holes.

** For pile tips founded in very dense sand/gravel at a minimum basing depth of about 15 m below existing ground surface and confirmed by pile driving analysis.

16.3.4 Existing Structures

The existing north and south bridge abutments over Hwy 16 (AT bridge file BF76648-1) were inspected on November 14, 2008, and they appeared to be in good condition, as can be seen in the Photos 7 to 9, in Appendix E. The bridge showed no sign of slope movement or settlement along the head and side slopes.

A concrete retaining wall was built in 2006 to accommodate an additional exit ramp traffic lane at the south abutment, and this also showed no visible signs of movement or settlement. The slope angles of both abutments at this bridge were estimated with a clinometer and they are approximately 2H:1V and 3H:1V for the head and side slopes respectively.

The existing bridge (AT bridge file BF76649), located approximately 70 meters northwest of the proposed Bridge 23, also appears to be in good condition despite the fact that some bulging and cracking in the concrete panels were observed in

the lower part of the abutment head slopes. Growing vegetation was also observed in between concrete panels. The slope angles of both abutments at this bridge were estimated with a clinometer and they are approximately 2H:1V and 3H:1V for the head and side slopes respectively.

16.3.5 Approach Embankments

Stability analyses were carried out to assess the short term and long term stability of the bridge head slopes. Target factors of safety of 1.3 for short term (end of construction) and 1.5 long term were assumed in the stability analyses.

Approach fill design head slopes and side slopes of 2H:1V and 3H:1V, respectively, are also considered feasible for the Bridge 23 and Bridge 24 abutments. Results of the stability analyses, represented on Figures 16.3, 16.4, 16.5 & 16.6, are included in Appendix D.

Alternatively, an MSE wall founded on clay till is considered feasible for the Bridge 24 abutments. Results of the stability analyses, represented on Figures 16.7 and 16.8, are included in Appendix D. All topsoil and poor quality fill would have to be removed from underneath the MSE structural backfill zones. In addition, the internal and global stability and bearing capacity should be checked for the designed wall configuration, to determine the width of the MSE structural backfill zone.

The approach fill for all abutments will be built with suitable clay fill placed and compacted to AT standards.

17. HWY 16/CPR GRADE SEPARATION (BRIDGES 19, 20, 21, 22 & 33)

17.1 **Project Description**

The preliminary layout of the Hwy 16/CPR grade separation indicates that the existing eastbound (Bridge 20) and westbound (Bridge 21) structures are elevated over the CP Rail. The existing bridges will be widened and lengthened.

In addition, new bridge structures will carry the Hwy 216 southbound to Hwy 16/YHT eastbound ramp (Bridge 19) and the Hwy16/YHT eastbound to Broadmoor Boulevard east ramp (Bridges 22 and 33) over the CPR and both the WB to SB and NB to EB ramps.

The preliminary layout of the Hwy 16/CPR grade separation is shown in Drawing No. 19-598-298-4. It is understood that the new bridge approach fills will be approximately 10 m high.

17.2 Stratigraphy and Groundwater Conditions

The results of the field drilling program indicate that the subsurface conditions encountered in this area generally consist of topsoil and clay fill to depths of 2.8 m to 8.8 m below existing ground surface overlying clay till interbedded with rafted bedrock which extended to depths of about 12.2 m to 19.1 m, overlying sand and gravel layers.

Similar soil conditions were identified in the AT drawings for the existing bridges where the sand and gravel layers extended to depths of at least 18 m below original ground level.

Based on the available geological maps (Kathol and McPherson, 1975), the subsurface strata may be variable across this site and may include clay till overlying glacial sand and gravel over bedrock. The estimated depth to bedrock is expected to range from about 15 m to greater than 20 m below original ground level at the base of the existing embankment fills.

The groundwater table measured on October 21, 2008 in the standpipes installed in the 2008 test holes in this area was at an elevation ranging between 651.5 m and 652 m in all test holes except for TH08-21-02A, where it was measured at an elevation of 663.7 m.

The groundwater table measured on September 23, 2009 in the standpipes installed in the 2009 test holes in this area was at an elevation ranging between 652.3 m and 660.3 m in test hole TH09-22-01 and TH09-22-02.

17.3 Geotechnical Evaluation and Recommendations

17.3.1 General

The following foundation types are considered feasible for this structure:

- Cast-in-Place Concrete End Bearing Piles; and
- Driven Steel Piles.

17.3.2 Cast-in-Place Concrete End Bearing Piles

Review of the existing bridge drawings indicate that the bridge structures are founded on cast-in-place concrete belled end bearing piles founded in the clay till and rafted bedrock above the underlying sand and gravel, at basing elevations of about 655 m.

Cast-in-place concrete end bearing piles may be designed and installed according to Section 7.2 and the following site specific recommendations:

- a) End bearing pile bases should be founded into the very stiff clay till at a suggested basing depth of about 12 m below original ground level (tip basing depth of about 655 m). The pile bases should be founded above the underlying sand/gravel layer.
- b) It should be noted that the piles may extend through sand layers present in the clay till, and hence temporary casings will be required to extend the piles to allow basing in the bedrock.
- c) Drilled cast-in-place reinforced concrete piles may be designed based on the factored ULS skin friction and end-bearing values provided in Table 17.1.
- d) Skin friction may be included within the depth of existing (old) fills for Bridges 20 and 21. However skin friction should not be included within the depth of new abutment fill for Bridge 19.

TABLE 17.1

RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRILLED CONCRETE END BEARING PILES (HWY 16/CPR GRADE SEPARATION, BRIDGES 19, 20, 21, 22& 33)

SOIL TYPE	AVERAGE DEPTH BELOW EXISTING TOP OF EMBANKMENT (m)	SKIN FF	RTICAL STA RICTION Pa)	TIC LOADING END BEARING (kPa)	
		Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)
Clay Fill (old)*	2-8	40	16	N/A	N/A
Clay, Clay Till/ Rafted Bedrock	8 - 18	60	24	1000**	400**

Notes: * Apply skin friction in existing fill below 2 m from top of embankment for Bridges 20 and 21. Ignore skin friction in all new fill including Bridges 19, 22 & 33.
** For pile tips in clay, clay till/rafted bedrock at depths of 12 m or greater below existing around surface.

17.3.3 Driven Steel Piles

Driven steel piles may be designed and installed according to Section 7.3 and the following site specific recommendations:

- a) Steel piles should be driven to specified termination set criteria in the very dense sand and gravel or underlying bedrock. Based on available information, depth to refusal is expected to be about 20 m or greater below original ground elevation (estimated tip elevation of about 645 m).
- b) Driven steel piles may be designed based on the factored ULS geotechnical end bearing and skin friction values provided in Table 17.2 following.
- c) The existing fill at Bridges 20 and 21 has been in-place for a relatively long time period. Therefore, skin friction may be included within the depth of the existing abutment fill.

d) Skin friction should however be ignored within the depth of new fills at Bridge 19.

TABLE 17.2

RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRIVEN STEEL PILES (HWY 16/CPR GRADE SEPARATION, BRIDGES 19, 20, 21, 22 & 33)

	AVERAGE DEPTH	VE		ATIC LOAD	ING	
SOIL TYPE	BELOW	•	Friction Pa)	End Bearing (kPa)		
SOLTTE	GROUND SURFACE (m)	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)	
Clay fill (old)*	2 – 8	30*	12	N/A	N/A	
Clay, Clay Till/ Rafted Bedrock	8 – 18	60	24	N/A	N/A	
Dense to very dense Sand/Gravel	> 18	95	38	9000**	3600**	

Notes: * Apply skin friction in existing fill below 2 m from top of embankment for Bridges 20 and 21. Ignore skin friction in all new fill including Bridges 19, 22 & 33.

** For pile tips driven to dense to very dense sand/gravel layer at depths of 18 m or greater below original ground level, and confirmed by pile driving analysis.

17.3.4 Existing Structures

The existing bridge abutments at this location were inspected on November 14, 2008 and they appeared to be in good condition. No signs of movement or settlement were observed. Some cracks were observed in the head slope concrete panels but they not appear to be related to geotechnical problems.

17.3.5 Approach Embankments

Stability analyses were carried out to assess the short term and long term stability of the bridge head slopes. Results of the stability analyses are represented on

Figures 17.1 to 17.6 in Appendix D. Target factors of safety of 1.3 for short term (end of construction) and 1.5 for long term were assumed in the stability analyses.

Based on the results of the stability analyses, and observations of existing bridge head slopes in the vicinity, approach fill design head slopes and side slopes of 2H:1V and 3H:1V, respectively, are considered feasible for the new bridge abutments.

An MSE wall is also considered feasible for the Bridge 19 embankment. (Figures 17.3 and 17.4 in Appendix D) Internal and global stability as well as bearing capacity need to be checked during detailed design, and this will determine the requirements for the MSE granular zone and reinforcing dimensions.

18. HWY 16/HWY 216 INTERCHANGE RAMPS (BRIDGES 25 & 26)

18.1 **Project Description**

Bridges 25 and 26 are located at the Hwy 216/Hwy 16 Interchange and are shown on Drawing No. 19-598-298-4, in Appendix A.

Bridge 25 will carry the EB to NB and EB to SB ramps over a northbound eastbound ramp, connecting the 116 Avenue NW commercial area to Hwy 16, and will involve approach fills up to about 8 m high.

Bridge 26 will carry the southbound to westbound ramp over the relocated Hwy 16 westbound to 17 Street NW exit ramp and will involve approach cut/fill slopes ranging from 8 m (east abutment) to 12 m (west abutment).

18.2 Stratigraphy and Groundwater Conditions

The results of the field drilling program indicate that the subsurface conditions generally consist of clay fill, topsoil and clay to a depth of about 3.3 m below existing ground surface overlying clay till with occasional sand, clay and rafted bedrock interbedded at a depth about 14.3 m to 16 m below ground level overlying bedrock.

The bedrock consists of very hard clay shale and very dense sandstone with SPT 'N' values typically greater than 100 below about 2 m from the top of bedrock.

A review of the Atlas of Coal Mine Workings (R. Spence Taylor, 1971) indicated that there are possibly abandoned underground coal mine workings along the Hwy 216 and Hwy 16 corridors in the vicinity of Bridges 25 and 26. According to this literature, a coal mine, identified as No. 0699, was operated by Marcus Collieries Ltd. from 1917 to 1940, to the south of the current Hwy 216/Hwy 16 interchange and had a cover of approximately 33 m to 43 m. A second coal mine identified as No. 0091 was operated by Ottewell Coal Co. Ltd., from 1903 to 1951, under the designation of the Ottewell Clover Bar Mine, along the current Hwy 16 alignment, west of the current Hwy 216/Hwy 16 interchange and had a cover reported to be up to 24 m. These two mines were connected by a drainage way and a return airway of unknown depths. Mine No. 0091 had a history of cave-ins during its operation, notably, in 1917, along the roadway boundary of legal Sections 17 and 8 of TWP53-RGE23-W4M, which corresponds to the existing alignment of Hwy 16. Some cave-in activity categorized as minor to major was observed during the operation of Mine No. 0699. No evidence of coal mine workings and galleries were encountered during the drilling of the test holes drilled to depths of 16.5 m to 19 m for Bridges 25 and 26.

The groundwater levels measured on October 21, 2008 in the standpipes was at about 2 m to 5 m below ground surface in two of the three test holes.

18.3 Geotechnical Evaluation and Recommendations

18.3.1 General

The following foundation types are considered feasible for this structure:

- Cast-in-Place Concrete End Bearing Piles, and
- Driven Steel Piles.

18.3.2 Cast-in-Place Concrete End Bearing Piles

Cast-in-place concrete end bearing piles may be designed and installed according to the recommendations provided in Section 7.2 and the following site specific recommendations:

- a) End bearing pile bases should be founded at a suggested minimum depth of about least 12 m below the existing ground elevation into the very stiff clay till. Alternatively, end bearing pile scan also be founded 2 m into the underlying bedrock at a suggested minimum depth of about 18 m below existing ground surface.
- b) It should be noted that the piles may extend through sand layers present in the clay till, and hence, temporary casings will be required to extend the piles to the recommended basing depths.
- c) Drilled cast-in-place reinforced concrete piles may be designed based on the factored ULS skin friction and end-bearing values provided in Table 18.1.
- d) Skin friction should not be included within the depth of new abutment fill.

TABLE 18.1

RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRILLED CONCRETE END BEARING PILES (HWY 16/HWY 216 INTERCHANGE RAMPS, BRIDGES 25 AND 26)

		VE	RTICAL ST	ATIC LOADI	NG	
	DEPTH BELOW	Skin Fric	tion (kPa)	End Bearing (kPa)		
SOIL TYPE	EXISTING GROUND SURFACE (m)	Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)	
Clay Fill (Old) /Topsoil/Clay	0-2	N/A	N/A	N/A	N/A	
Clay Till	2-16	60	24	1000*	400*	
Bedrock	> 16	150	60	3000**	1200**	

Note: * For piles installed in clay till at a minimum basing depth of 12 m below the existing ground.

** For pile tips founded at least 2 m into hard bedrock at depths of 18 m below existing ground.

18.3.3 Driven Steel Piles

Driven steel piles may be designed and installed according to Section 7.3 and the following site specific recommendations:

- a) Driven steel piles should be driven to specified termination set criteria in the bedrock. Tip depths are expected to be in the order of 18 m to 20 m below existing ground level at Bridge 25 and at 16 m to 18 m at Bridge 26.
- b) Driven steel pipe and H-section piles may be designed based on the factored ULS end bearing and skin friction values provided in Table 18.2.
- c) Skin Friction should not be included within the depth of new abutment fill.

TABLE 18.2 RECOMMENDED END BEARING AND SKIN FRICTION VALUES FOR DRIVEN STEEL PILES (HWY 16/HWY 216 INTERCHANGE RAMPS, BRIDGES 25 AND 26)

	AVERAGE DEPTH BELOW		VERTICAL STATIC LOADING Skin Friction (kPa) End Bearing (k				
SOIL TYPE		Ultimate	ULS Factored (0.4)	Ultimate	ULS Factored (0.4)		
Clay fill/Topsoil/Clay	0-2	N/A	N/A	N/A	N/A		
Clay Till	2-16	60	24	N/A	N/A		
Bedrock	> 16	150	60	12000*	4800*		

Note: * For piles driven to practical refusal in bedrock and confirmed by driving records.

18.3.4 Approach Embankments

Stability analyses were carried out to assess the short term and long term stability of the head slopes. Results of the stability analyses are presented on Figures 18.1 to 18.4 in Appendix D. Target factors of safety of 1.3 for short term (end of construction) and 1.5 for long term were assumed in the stability analyses.

Based on the results of the stability analyses, and observations of the existing bridge head slopes in the vicinity, approach fill design head slopes and side slopes of 2H:1V and 3H:1V, respectively, are considered feasible for the bridge abutments.

All poor quality fill and topsoil should be removed from below the approach head slopes. Approach fills should be constructed with suitable clay fill placed and compacted to AT standards.

19. PRELIMINARY SURFACING STRATEGY

19.1 Background Information

The following information and references were utilized in the determination of the pavement structures for new construction and the design of the overlay for rehabilitation:

- Alberta Transportation (AT) 2008 Traffic volume, Vehicle Class, Travel and ESAL report;
- 2008 ESAL History report;
- AT Primary Highways: 2008 PMS Highway Summary report;
- AT As-Built Cross Sections for Highways 216:04 and 16:18;
- AT 2008 Turning Movement Summary Diagrams 95510, 94460, 93465, and 94490 for the intersections on Highway 216;
- AT 2008 Turning Movement Summary Diagrams 95510, 158800, 159160, 96520 for the intersections on Highway 16;
- City of Edmonton (COE) Traffic Volumes Weekday peak Hours Monitoring 1997-2002;
- COE 2041 Estimated Truck Percentages for Anthony Henday;
- AT 2008 Falling Weight Deflectometer (FWD) data for Highway 216:02;
- TRANS IRI and Wheel Path Rutting Data Analysis;
- AT Pavement Design Manual, Edition 1 (June 1997);
- AT Guidelines for Assessing Pavement Preservation Treatments and Strategies (July 2006);
- AT Design Bulletin #13/2003, Revisions to Pavement Design Manual for Selection of ACP Mix Types and Asphalt Binder Grades;
- AT Design Bulletin #15/2003, Pavement Design Manual Revisions: Recommended Minimum Thickness First Stage Asphalt Concrete Pavement;
- Surfacing Strategy Rehabilitation Highway 216:02 (km 2.10 to km 3.35) and Highway 216:04 (km 0 .00 to 6.41) (EBA Report dated January 2001);
- Surfacing Strategy Rehabilitation Highway 216:02 (km 0.00 to 7.623 NBL and km 0.00 to 7.604 SBL) (EBA Report dated May 2002); and

 Surfacing Strategy – Rehabilitation Highway16:18 (EB & WB) (km 2.10 to km 3.35) (EBA Report dated March 2004).

In addition ISL provided the following information to be used in the design:

- Traffic volume flow sheets for NEERR Stage 1 (year 2041), which indicated both AM and PM peak hour flows along the routes and at each intersection along the routes. Copies of these drawings are provided in Appendix F.
- Opening of the NEERR is planned for the year 2011.
- Opening day traffic volumes are estimated by dividing the 2041 traffic by 1.6 based on the following:
 - 2011 Metro population 1.0 million
 - 2041 Metro population 1.6 million
 - Traffic Growth Factor 1.6
 - Annual growth factor 2.0 %

The AT 2008 PMS Highway summary report and as-built cross-sections indicates that the existing Highway 16 west of the west City limits was constructed between 1967 and 1973 and the existing Anthony Henday Drive south of Highway 16 was constructed between 1965 and 1973.

19.2 Pavement and Subgrade Modulus

A review was conducted on the subgrade resilient modulus determinations which were reported in the EBA surfacing strategies for Highways 216:04 and 16:18. The review was supplemented with an analysis of the 2008 FWD data for Highway 216:04 which was provided by AT. Based on our assessment of the available data, a design subgrade resilient modulus of 30,000 kPa was used.

19.3 Traffic Volumes

Traffic data was provided to Thurber that presented 2041 projected peak AM and PM traffic volumes. The AM and PM traffic volumes and the volume for each direction of travel were averaged to determine the average traffic flow per direction. The 2041 traffic flow volume data was divided by a factor of 1.6 to obtain opening day (2011) traffic volumes, and multiplied by a factor of 10 to estimate the

Average Annual Daily Traffic (AADT). The distribution of SU (single unit) and TT (tractor trailer) trucks was estimated from the turning movement diagrams and/or the truck percentages from the COE 2041 estimate for Anthony Henday Drive. Truck factors of 0.881 for SU and 2.073 for TT, respectively, were used to calculate the design traffic volumes. Lane distribution factors were then used to estimate the traffic volume in the design lane. Traffic distribution factors of 0.6, 0.7, and 0.85 were used for the 8 lane, 6 lane and 4 lane divided configurations, respectively. The growth rate provided by ISL was increased from 2 percent to 3 percent for consistency with AT design procedures.

Based on our discussions with AT, it was understood that perpetual pavement structures are required for the new pavement structures for the HWY 216 mainline and associated ramps. Conventional pavement structures are required for the portions of HWY 216 to be rehabilitated, the cross roads including HWY 16 main line, and the ramps associated with HWY 16. The design period for perpetual pavements is 50 years while the design period for conventional pavements is 20 years.

The above parameters were used to determine traffic levels for HWY 216:04 and HWY 16:18 main lines, and for each of the associated cross roads and ramps. Based on an as assessment of the traffic levels, typical design traffic levels were selected for the HWY 216 and HWY 16 main lines, low volume and high volume cross-streets, and low volume and high volume ramps as shown in Table 16.1 of the following page. The traffic levels are also presented graphically in Drawing No. 19-598-297-2 to 6 in Appendix G.

TABLE 19.1 DESIGN ESALs

ROAD ELEMENT	2011 AVERAGE DAILY ESALS IN DESIGN LANE	DESIGN PERIOD (years)	ESALs IN DESIGN LANE (3% Growth)
Main Line (HWY 216 new construction perpetual pavement)	3500	50	144 x 10 ⁶
HWY 216 Ramps (perpetual pavement) Low Volume High Volume	<500 500 – 1500	50 50	20.6 x 10 ⁶ 61.8 x 10 ⁶
Main Line (YHT and HWY 216 rehab conventional pavement)	3500	20	34.3 x 10 ⁶
Cross Roads (conventional pavement) Low Volume High Volume	<1000 1000 –1500	20 20	9.81 x 10 ⁶ 14.7 x 10 ⁶
YHT Ramps (conventional pavement) Low Volume High Volume	<500 500 – 1500	20 20	4.9 x 10 ⁶ 14.7 x 10 ⁶

19.4 Pavement Structure for New Construction

The 1993 AASHTO design method was used to design conventional and perpetual pavement structures for new construction. The following design input parameters were used for the design of the pavement structures:

Initial Serviceability:	4.2
Terminal Serviceability:	2.5
Reliability:	90% (5 to 10 x 10 ⁶ ESALs)
	95% (> 10 x 10 ⁶ ESALs
Overall Standard Deviation:	0.45
High Temperature Zone:	Zone 2/3

The pavement structures in Table 19.2 were derived from the design inputs presented previously. The pavement structures are similar to other sections of Anthony Henday Drive which have already been designed and/or constructed.

ROAD ELEMENTS	STRUCTURAL NUMBER	PAVEMENT DESIGN	ACP MIX TYPE	ASPHALT CEMENT TYPE
Main Line Perpetual Pavement High Volume Ramps Perpetual Pavement	220 198	2 nd Stage ACP: 50 mm(1 lift) over 1 st Stage ACP: 120 mm(2 lifts) over 1 st Stage ACP: 140 mm(2 lifts) over 1 st Stage ACP: 100 mm(1 lift) over GBC: 400 mm 2 nd Stage ACP: 50 mm(1 lift) over 1 st Stage ACP: 100 mm(2 lifts) over 1 st Stage ACP: 110 mm(2 lifts) over 1 st Stage ACP: 100 mm(1 lift) over	Type H1 Type H1 Type S3* Type H1 Type H1 Type H1 Type S3*	PG 64-37 PG 58-37 PG 58-34 PG 58-34 PG 64-37 PG 58-37 PG 58-34 PG 58-34
Low Volume Ramps Perpetual Pavement	173	GBC: 400 mm 2 nd Stage ACP: 50 mm(1 lift) over 1 st Stage ACP: 100 mm(2 lifts) over 1 st Stage ACP: 50 mm(1 lifts) over 1 st Stage ACP: 100 mm(1 lift) over GBC: 400 mm	Type H1 Type H1 Type H1 Type S3*	PG 64-37 PG 58-37 PG 58-34 PG 58-34
Main Line Conventional Pavements	184	2 nd Stage ACP: 50 mm(1 lift) over 1 st Stage ACP: 100 mm(2 lifts) over 1 st Stage ACP: 70 mm(1 lifts) over 1 st Stage ACP: 100 mm(1 lift) over GBC: 400 mm	Type H1 Type H1 Type H1 Type H1**	PG 64-37 PG 58-37 PG 58-34 PG 58-34
High Volume Cross Roads and Ramps Conventional Pavements	166	2 nd Stage ACP: 60 mm(1 lift) over 1 st Stage ACP: 120 mm(2 lifts) over 1 st Stage ACP: 100 mm(1 lift) over GBC: 400 mm	Type H1 Type H1 Type S3 Type H1**	PG 58-37 PG 58-34 PG 58-34

TABLE 19.2 PRELIMINARY PAVEMENT STRUCTURES

TABLE 19.2 (Continued)

Low Volume		2 nd Stage ACP: 50 mm(1 lift) over	Type H1	PG 58-37
Cross Roads	450	1 st Stage ACP: 110 mm(2 lifts) over	Type H1	PG 58-34
Conventional	150	1 st Stage ACP: 100 mm(1 lift) over	Type H1**	PG 58-34
Pavement		GBC: 350 mm		
Low Volume		2 nd Stage ACP: 60 mm(1 lift) over	Type H1	PG 58-37
Ramps	404	1 st Stage ACP: 50 mm(2 lifts) over	Type H1	PG 58-34
Conventional	131	1 st Stage ACP: 100 mm(1 lift) over	Type H1**	PG 58-34
Pavement		GBC: 350 mm		

Note: * - Design air voids for be selected at the lowest value within the range of 2.5 to 3.0 % such that all other mix design criteria (excluding VFT) are met.

** - Bottom lift can be S3

The final stage pavement ACP thickness should be confirmed based on FWD testing prior to placing.

19.5 Preliminary Overlay Design

19.5.1 General

Some portions of Highway 216:04 and a majority of Highway 16:18 will be incorporated into the new roadway system.

Data was not available for the loops and ramps for the intersections along Highway 216:04 and Highway 16:18, and therefore these roadways were not included in the assessment.

A detailed site reconnaissance was not included as part of the present work scope. It is assumed that a site reconnaissance will be conducted as part of the detailed surfacing design, and that the recommendations provided in Table 19.3 may be adjusted or modified based on the results of the site reconnaissance.

19.5.2 Highway 216:04

The approximate chainages of Highway 216:04 that are to be retained include the following:

- km 2. to 2.75,
- km 3.5 to 4.25, and
- km 7.5 to 9.7.

The data from the PMS summary, and the 2008 IRI and rut data are summarized in Table 19.5. The 2004 - 2006 IRI and rut data are also presented graphically in Appendix I.

TABLE 19.3EXISTING PAVEMENT DATA

KILOMETER	EXISTING STRUCTURE	2007 IRI (mm/m) AVE (RANGE)	IRI TRIGGER	2007 RUT DEPTH, (mm) AVERAGE (RANGE)		RAGE	
				Max	imum	Aver	age
				Inside	Outside	Inside	Outside
	·	Hwy 216:	04 NBL				
	Mill & Inlay (2002) 50 mm						
	(2 outside lanes only)						
2 – 2.75	ACP (1990) 80 mm	0.9(1.4-1.6)	1.9	5(4-12)	2(1-5)	11(6-21)	9(2-30)
	ACP (1975) 50 mm						
	ACBP (1975) 250 mm						
	Mill & Inlay (2002) 50 mm						
	(2 outside lanes only)						
3.5 -4.25	ACP (1990) 80 mm	0.9(0.6-1.4)	1.9	5(2-7)	4(2-7)	12(7-26)	11(3-25)
	ACP (1975) 50 mm						
	ACBP (1975) 250 mm						
	Mill & Inlay (2002)						
	ACP (1997/98) 50 mm						
7.5-7.66	ACP (1986) 120 mm	0.9(0.8-1.2)	1.9	4(3-4)	1(1-2)	12(9-17)	7(5-9)
	ACP (1973) 100 mm						
	CTB (1972) 225						
	ACP (1997/98) 50 mm						
7.66-9.7	ACP (1986) 100-120 mm	1.6(0.7-1.89)	1.9	4(4-5)	2(2-4)	15(10-29)	9(7-31)
1.00-9.1	ACP (1973) 100 mm	1.0(0.7-1.09)	1.9	+(+-5)	2(2-4)	13(10-29)	3(1-31)
	CTB (1972) 225						

TABLE 19.3 (Continued)

KILOMETER	EXISTING STRUCTURE	2007 IRI (mm/m) AVE (RANGE)	IRI TRIGGER	2007		H, (mm) AVE NGE)	RAGE
				Maxi	imum	Ave	rage
				Inside	Outside	Inside	Outside
		Hwy 21	6:04 SBL			•	•
2 – 2.75	Mill & Inlay (2002) 50 mm (outer lane only) ACP (1990) 80 mm ACP (1975) 50 mm	1.1(0.7-1.8)	1.9	5(2-8)	2(1-4)	10(4-24	7(4-20)
3.5 -4.0	ACBP (1975) 250 mm ACP (2002) 50 mm Mill & Inlay (2002) 50 mm (outer lane only) ACP (1990) 80 mm ACP (1975) 50 mm ACBP (1975) 250 mm	1.1(0.6-1.7)	1.9	3(2-4)	4(1-8)	75-10)	8(5-14)
4.0 -4.25	Mill & Inlay (2002) 50 mm (outer lane only) ACP (1990) 80 mm ACP (1975) 50 mm ACBP (1975) 250 mm	0.8(0.7-1.0)	1.9	2(1-3)	3(2-6)	5(2-8)	6(3-11)
7.5-9.7	ACP (1997/98) 50 mm ACP (1985) 90-120 mm ACP (1973) 75 mm MC(1972) 25 mm CTB (1972) 225	1.6(1.7-2.7)	1.9	7(3-12)	2(1-5)	22(10-32)	13(6-30)

A review of the IRI data indicates that the 2008 IRI is generally below the target IRI value for the portion of Highway 216:04 to be rehabilitated. The target IRI is 1.9 mm for an AADT that exceeds 8000.

The effective subgrade resilient modulus was back-calculated from the 2008 FWD data using the DARWin 3.01 software, along with the effective pavement modulus. The results are presented graphically, using approximate 0.5 km intervals, in Appendix H. The overlay thickness was calculated using the DARWin software and the Hwy 216:04 (rehab) main line traffic loading provided in Table 19.1 (34.3 x 10^6 ESAL's). It has been assumed that a 20 year service life is required and therefore alternative treatments with lower service lives have not been considered.

Based on our analysis, preliminary recommendations for asphalt overlays of the existing pavement structure are provided in Table 19.4 below:

TABLE 19.4 ASPHALT OVERLAY OF EXISTING PAVEMENT STRUCTURES

APPROXIMATE LOCATION	PRELIMINARY OVERLAY RECOMMENDATION
NORTHBOUND LANES	
Km 2 to 2.75	100 mm Overlay
Km 3.5 to 4.25	60 mm Overlay
Km 7.5 to 9.7	60 mm overlay
SOUTHBOUND LANES	
Km 2 to 3	80 mm Overlay
Km 3.5 to 4.5	70 mm Overlay
Km 7.4 to 9.7	60 mm overlay

The asphalt concrete pavement should consist of AT Mix Type H1 with 150-200A asphalt cement. Consideration could also be given to using Performance Graded (PG) asphalt cement due the high traffic levels.

19.5.3 Highway 16:18

It is understood that the pavement structure for the portion of Highway 16:18 east of Highway 216:04 will be incorporated in the roadway system.

The EBA 2004 surfacing strategy recommended an overlay, varying in thickness from 50 mm to 70 mm, for Highway 16:18. The cross section indicated that a 70 mm overlay was placed on Highway 16:18 in 2007. Consequently, there should not be a need for major rehabilitation in the near future for this roadway and pavements strategies should focus on preventative maintenance. Future assessments of the Highway will require current FWD and IRI data to reflect the impact of the recent overlay.

THURSER ENGINEERING LTD.

20. LIMITATION AND USE OF REPORT

There is a possibility that this report may form part of the design and construction documents for information purposes. This report was issued before any final design or construction details have been prepared or issued. Therefore differences may exist between the report recommendations and the final design, in the contract documents, or during construction. In such instances, Thurber Engineering Ltd. should be contacted immediately to address these differences.

Designers and contractors undertaking or bidding the work should examine the factual results of the investigation, satisfy themselves on to the adequacy of the information for design and construction, and make their own interpretation of the data as it may affect their proposed scope of work, cost, schedules, and safety and equipment capabilities.

LIST OF REFERENCES

A. D. Williams Engineering Inc., April, 2000. "Geotechnical Investigation Proposed Operation Building Edmonton Waste Management Centre 13111 Meridian Street (1st Street) Edmonton, Alberta", File No. ES-3869.00.

AGRA Earth and Environmental Limited Edmonton, Alberta, July 15, 1997. "Foundation Soils Report Clover Bar Waste Management Centre Scale House and Control Building SW1/4 Sec 21-53-23 W4M", File No. 302.2.

Alberta Energy and Utilities Board, "Coal Mine Atlas, Operating and Abandoned Coal Mines in Alberta", 4th Edition, Version 1.0, September 2001, Revised March 2004.

Campbell, J.D., 1964, "Catalogue of Coal Mines of the Alberta Plains", .Research Council of Alberta, Preliminary Report 64-3.

EBA Engineering Consultant Ltd., May 2001. "Edmonton North Ring Road Functional Planning Study", File No. 0105-00-14647.002.

Hardy Associates (1978) Ltd. Edmonton, Alberta., July 19, 1985. "Outer Ring Road and Yellowhead Trail Crossing, Edmonton, Alberta", File No. EG-06024.

Kathol and McPherson, 1975. "Urban Geology of Edmonton", Alberta Research Council Bulletin No. 32.

L. D. Andriasheck (1982). "Quaternary Stratigraphy of the Edmonton Map Area, NTS 83H", Terrain Science Department, Natural Recourses Division, Alberta Research Council, Open File Report No. 198804.

Spence Taylor, R. (1971). "Atlas: Coal Mine Workings of the Edmonton Area", Spence Taylor and Associates Edmonton, Alberta.

The City of Edmonton, Public Works, February 1995. "Geotechnical Instrumentation and Monitoring Clover Bar Landfill, Alberta Government Pit", File No. 302.2.

The City of Edmonton, Public Works, November 1992. "Site Investigation Cloverbar Water Pipeline 130 -1 37 Avenue and 1 - 9 Street N.E.

Thurber Engineering Ltd., May 15, 2007. "North Edmonton Ring Road (Highway 216) Interchange Rationalization Functional Planning Study, Highway 16 West to Highway 16 East, Volumes 1 & 2, Preliminary Geotechnical Investigation", Report No. 19-598-221, Vols. 1 & 2.

Thurber Engineering Ltd., April 25, 1997. "Proposed Interchange at Highway 14 and Whitemud Drive, Geotechnical Investigation", Report No. 19-598-45.

STATEMENT OF GENERAL CONDITIONS

1. STANDARD OF CARE

This study and Report have been prepared in accordance with generally accepted engineering or environmental consulting practices in this area. No other warranty, expressed or implied, is made.

2. COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment are a part of the Report which is of a summary nature and is not intended to stand alone without reference to the instructions given to us by the Client, communications between us and the Client, and to any other reports, writings, proposals or documents prepared by us for the Client relative to the specific site described herein, all of which constitute the Report.

IN ORDER TO PROPERLY UNDERSTAND THE SUGGESTIONS, RECOMMENDATIONS AND OPINIONS EXPRESSED HEREIN, REFERENCE MUST BE MADE TO THE WHOLE OF THE REPORT. WE CANNOT BE RESPONSIBLE FOR USE BY ANY PARTY OF PORTIONS OF THE REPORT WITHOUT REFERENCE TO THE WHOLE REPORT.

3. BASIS OF REPORT

The Report has been prepared for the specific site, development, design objectives and purposes that were described to us by the Client. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the document, subject to the limitations provided herein, are only valid to the extent that this Report expressly addresses proposed development, design objectives and purposes, and then only to the extent there has been no material alteration to or variation from any of the said descriptions provided to us unless we are specifically requested by the Client to review and revise the Report in light of such alteration or variation or to consider such representations, information and instructions.

4. USE OF THE REPORT

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT OUR WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS WE MAY EXPRESSLY APPROVE. The contents of the Report remain our copyright property. The Client may not give, lend or, sell the Report, or otherwise make the Report, or any portion thereof, available to any person without our prior written permission. Any use which a third party makes of the Report, are the sole responsibility of such third parties. Unless expressly permitted by us, no person other than the Client is entitled to rely on this Report. We accept no responsibility whatsoever for damages suffered by any third party resulting from use of the Report without our express written permission.

5. INTERPRETATION OF THE REPORT

- a) Nature and Exactness of Soil and Contaminant Description: Classification and identification of soils, rocks, geological units, contaminant materials and quantities have been based on investigations performed in accordance with the standards set out in Paragraph 1. Classification and identification of these factors are judgmental in nature. Comprehensive sampling and testing programs implemented with the appropriate equipment by experienced personnel, may fail to locate some conditions. All investigations utilizing the standards of Paragraph 1 will involve an inherent risk that some conditions will not be detected and all documents or records summarizing such investigations will be based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points investigated and the Client and all other persons making use of such documents or records with our express written consent should be aware of this risk and this report is delivered on the express condition that such risk is accepted by the Client and such other persons. Some conditions are subject to change over time and those making use of the Report should be aware of this possibility and understand that the Report only presents the conditions at the sampled points at the time of sampling. Where special concerns exist, or the Client has special considerations or requirements, the Client should disclose them so that additional or special investigations may be undertaken which would not otherwise be within the scope of investigations made for the purposes of the Report.
- b) Reliance on Provided Information: The evaluation and conclusions contained in the Report have been prepared on the basis of conditions in evidence at the time of site inspections and on the basis of information provided to us. We have relied in good faith upon representations, information and instructions provided by the Client and others concerning the site. Accordingly, we cannot accept responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of misstatements, omissions, misrepresentations, or fraudulent acts of the Client or other persons providing information relied on by us. We are entitled to rely on such representations, information and instructions and are not required to carry out investigations to determine the truth or accuracy of such representations, information and instructions.

INTERPRETATION OF THE REPORT (continued)

- c) Design Services: The Report may form part of the design and construction documents for information purposes even though it may have been issued prior to the final design being completed. We should be retained to review the final design, project plans and documents prior to construction to confirm that they are consistent with the intent of the Report. Any differences that may exist between the report recommendations and the final design detailed in the contract documents should be reported to us immediately so that we can address potential conflicts.
- d) Construction Services: During construction we must be retained to provide field reviews. Field reviews consist of performing sufficient and timely observations of encountered conditions to confirm and document that the site conditions do not materially differ from those interpreted conditions considered in the preparation of the report. Adequate field reviews are necessary for Thurber to provide letters of assurance, in accordance with the requirements of many regulatory authorities.

6. RISK LIMITATION

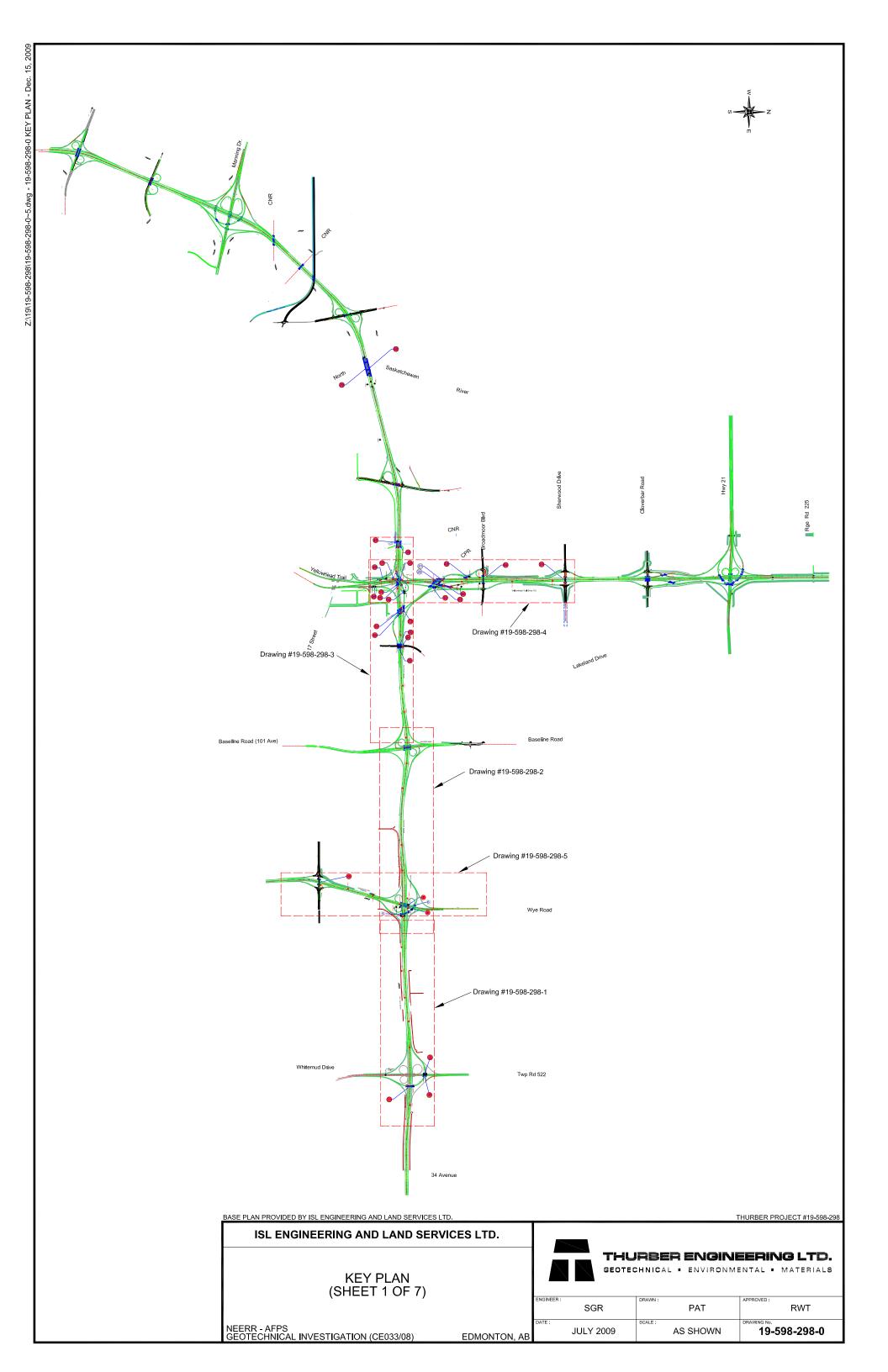
Geotechnical engineering and environmental consulting projects often have the potential to encounter pollutants or hazardous substances and the potential to cause an accidental release of those substances. In consideration of the provision of the services by us, which are for the Client's benefit, the Client agrees to hold harmless and to indemnify and defend us and our directors, officers, servants, agents, employees, workmen and contractors (hereinafter referred to as the "Company") from and against any and all claims, losses, damages, demands, disputes, liability and legal investigative costs of defence, whether for personal injury including death, or any other loss whatsoever, regardless of any action or omission on the part of the Company, that result from an accidental release of pollutants or hazardous substances occurring as a result of carrying out this Project. This indemnification shall extend to all Claims brought or threatened against the Company under any federal or provincial statute as a result of conducting work on this Project. In addition to the above indemnification, the Client further agrees not to bring any claims against the Company in connection with any of the aforementioned causes.

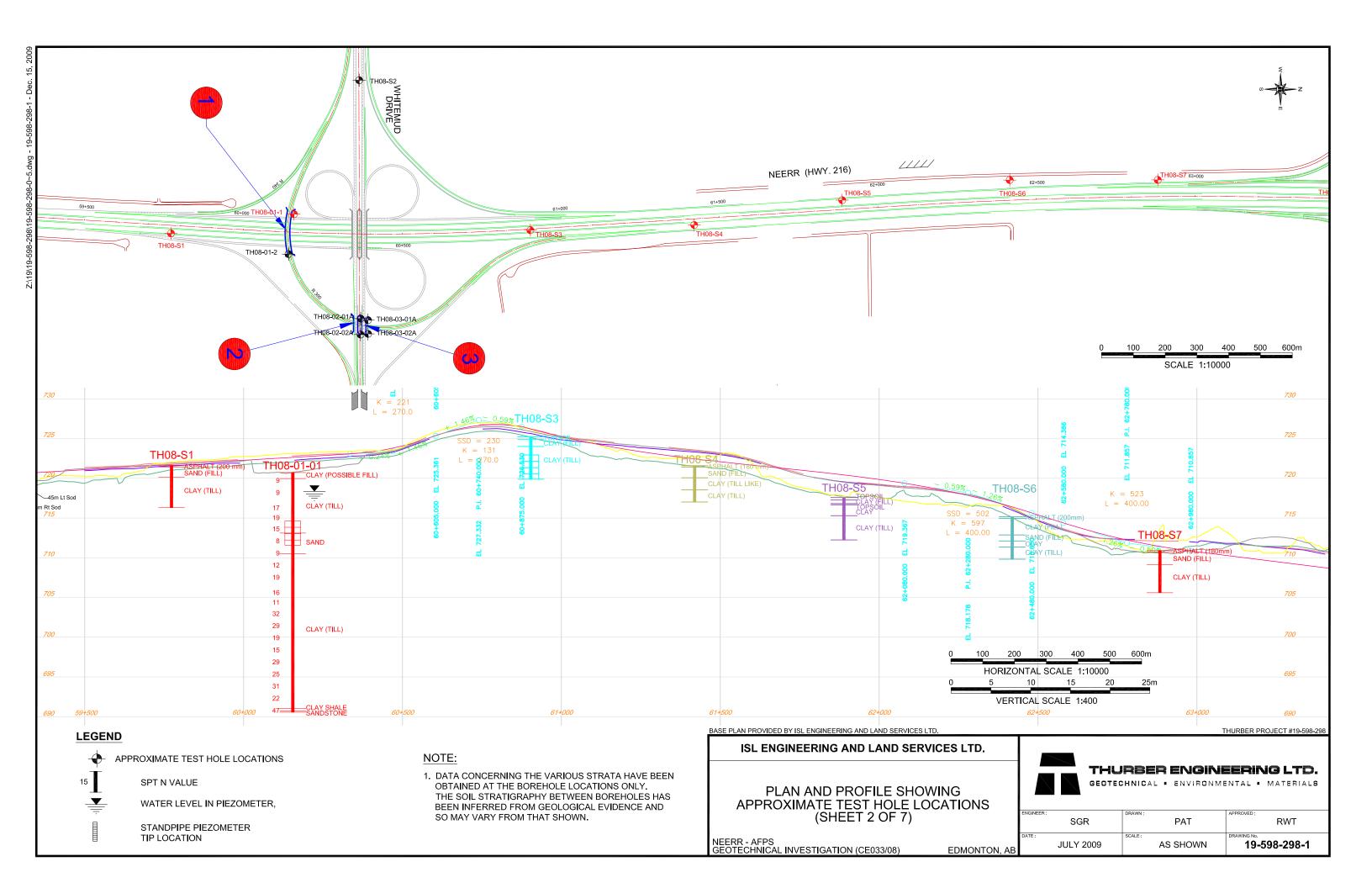
7. SERVICES OF SUBCONSULTANTS AND CONTRACTORS

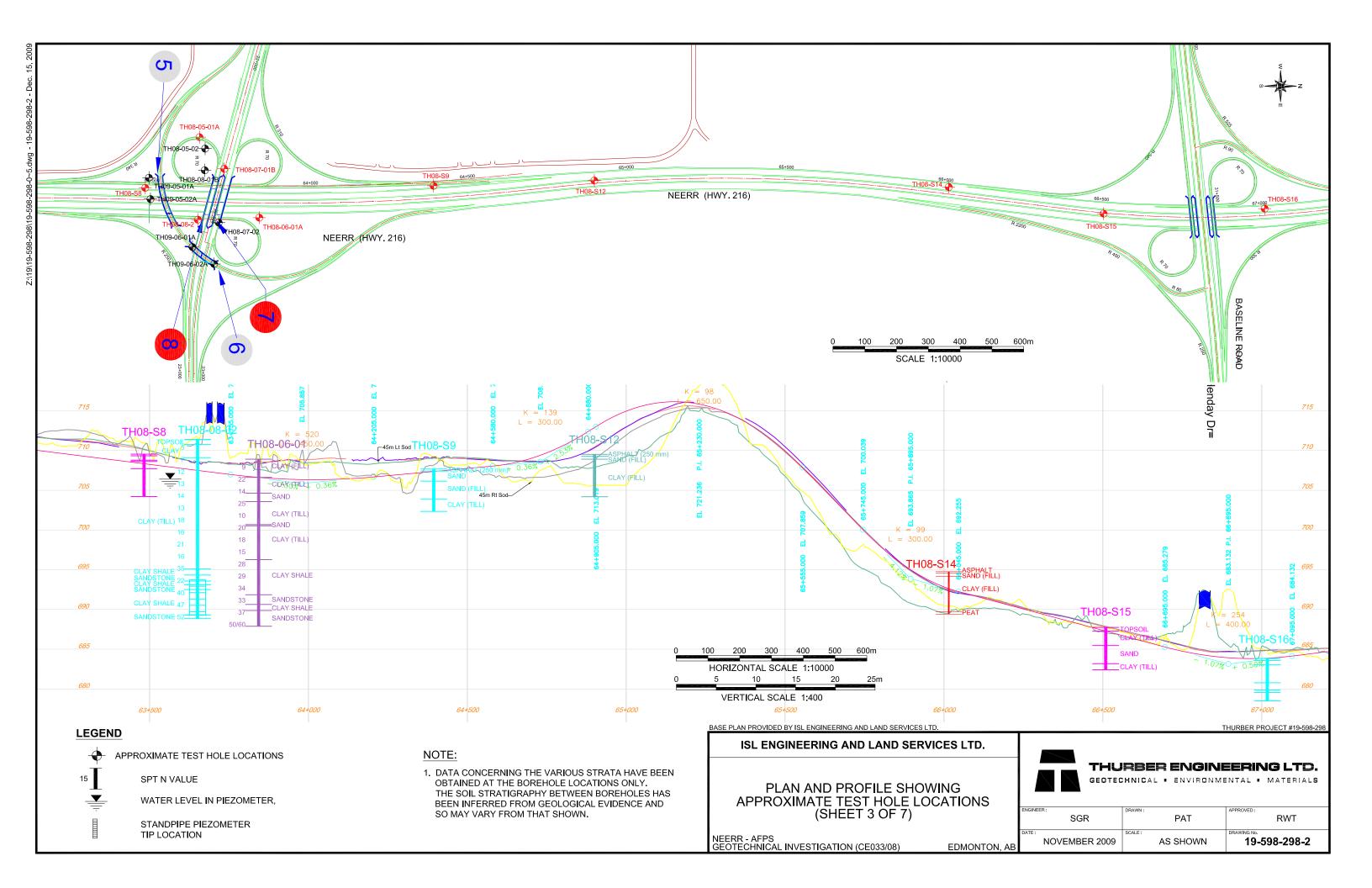
The conduct of engineering and environmental studies frequently requires hiring the services of individuals and companies with special expertise and/or services which we do not provide. We may arrange the hiring of these services as a convenience to our Clients. As these services are for the Client's benefit, the Client agrees to hold the Company harmless and to indemnify and defend us from and against all claims arising through such hirings to the extent that the Client would incur had he hired those services directly. This includes responsibility for payment for services rendered and pursuit of damages for errors, omissions or negligence by those parties in carrying out their work. In particular, these conditions apply to the use of drilling, excavation and laboratory testing services.

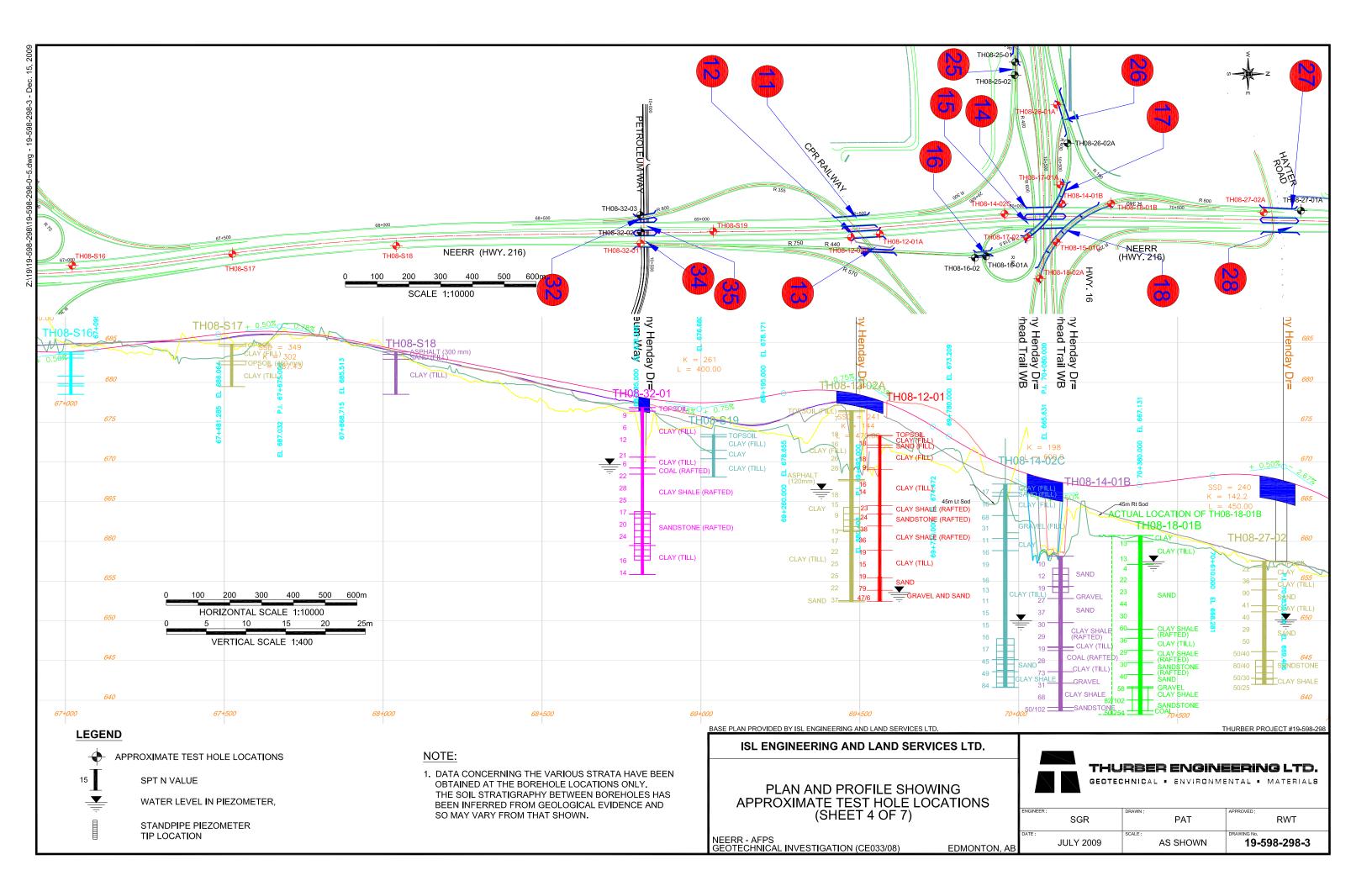
8. CONTROL OF WORK AND JOBSITE SAFETY

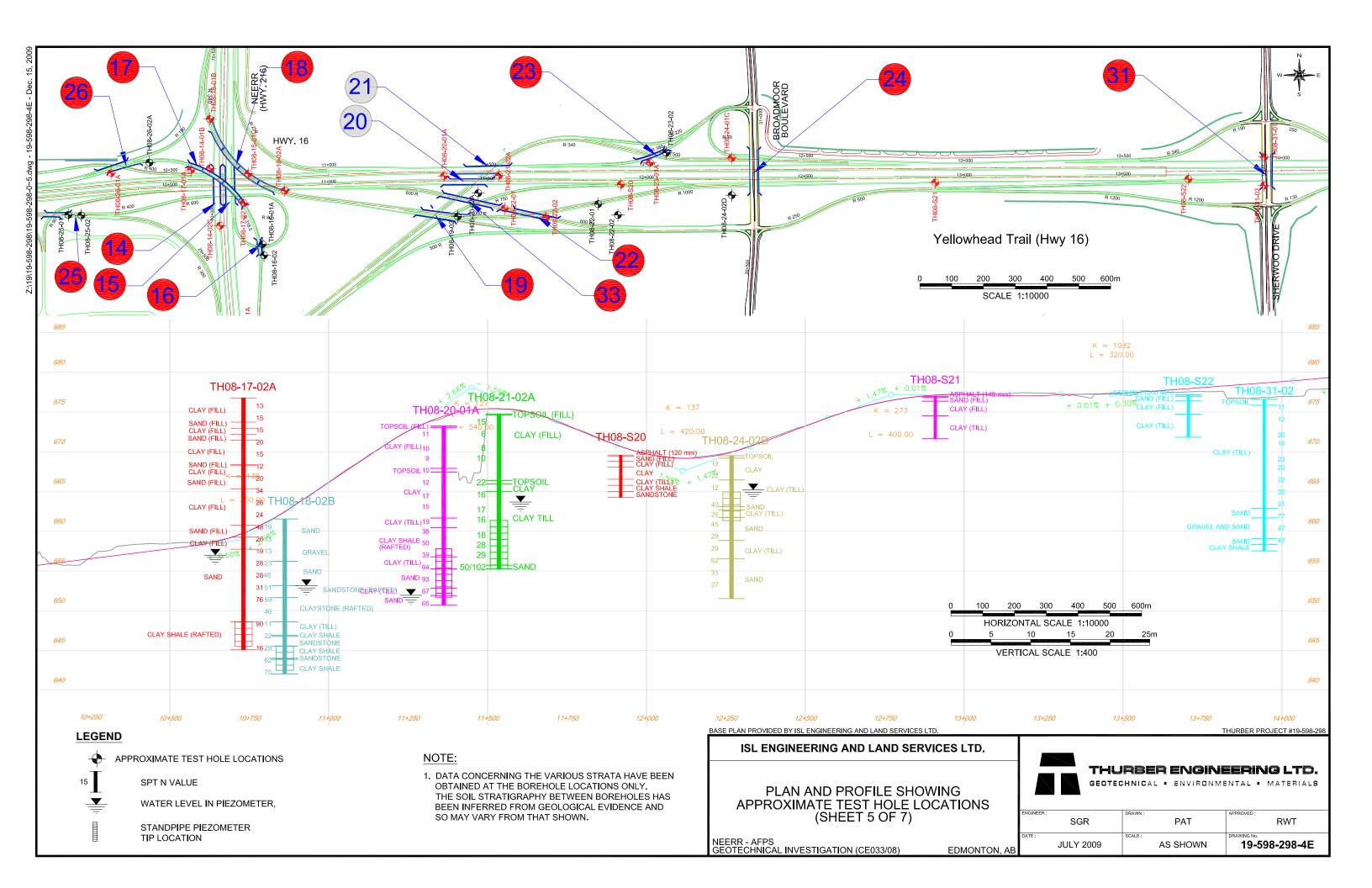
We are responsible only for the activities of our employees on the jobsite. The presence of our personnel on the site shall not be construed in any way to relieve the Client or any contractors on site from their responsibilities for site safety. The Client acknowledges that he, his representatives, contractors or others retain control of the site and that we never occupy a position of control of the site. The Client undertakes to inform us of all hazardous conditions, or other relevant conditions of which the Client is aware. The Client also recognizes that our activities may uncover previously unknown hazardous conditions or materials and that such a discovery may result in the necessity to undertake emergency procedures to protect our employees as well as the public at large and the environment in general. These procedures may well involve additional costs outside of any budgets previously agreed to. The Client agrees to pay us for any expenses incurred as the result of such discoveries and to compensate us through payment of additional fees and expenses for time spent by us to deal with the consequences of such discoveries. The Client also acknowledges that in some cases the discovery of hazardous conditions and materials will require that certain regulatory bodies be informed and the Client agrees that notification to such bodies by us will not be a cause of action or dispute.

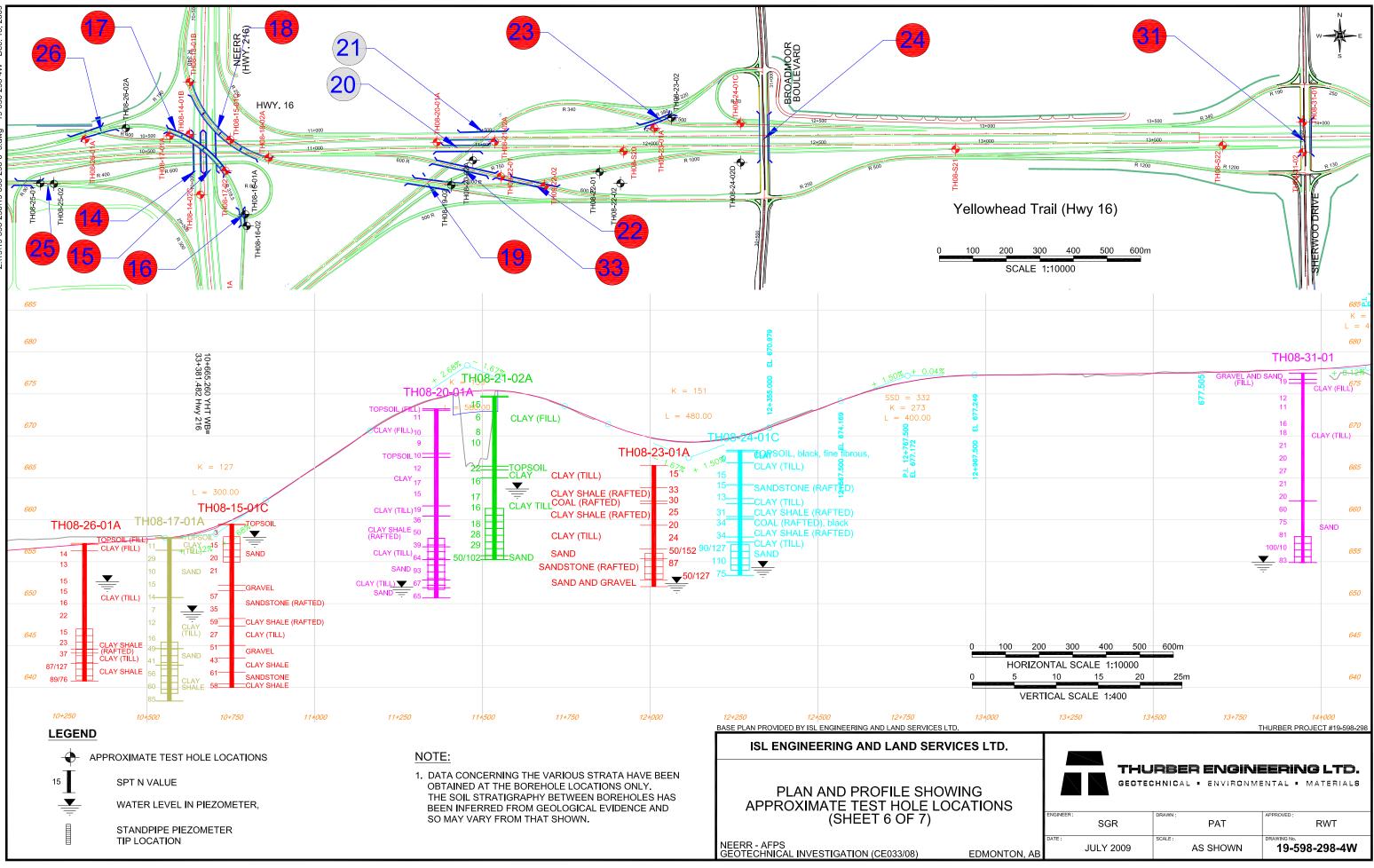

9. INDEPENDENT JUDGEMENTS OF CLIENT

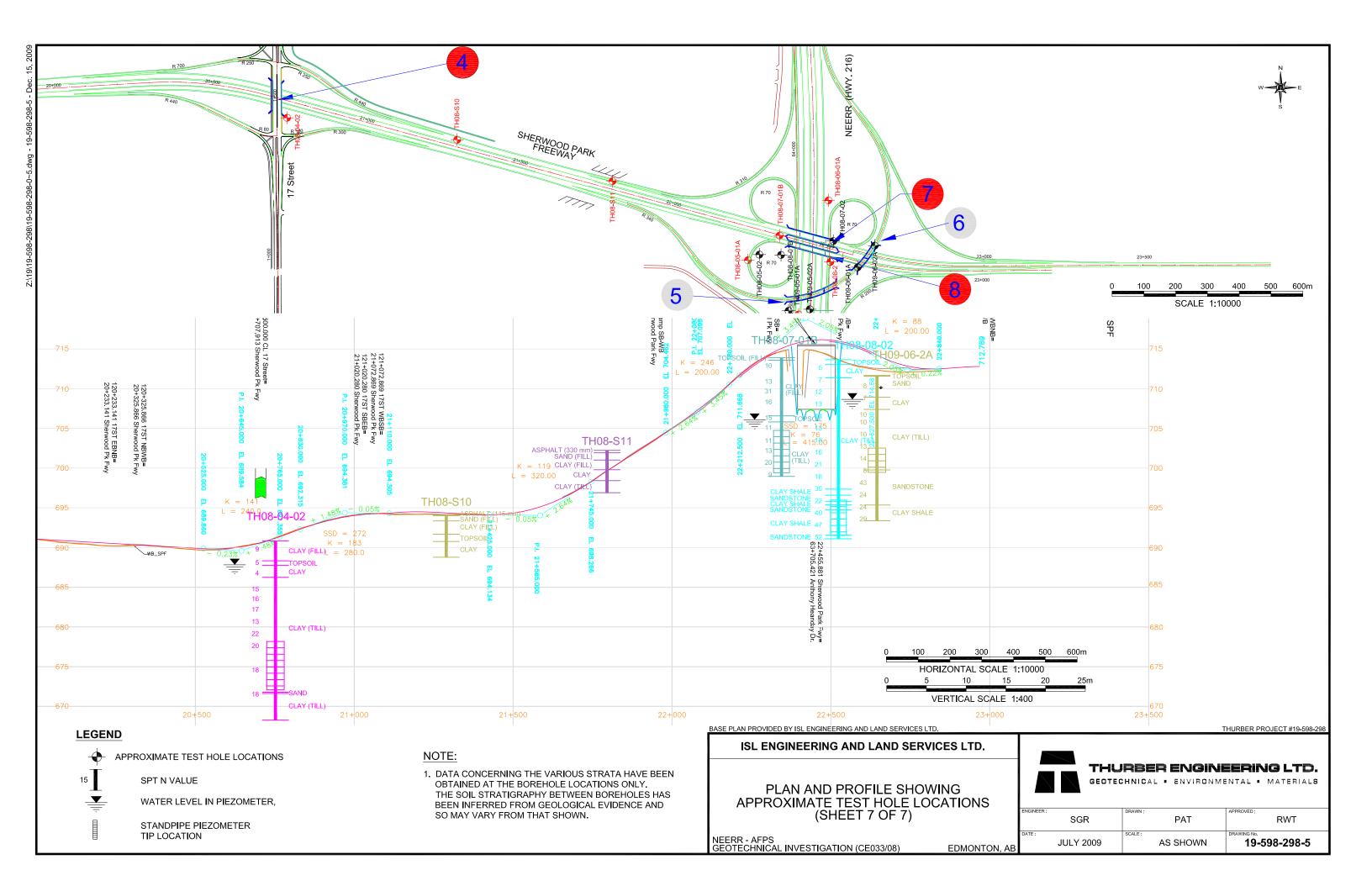

The information, interpretations and conclusions in the Report are based on our interpretation of conditions revealed through limited investigation conducted within a defined scope of services. We cannot accept responsibility for independent conclusions, interpretations, interpretations and/or decisions of the Client, or others who may come into possession of the Report, or any part thereof, which may be based on information contained in the Report. This restriction of liability includes but is not limited to decisions made to develop, purchase or sell land.

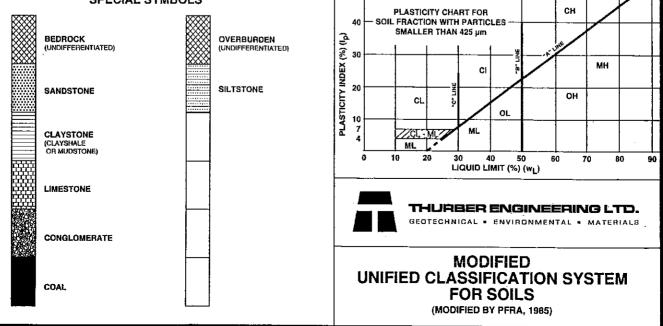



APPENDIX A


Drawings 19-598-298-0 to 5






APPENDIX B

Modified Unified Soils Classification System Symbols and Terms Used on the Test Hole Logs Table B-1 – Summary of Test Hole Locations Test Hole Logs

MODIFIED UNIFIED CLASSIFICATION SYSTEM FOR SOILS (MODIFIED BY PFRA, 1985)

THURBER LOG SYMBOL LABORATORY GROUP **CLASSIFICATION MAJOR DIVISION TYPICAL DESCRIPTION** SYMBOL CRITERIA 4 7 4 4 7 4 4 7 4 4 7 4 WELL GRADED GRAVELS, GRAVEL - SAND MIXTURES, $\frac{D_{50}}{D_{10}} > 4$; $C_c = \frac{(D_{30})^2}{D_{10} \times D_{50}} = 1$ to 3 GW LITTLE OR NO FINES **GRAVELS** MORE THAN HALF COARSE GRAINS LARGER THAN 4.75 mm and sand from grain alze curve as (fraction smaller than 75µm) d as follows: svmbols CLEAN GRAVELS (LITTLE OR NO FINES) 4 7 4 4 7 4 4 7 4 POORLY GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES NOT MEETING ALL GRADATION REQUIREMENTS FOR GW GP COARSE-GRAINED SOILS (MORE THAN HALF BY WEIGHT LARGER THAN 75µm) dual ATTERBERG LIMITS use of i Above "A" line SILTY GRAVELS, GRAVEL-SAND-SILT GM **BELOW "A" LINE** MIXTURES with I_p betwee 4 and 7 are GRAVELS WITH FINES Ip LESS THAN 4 orderline (APPRECIABLE equiring AMOUNT OF FINES) ATTERBERG LIMITS cases CLAYEY GRAVELS, GRAVEL-SAND-CLAY ABOVE "A" LINE I_D MORE THAN 7 requiring use GC MIXTURES of dual symbols of gravel and less of fines (classified at SW, SP , SM, SC $\frac{D_{60}}{D_{10}} > 6$; $C_{c} = \frac{1}{D_{10} \times D_{60}}$ WELL GRADED SANDS, GRAVELLY SANDS, SW -=1 to 3 Cu = SANDS MORE THAN HALF COARSE GRAINS SMALLER THAN 4.75 mm LITTLE OR NO FINES CLEAN SANDS ŧ (LITTLE OR NO FINES) 1000 0000 POORLY GRADED SANDS, GRAVELLY SANDS, NOT MEETING ALL GRADATION 0000 SP LITTLE OR NO FINES Sales Sales REQUIREMENTS FOR SW termine perc pending on p ree grained a s than 5% than 12% (ATTERRERG LIMITS Above "A" line SM SILTY SANDS, SAND-SILT MIXTURES BELOW "A" LIKE with i_p between 4 and 7 are SAND WITH FINES In LESS THAN 4 (APPRECIABLE AMOUNT OF FINES) borderline ATTERBERG LIMITS Deter Deper coars Less 1 More 1 5% to cases SC CLAYEY SANDS, SAND-CLAY MIXTURES ABOVE "A" LINE In MORE THAN 7 requiring use of dual symbols INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTS BELOW 'A" LINE NEGLIGIBLE ORGANIC CONTENT wL< 50% ML SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS CLASSIFICATION WITH SLIGHT PLASTICITY FINE-GRAINED SOILS HALF BY WEIGHT SMALLER THAN 75µm) IS BASED UPON PLASTICITY CHART INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS. ΜΗ $w_{L} > 50\%$ FINE SANDY OR SILTY SOILS (see below) INORGANIC CLAYS OF LOW PLASTICITY, GRAVELLY, CLAYS ABOVE "A" LINE NEGLIGIBLE ORGANIC CONTENT CL $w_{L} < 30\%$ SANDY, OR SILTY CLAYS, LEAN CLAYS INORGANIC CLAYS OF MEDIUM PLASTICITY Ci $30\% < w_L < 50\%$ GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS СН $w_{L} > 50\%$ INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS MORE THAN SILTS & CLAYS LOW A' LINE ORGANIC SILTS AND ORGANIC SILTY CLAYS OF $w_L < 50\%$ OL, LOW AND MEDIUM PLASTICITY ORGANIC ORGANIC CLAYS OF HIGH PLASTICITY, $w_{L} > 50\%$ OH ORGANIC SILTS STRONG COLOR OR ODOR, AND OFTEN Pt HIGHLY ORGANIC SOILS PEAT AND OTHER HIGHLY ORGANIC SOILS **FIBROUS TEXTURE** 50

SPECIAL SYMBOLS

SYMBOLS AND TERMS USED ON TEST HOLE LOGS

VISUAL TEXTURAL CLASSIFICATION OF MINERAL SOILS 1.

CLASSIFICATION

APPARENT PARTICLE SIZE

CLASSIFICATION	ALLANENT LANDLE OILE	
Boulders	Greater than 200 mm	Greater than 200 mm
Cobbles	75 mm to 200 mm	75 mm to 200 mm
Gravel	4.75 mm to 75 mm	5 mm to 75 mm
Sand	0.075 mm to 4.75 mm	Visible particles to 5 mm
Silt	0.002 mm to 0.075 mm	Non-Plastic particles, not visible to the naked eye
Clay	Less than 0.002 mm	Plastic particles, not visible to the naked eye
•		

VISUAL IDENTIFICATION

TERMS DESCRIBING CONSISTENCY (COHESIVE SOILS ONLY) 2.

DESCRIPTIVE TERM	APPROXIMATE UNDRAINED SHEAR STRENGTH	APPROXIMATE SPT * 'N' VALUE
Very Soft	Less than 10 kPa	Less than 2
Soft	10 - 25 kPa	2 to 4
Firm	25 - 50 kPa	4 to 8
Stiff	50 - 100 kPa	8 to 15
Very Stiff	100 - 200 kPa) Modified from	15 to 30
Hard	200 - 300 kPa > National Building	Greater than 30
Very Hard	Greater than 300 kPa 丿 Code	

* SPT 'N' Value Standard Penetration Test 'N' Value - refers to the number of blows from a 63.5 kg hammer free falling a height of 0.76m to advance a standard 50mm outside diameter split spoon sampler for 0.3m depth into the undrilled portion of the test hole.

TERMS DESCRIBING DENSITY (COHESIONLESS SOILS ONLY) 3.

DESCRIPTIVE TERM	STANDARD PENETRATION TEST (SPT) (Number of Blows per 300 mm)					
Very Loose	0 - 4					
Loose	4 - 10					
Compact	10 - 30) Modified from					
Dense	30 - 50 👌 National Building					
Very Dense	Over 50 J Code					
LEGEND FOR TEST HOLE LOGS						

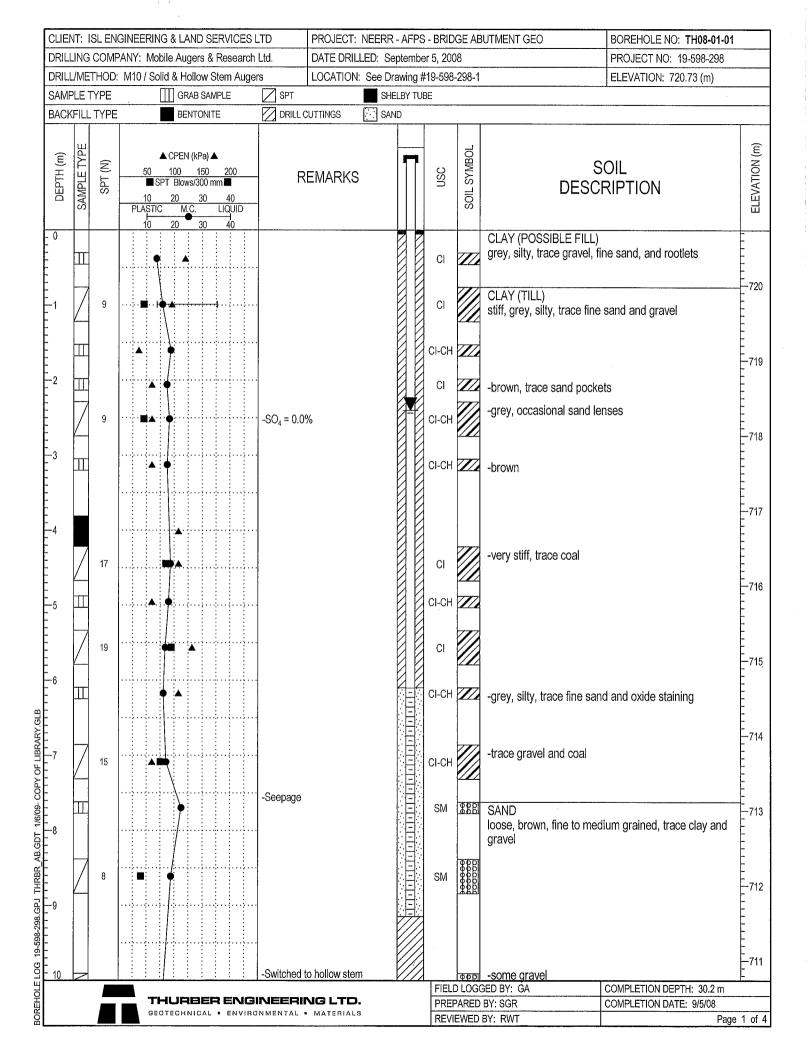
4. LEGEND FOR TEST HOLE LOGS

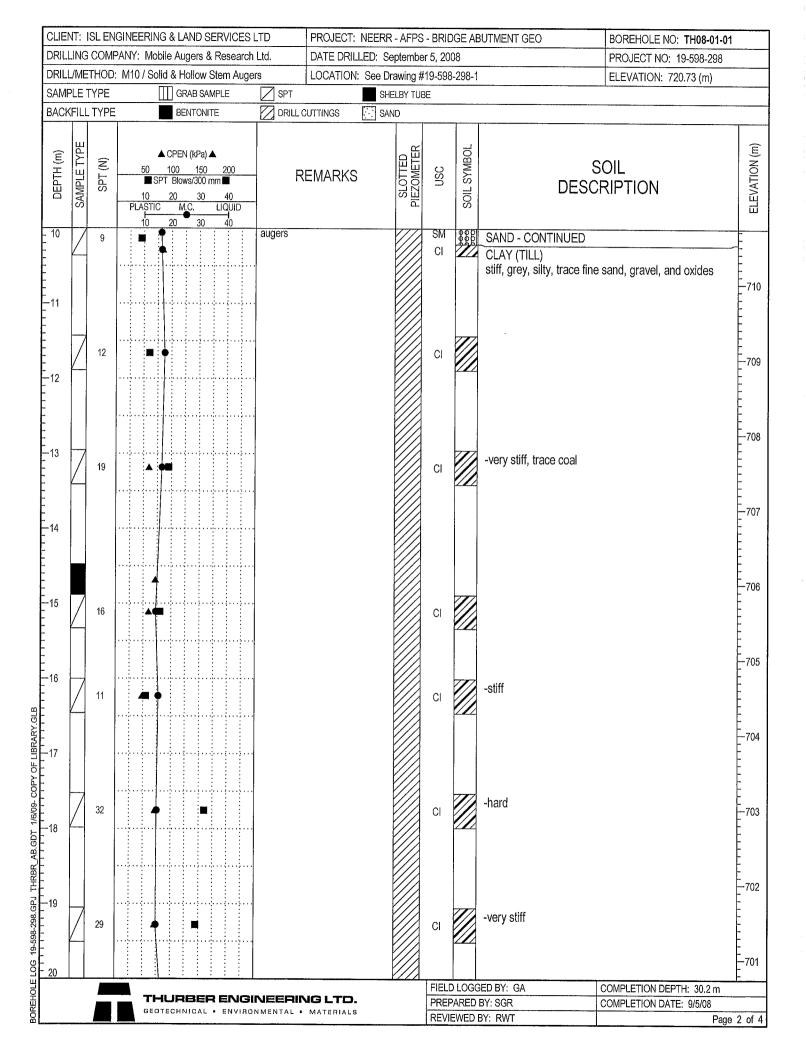
SY	′MB	OL	FOR	SAMP	ĽΕ	TYPE

	Shelby Tube		A-Casing
\square	SPT	\square	Grab
\boxtimes	No Recovery		Core

SYMBOLS USED FOR TEST HOLE LOGS

- MC Moisture Content (% by weight) of soil sample . T Water Level
- SPT Standard Penetration Test 'N' Value (Blows/300mm)
- ▲ CPen Shear Strength determined by pocket penetrometer
- Shear Strength determined by pocket vane CVane
- Cu Undrained Shear Strength determined by unconfined compression test
- Percent (%) of water soluble sulphate ions SO4%




TABLE B-1SUMMARY OF TEST HOLE LOCATIONS

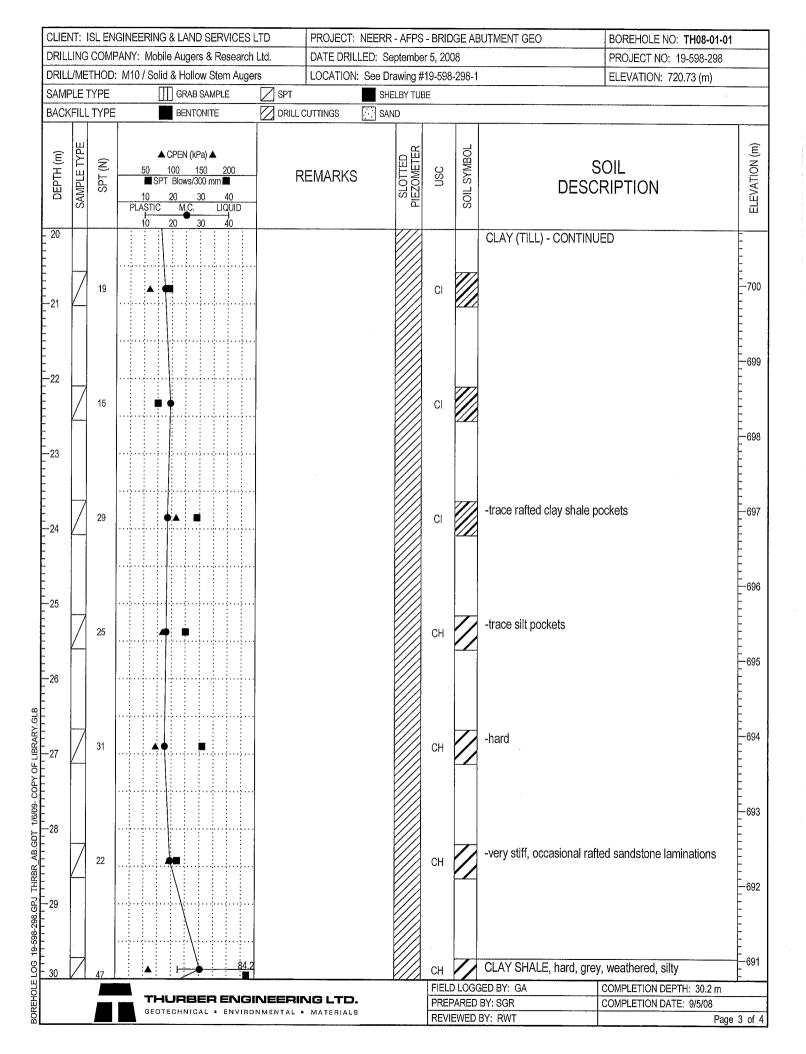
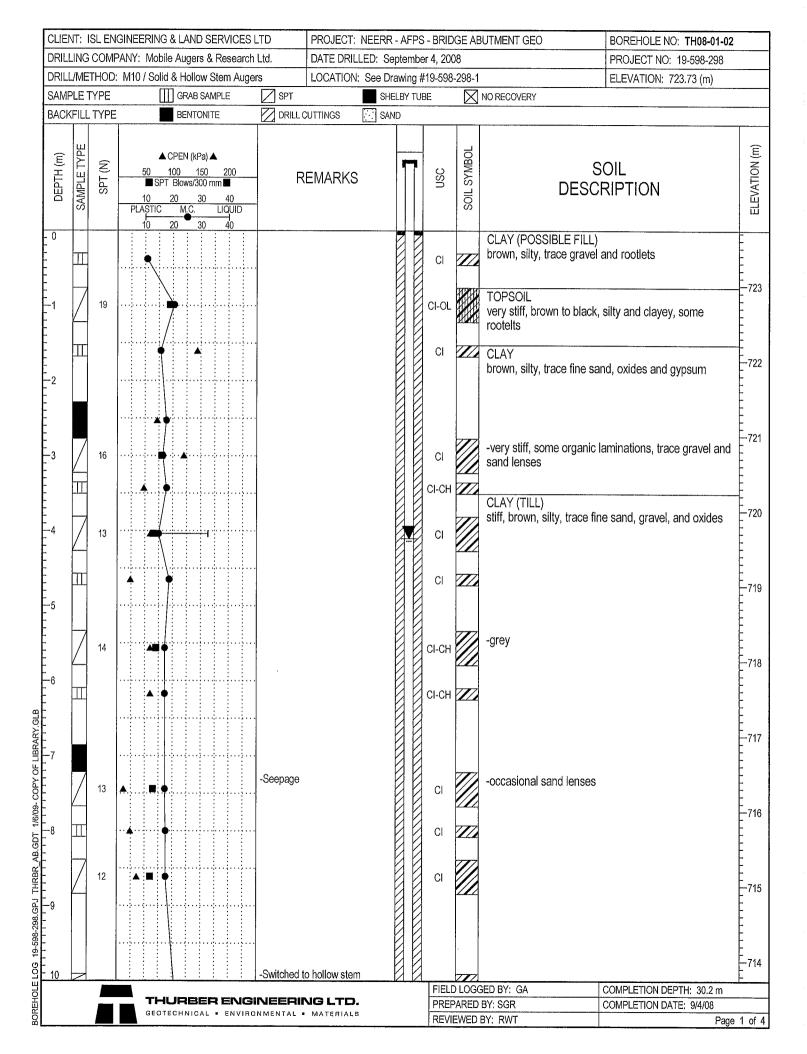
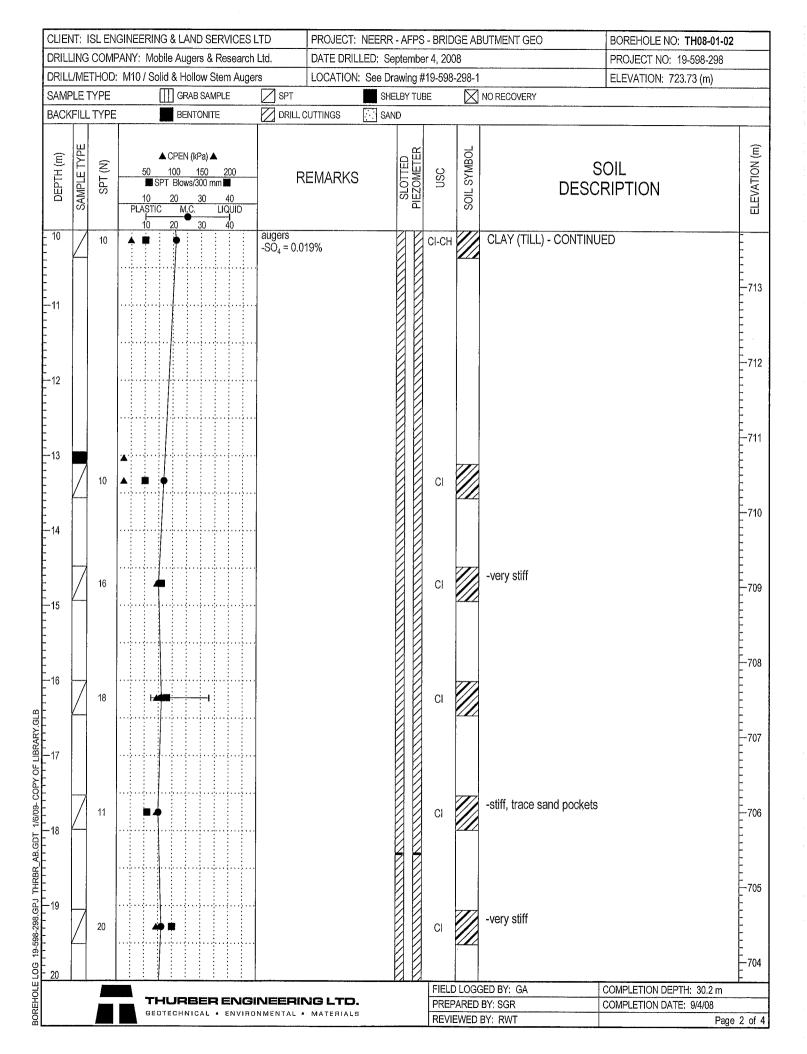
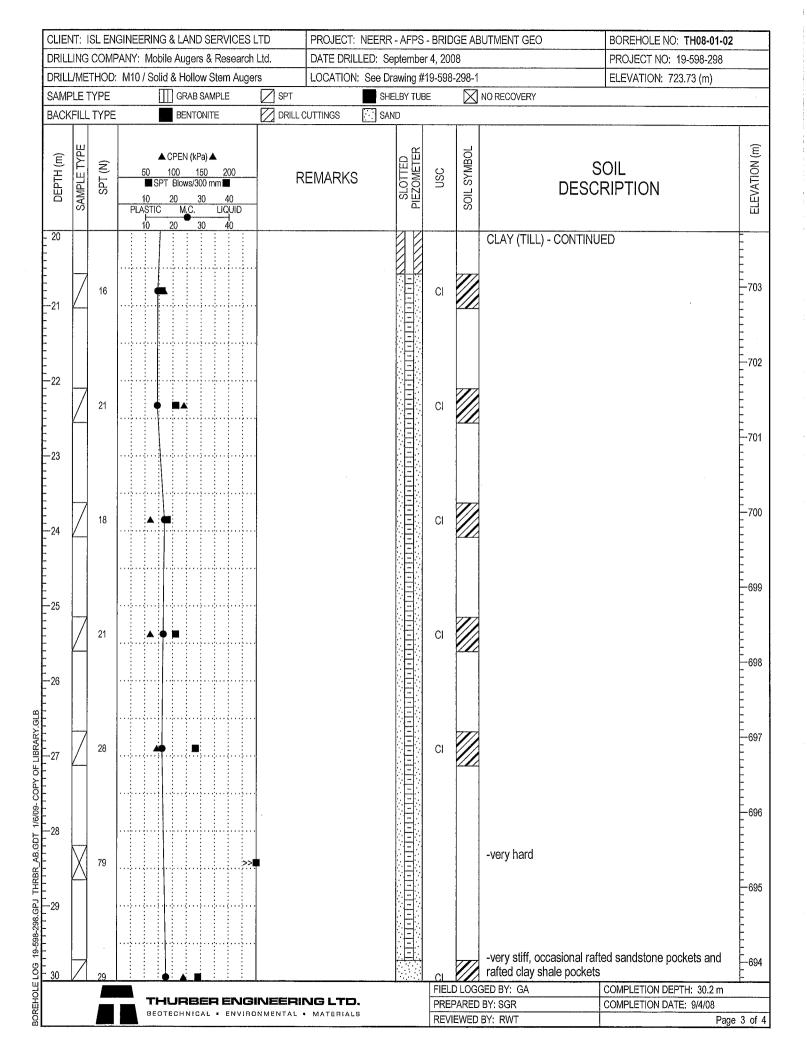
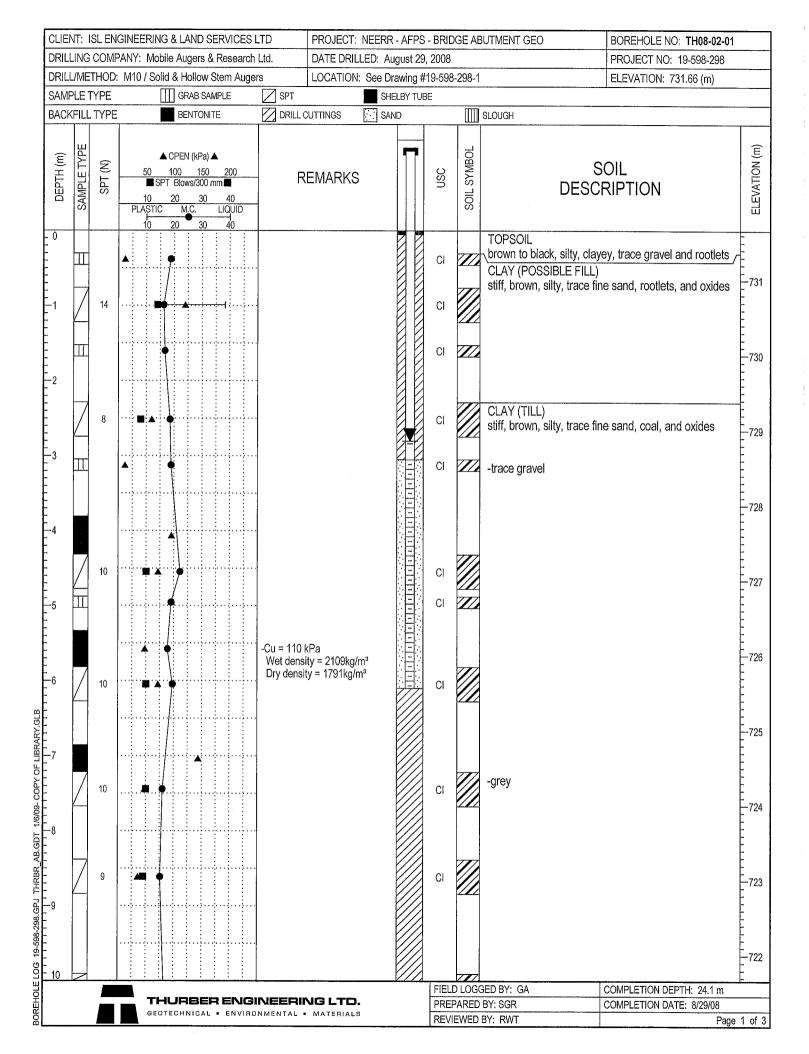

TEST HOLE	LOCATION		Drilled	STANDPIPE PIEZOMETER			LOCATION		Drilled	STANDPIPE PIEZOMETER	
	Easting (m)	Northing (m)	Depth (m)	Tip Depth (m)	Soil Type	TEST HOLE	Easting (m)	Northing (m)	Depth (m)	Tip Depth (m)	Soil Type
TH08-01-01	43568.251	5927763.646	30.2	9.2	Sand	TH08-22-01	44575.133	5937606.871	21.0	13.7	Till/Sand
TH08-01-02	43694.193	5927746.751	30.2	30.0	Clay Till	TH08-22-02	44637.361	5937572.867	20.9	22.0	Sand
TH08-02-01	43896.991	5927973.771	24.1	6.0	Clay Till	TH08-23-01A	44737.912	5937737.508	14.5	13.5	Sandstone
TH08-02-02	43947.202	5927973.186	27.1	26.7	Clay Shale	TH08-23-02A	44743.554	5937755.554	13.7	12.3	Sand
TH08-03-01	43901.869	5927996.702	19.5	19.0	Clay Till	TH08-24-01C	44994.779	5937751.785	14.9	14.3	Sand
TH08-03-02	43945.031	5927996.904	19.5	9.2	Clay Till	TH08-24-02D	44999.871	5937662.975	18.0	8.3	Sand
TH08-04-01B	41855.749	5931787.562	14.9	N/A	N/A	TH08-25-01	42907.886	5937572.834	18.0	6.1	Sand
TH08-04-02	41862.088	5931727.95	22.6	18.7	Clay Till	TH08-25-02	42948.652	5937571.509	19.5	19.0	Clay Shale
TH08-05-01A	43322.977	5931253.169	22.6	22.0	Clay Shale	TH08-26-01A	43042.255	5937704.365	16.5	16.5	Clay Shale
TH08-05-02	43358.993	5931270.8	22.6	3.3	Clay Till	TH08-26-02A	43162.992	5937737.433	16.5	10.7	Clay Till
TH08-06-01	43576.147	5931441.238	21.0	N/A	N/A	TH08-27-01	43375.48	5938471.901	16.3	12.2	Sand
TH08-07-01B	43422.516	5931330.887	14.9	14.9	Clay Till	TH08-27-02	43380.416	5938354.543	15.5	14.7	Sandstone
TH08-07-02	43591.684	5931313.533	19.5	N/A	N/A	TH08-31-01	46671.289	5937754.992	22.6	22.6	Sand
TH08-08-01B	43427.105	5931269.695	22.6	14.9	Sand	TH08-31-02	46671.199	5937665.283	19.1	N/A	N/A
TH08-08-02	43582.458	5931247.716	22.6	22.0	Clay Shale	TH08-32-01	43477.911	5936393.224	21.0	19.0	Clay Till
TH08-12-01	43448.339	5937146.497	20.9	21.0	Gravel	TH08-32-02	43442.378	5936394.726	21.0	21.0	Clay Till
TH08-12-02A	43459.541	5937056.129	24.1	15.1	Clay	TH08-32-03	43387.443	5936393.309	20.6	N/A	N/A
TH08-14-01B	43353.315	5937719.423	19.5	4.5	Gravel						
TH08-14-02C	43385.123	5937539.242	25.6	25.5	Clay Shale						
TH08-15-01C	43474.426	5937702.93	19.5	4.5	Sand						
TH08-16-01	43518.729	5937481.02	30.2	N/A	N/A						

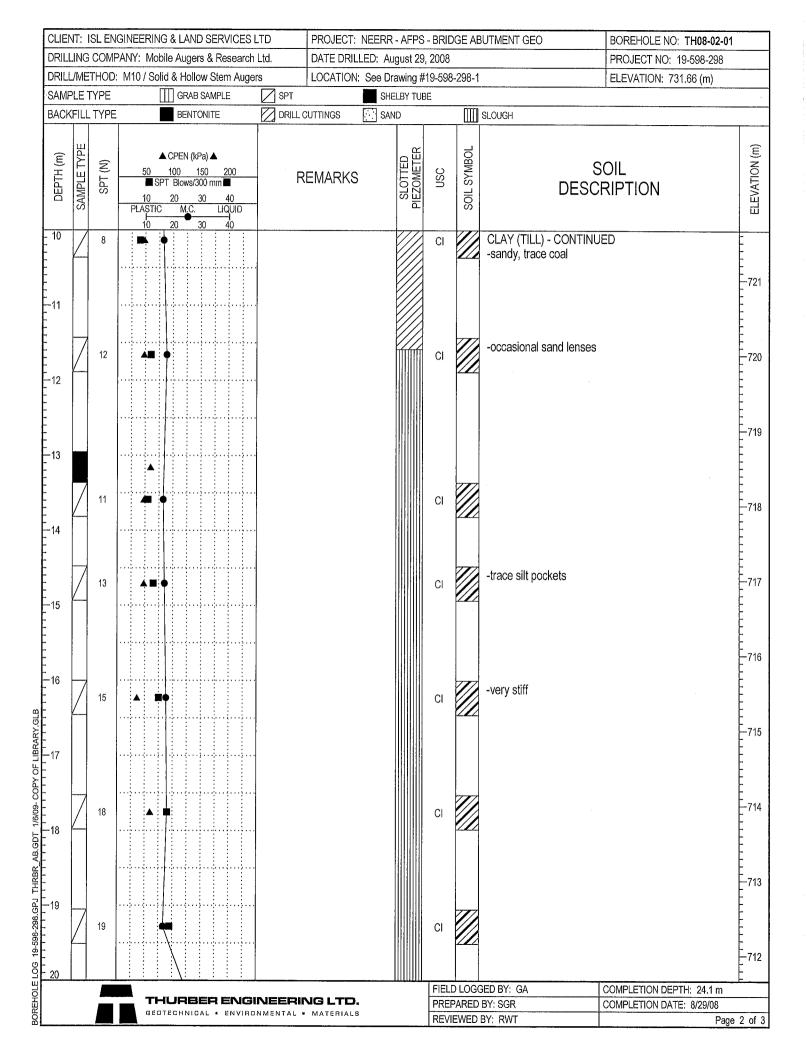
TABLE B-1 (Continued)

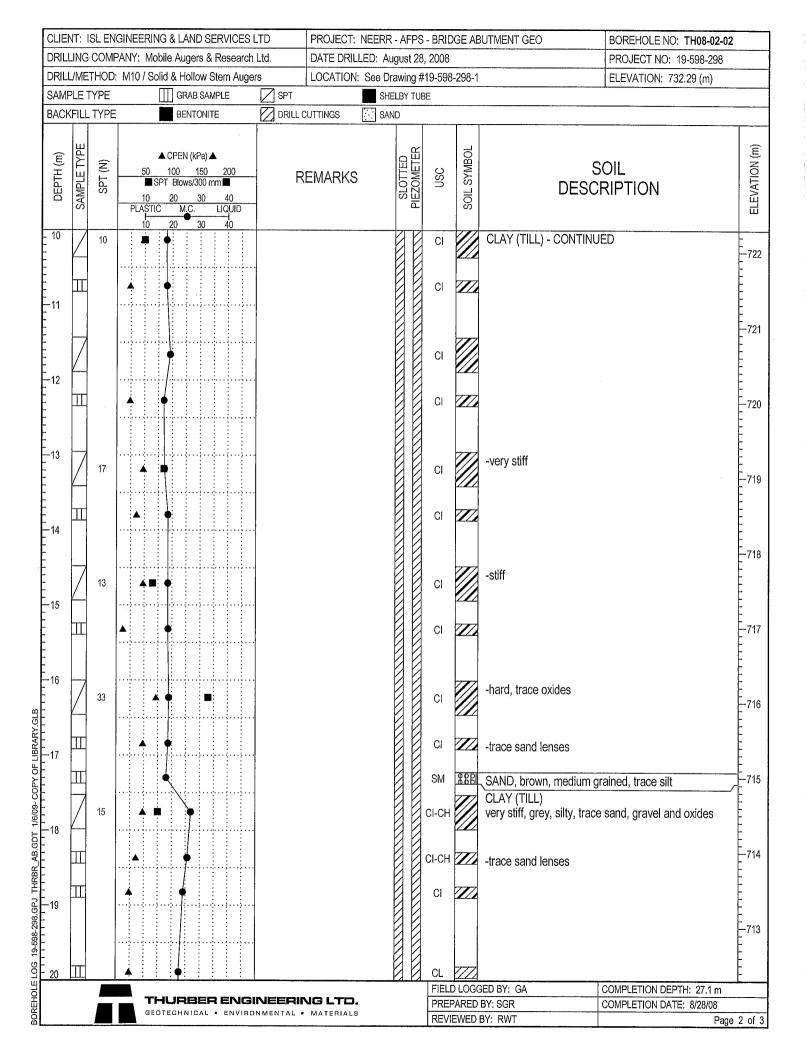

TEST HOLE	LOCATION		Drilled	STANDPIPE PIEZOMETER			LOCATION		Drilled	STANDPIPE PIEZOMETER	
	Easting (m)	Northing (m)	Depth (m)	Tip Depth (m)	Soil Type	TEST HOLE	Easting (m)	Northing (m)	Depth (m)	Tip Depth (m)	Soil Type
TH08-16-02	43523.511	5937446.026	22.1	15.2	Sand						
TH08-17-01A	43293.845	5937714.448	19.5	18.6	Clay Shale						
TH08-17-02A	43460.047	5937610.314	31.7	31.7	Clay Shale						
TH08-18-01B	43353.225	5937874.421	22.6	22.0	Sandstone						
TH08-18-02B	43588.914	5937649.479	19.5	19.5	Clay Shale						
TH08-19-02	44133.163	5937567.954	18.0	15.3	Sand						
TH08-20-01A	44089.827	5937695.221	22.6	21.7	Sand						
TH08-20-02A	44197.654	5937641.476	22.6	18.9	Sand						
TH08-21-02A	44262.837	5937696.989	19.5	19.5	Sand						

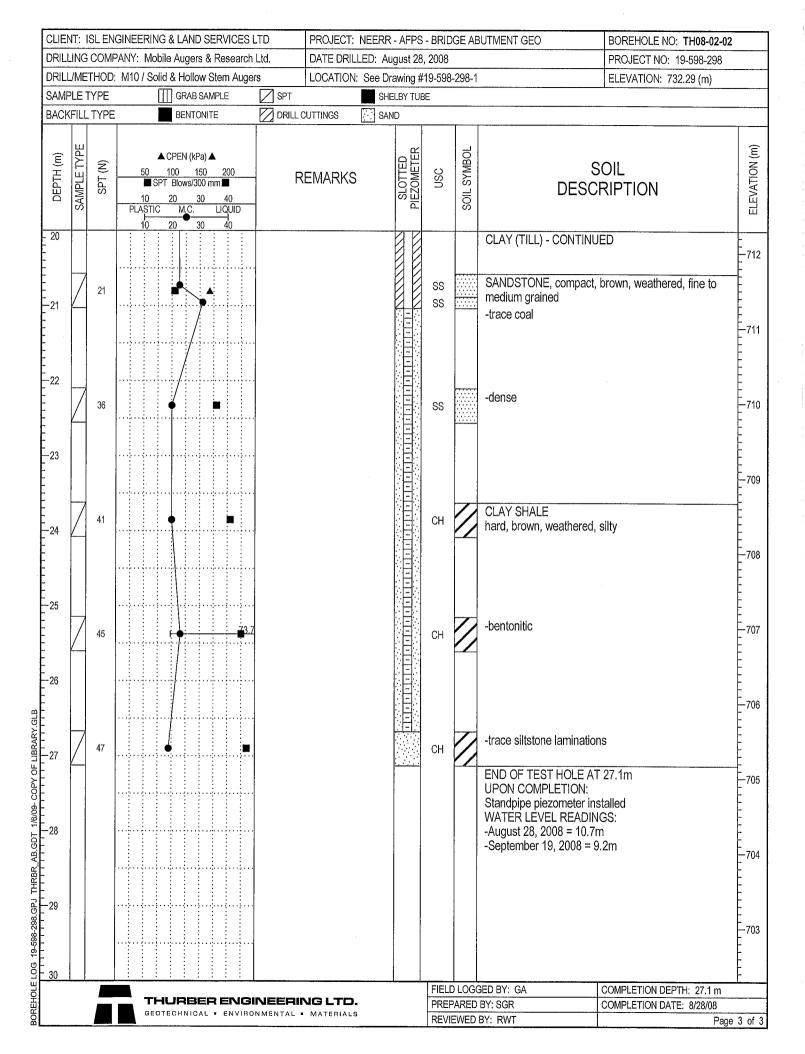


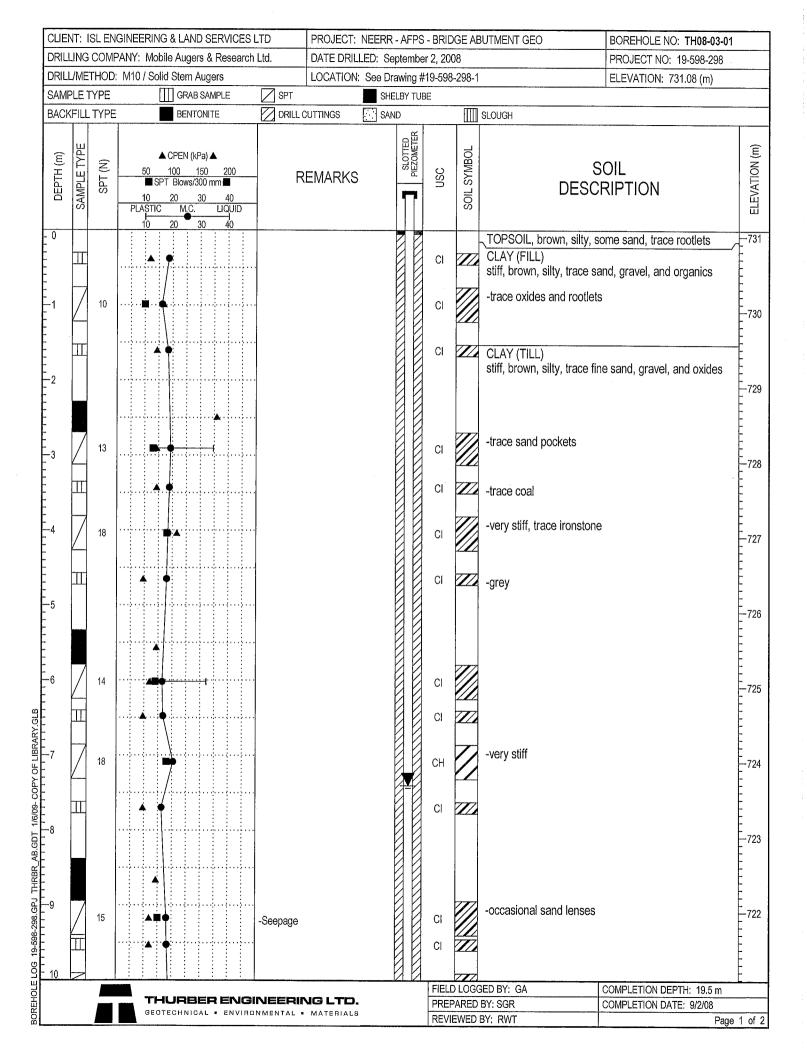


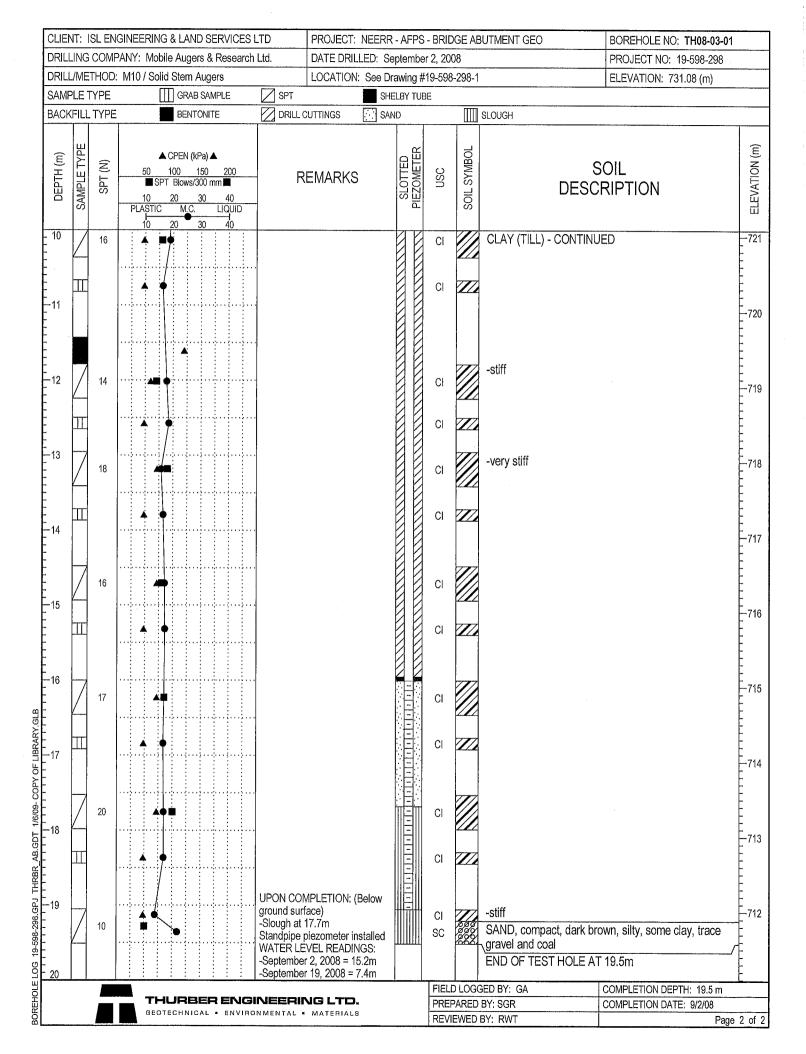

CLIENT: ISL EN	GINEERING & LAND SERVICES I	_TD PROJECT	NEERR - AFPS	- BRID	GE AE	BUTMENT GEO	BOREHOLE NO: TH08-01-01				
	PANY: Mobile Augers & Research		DATE DRILLED: September 5, 2008 PROJECT NO: 19-598								
	: M10 / Solid & Hollow Stem Auger	rs LOCATIO	N: See Drawing #	¢19-598	-298-1		ELEVATION: 720.73 (m)				
SAMPLE TYPE	GRAB SAMPLE	SPT SPT									
BACKFILL TYPE	BENTONITE		SAND								
SAMPLE TYPE SPT (N)	▲ CPEN (kPa) ▲ 50 100 150 200 ■ SPT Blows/300 mm ■ 10 20 30 40 PLASTIC M.C. LIQUID 10 20 30 40 	REMARK	SLOTTED PIEZOMETER	nsc	SOIL SYMBOL	DESC	SOIL RIPTION	ELEVATION (m)			
$30 \\ -31 \\ -32 \\ -32 \\ -33 \\ -34 \\ -35 \\ -36 \\ -37 \\ -38 \\ -39 \\ 40 \\ -39 \\ -30 \\ $				SS		CLAY SHALE - CONTIN hard, grey, weathered, o laminations SANDSTONE, dense, gr weathered, oxide stained END OF TEST HOLE AT UPON COMPLETION: Standpipe piezometer ins WATER LEVEL READIN -September 5, 2008 = 3. -September 19, 2008 = 2	eccasional sandstone ey, fine to medium grained, 1 7 30.2m stalled IGS: 1m				
-37 -38 -39 40	THURBER ENG					GED BY: GA BY: SGR	COMPLETION DEPTH: 30.2 m COMPLETION DATE: 9/5/08				
	GEOTECHNICAL . ENVIRO	NMENTAL . MATERIAL	5			BY: RWT		4 of			

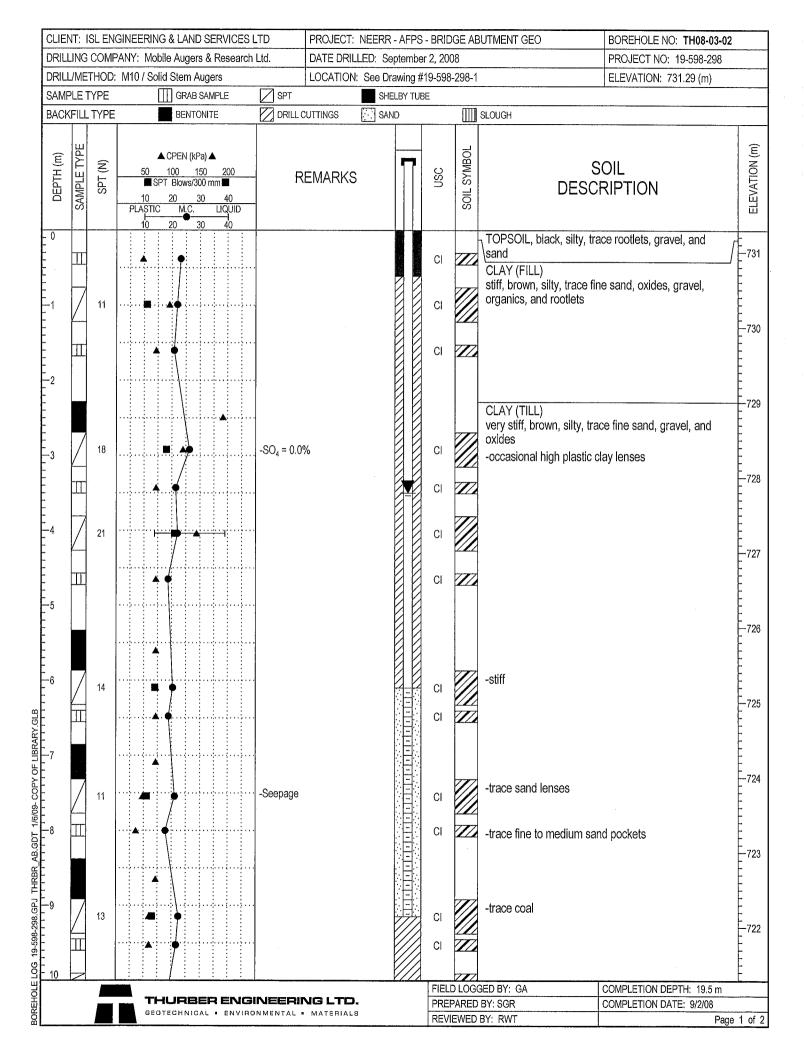


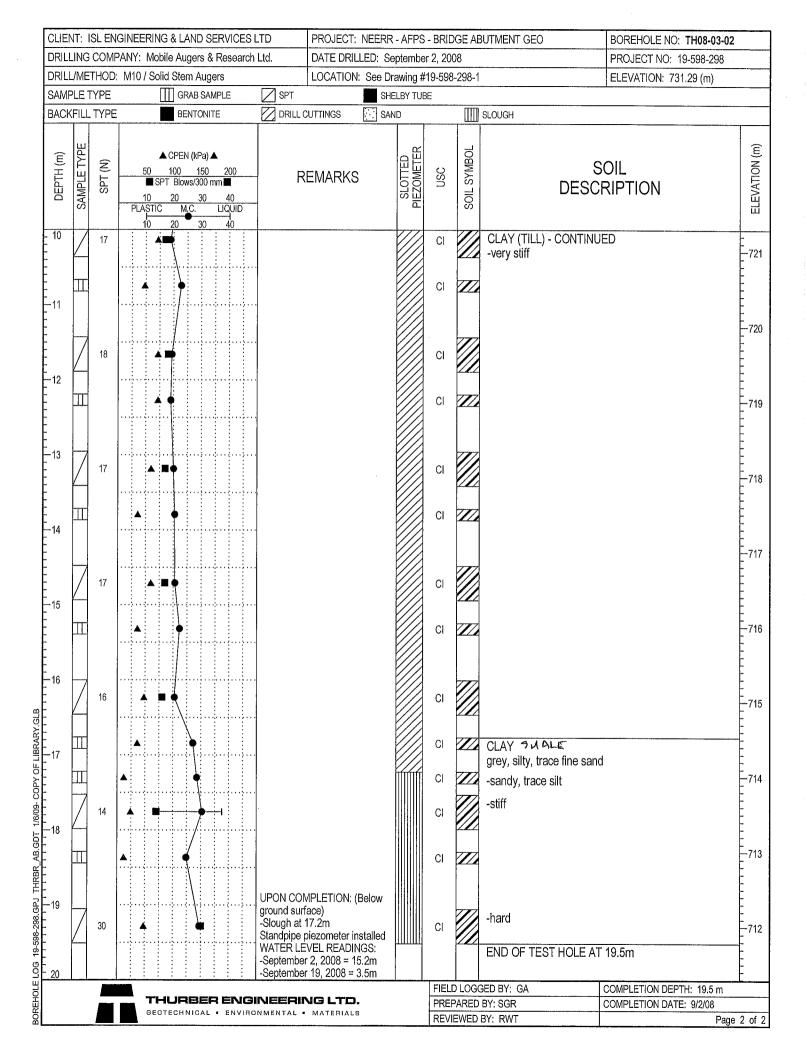

CLIEN	IT: I	SL EN	GINEERING & LAND SERVICES L	TD	PROJECT: NEERR - AFPS - BRIDGE ABUTMENT GEO						BOREHOLE NO: TH08-01-02	
DRILL	.ING	COMF	ANY: Mobile Augers & Research	_td.	DATE DRILLED: September 4, 2008 PROJECT NO: 19-598-298							
DRILL	/ME	THOD:	M10 / Solid & Hollow Stem Auger	S	LOCATION	: See Dra	awing #	19-598-	298-1		ELEVATION: 723.73 (m)	
SAMP	'LE 1	TYPE	GRAB SAMPLE	SPT SPT		SHE	lby tue	3E	\boxtimes	NO RECOVERY		
BACK	FILL	. TYPE	BENTONITE	DRILL C	UTTINGS	SAN	D					
DEPTH (m)	SAMPLE TYPE	SPT (N)	▲ CPEN (kPa) ▲ 50 100 150 200 ■ SPT Blows/300 mm 10 20 30 40 PLASTIC M.C. LIQUID 10 20 30 40 : : : : : : : : :	RI	EMARKS		PIEZOMETER		SOIL SYMBOL		OIL RIPTION	ELEVATION (m)
- 30 - 30 - 31 - 32 - 33 - 33 - 33 - 33 - 33 - 33 - 33										END OF TEST HOLE AT UPON COMPLETION: (E -No slough -Water at 24.6m Standpipe piezometer ins WATER LEVEL READIN -September 19, 2008 = 4	Below ground surface) stalled GS:	-692 -692 -692 -689 -688 -688 -688
			THURBER ENGI								COMPLETION DEPTH: 30.2 m COMPLETION DATE: 9/4/08	
			GEOTECHNICAL = ENVIRON	NMENTAL .	MATERIALS			BY: RWT	Page 4 of 4			

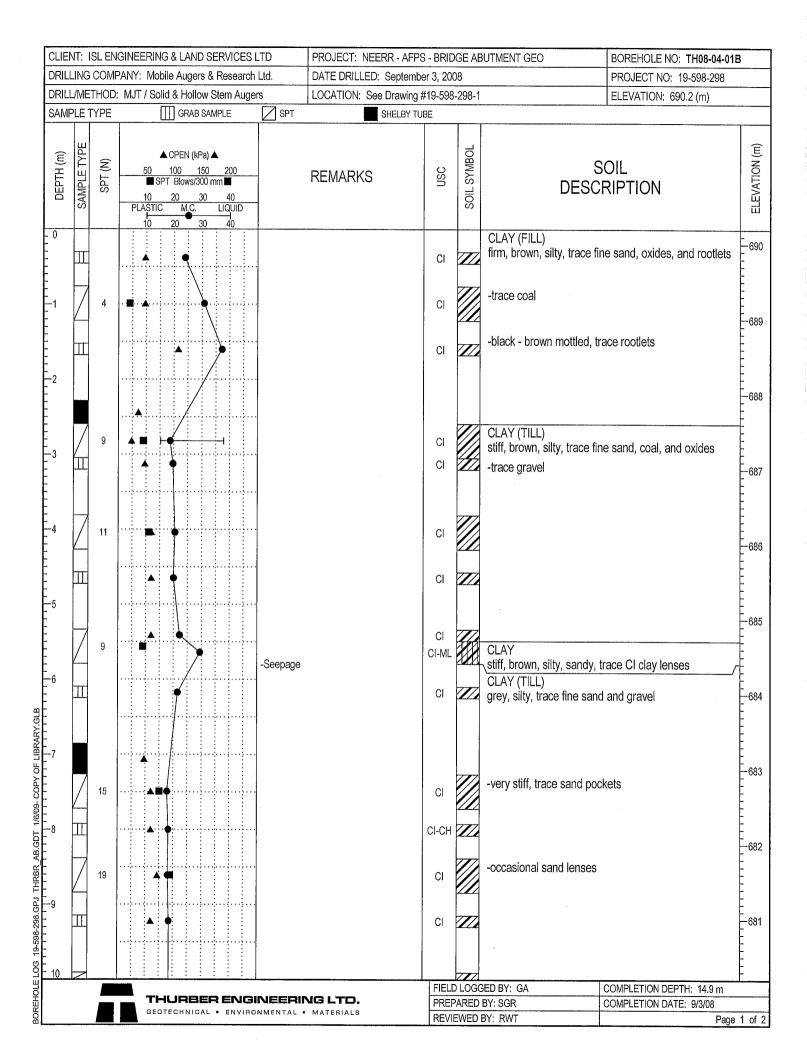


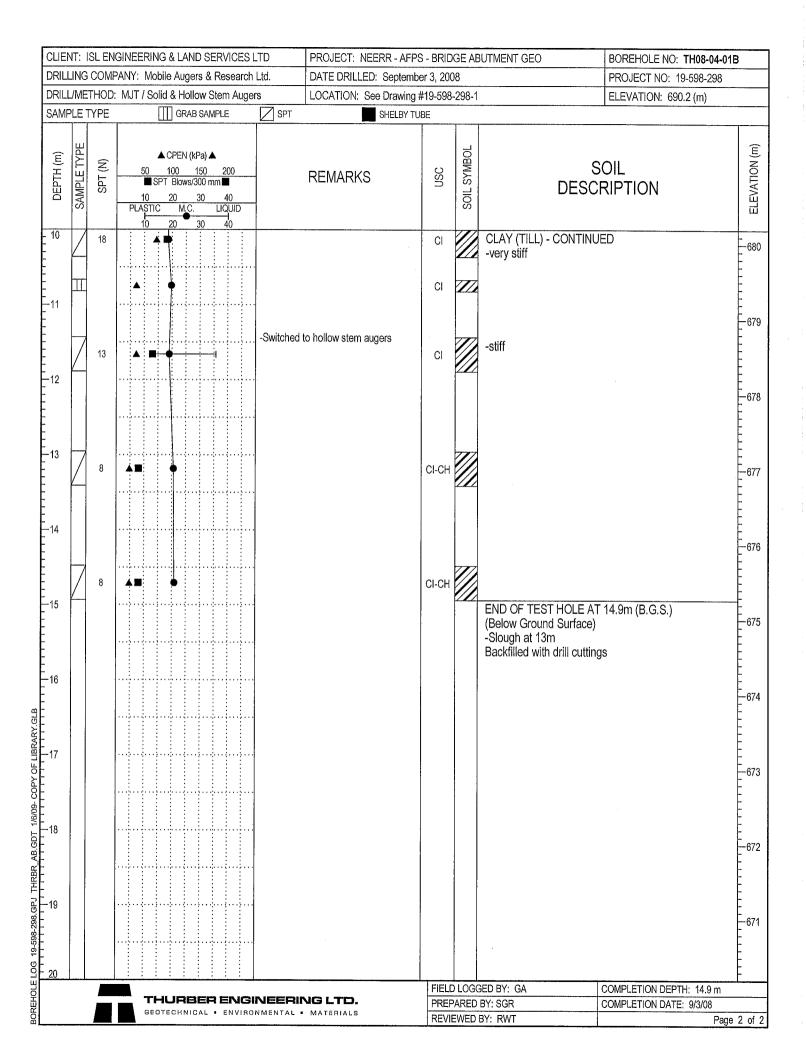


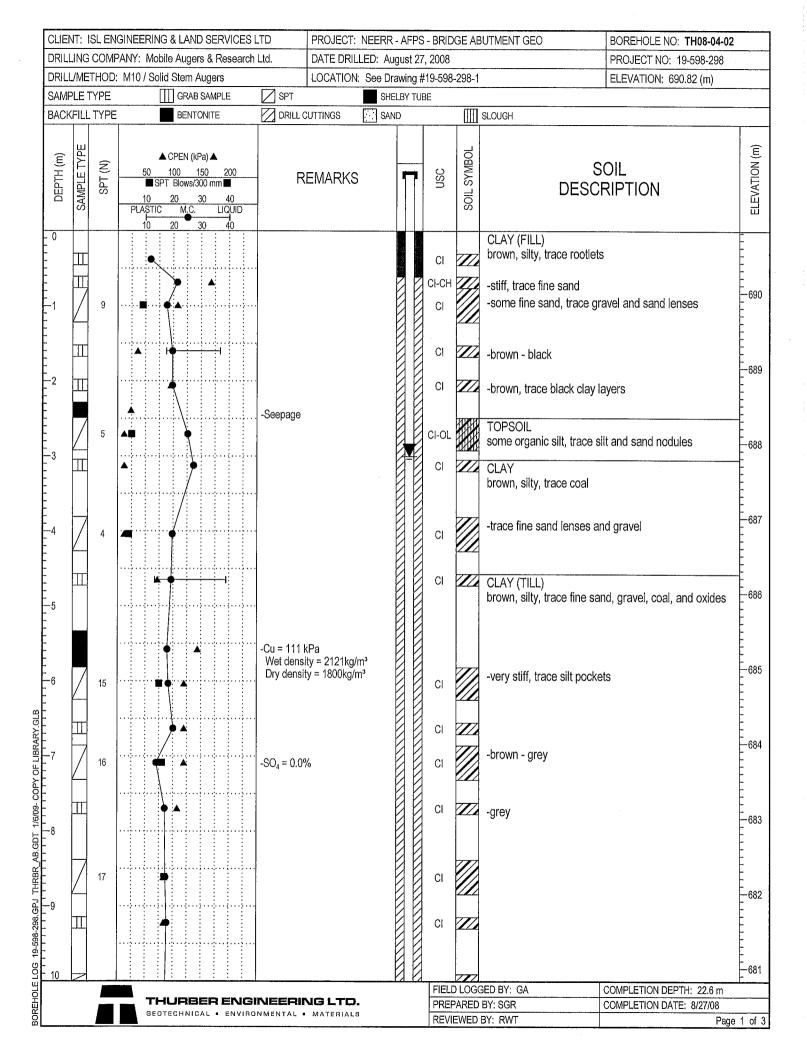

DRILLING COMPANY: Mobile Augers & Research Ltd. DATE DRILLED: August 29, 2008 PROJECT NO: 19-598-2 DRILL/METHOD: M10 / Solid & Hollow Stem Augers LOCATION: See Drawing #19-598-298-1 ELEVATION: 731.66 (m SAMPLE TYPE GRAB SAMPLE SPT SHELBY TUBE	
	۱ ۱
)
SAMPLE TYPE GRAB SAMPLE SPT SHELBY TUBE BACKFILL TYPE BENTONITE DRILL CUTTINGS SAND SLOUGH	
(iii) HLdH (iii) ▲ CPEN (kPa) ▲ 50 100 150 200 SPT Blows/300 mm Immediate 0 10 20 30 40 PLASTIC M.C. LIQUID 10 10 20 10 20 10 20 10 20 10 20 10 20 30 40	ELEVATION (m)
20 15 15 CLAY (TILL) - CONTINUED 15 -trace medium grained sand pockets CLAY SHALE CLAY SHALE very stiff, brown, weathered, silty	711
22 18 Image: Solution of the state	lay
28 Gravel = 0.0% Sand = 2.1% Sill = 56.7% Clay = 38.2% Sill STONE, compact, green - grey, weathered, clayey 25 CLAY SHALE, very stiff, brown, weathered END OF TEST HOLE AT 24.1m UPPON COMPLETION: (Below ground surface) -Slough at 11.6m 26 Sill STATER LEVEL READINGS: -August 29, 2008 = m -September 19, 2008 = 2.8m 27 Sill Standard - environmental - materials 28 Sill Standard - environmental - materials	
THURBER ENGINEERING LTD. FIELD LOGGED BY: GA COMPLETION DEPTH: 24. PREPARED BY: SGR COMPLETION DATE: 8/29/	
GEOTEGHNIGAL • ENVIRONMENTAL • MATERIALS REVIEWED BY: RWT	Page 3 of

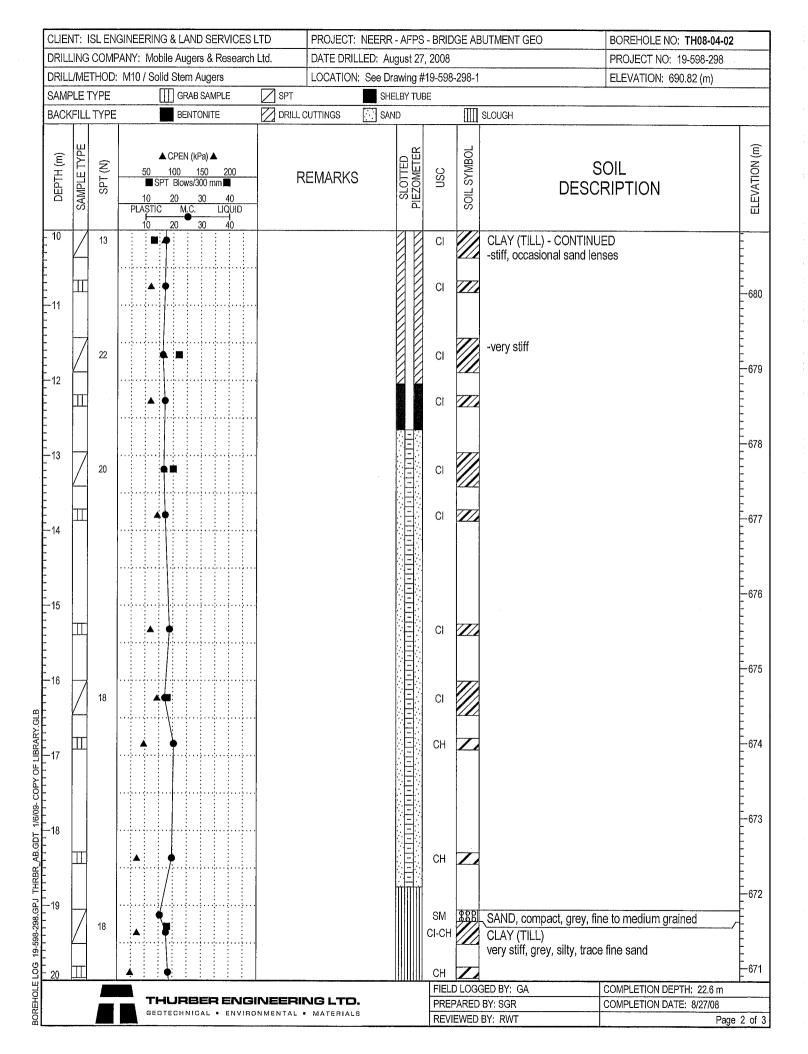


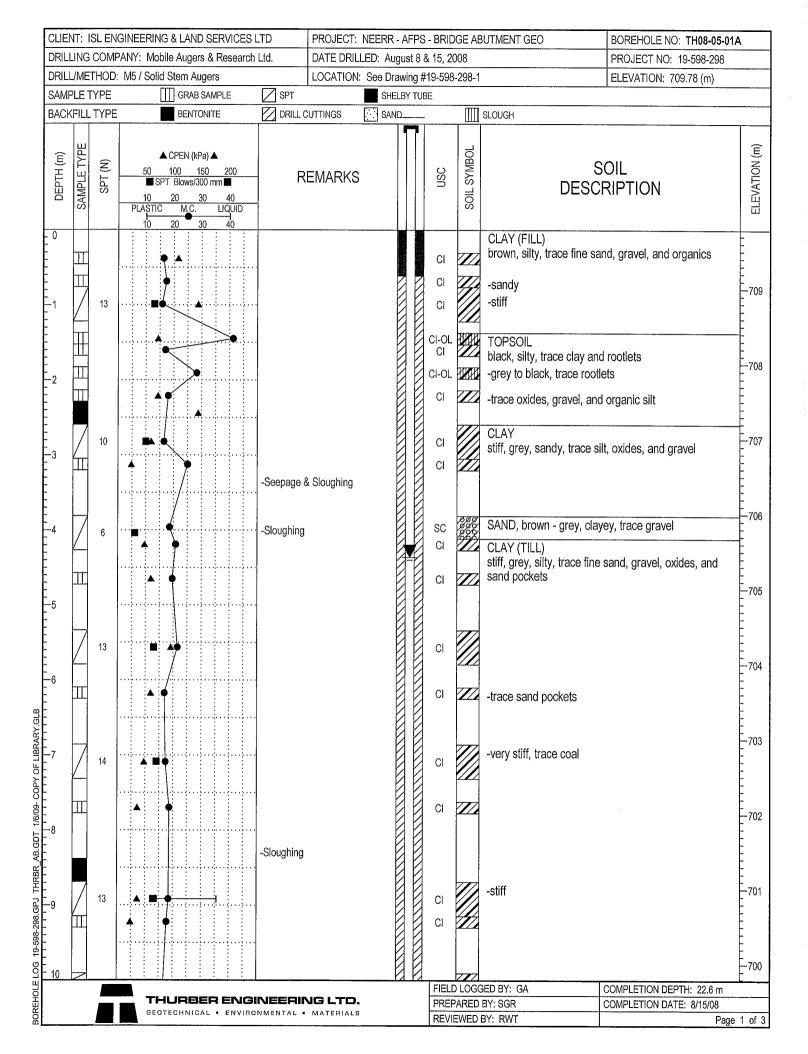


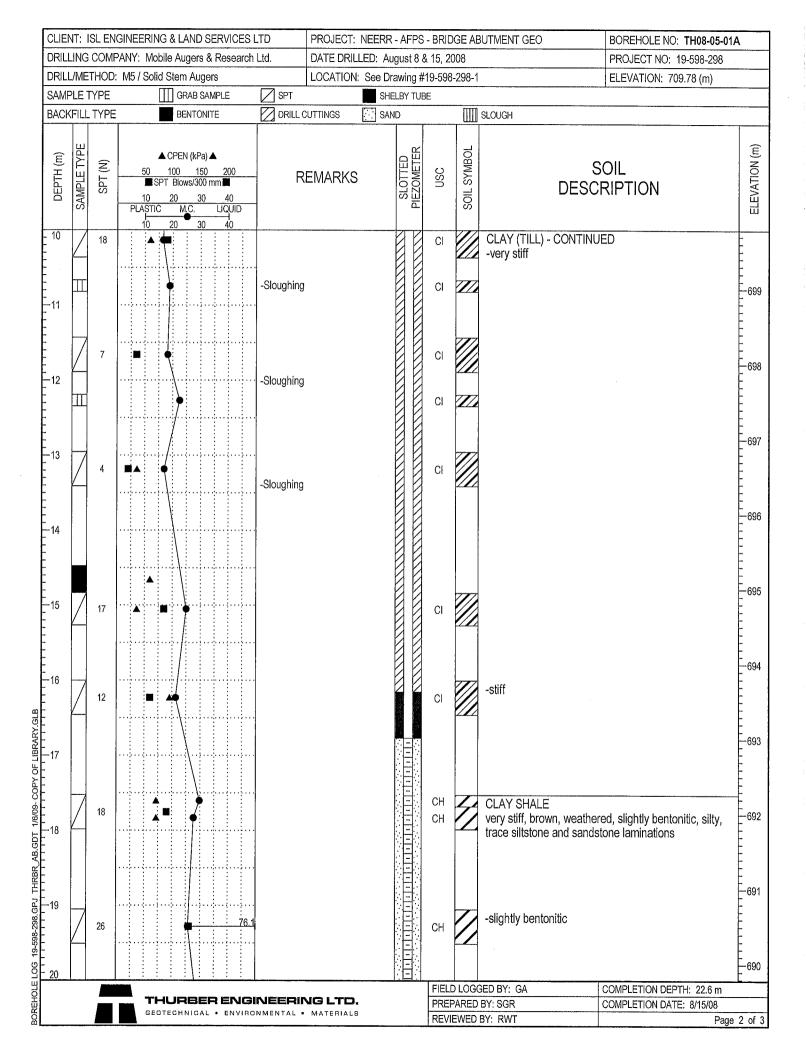


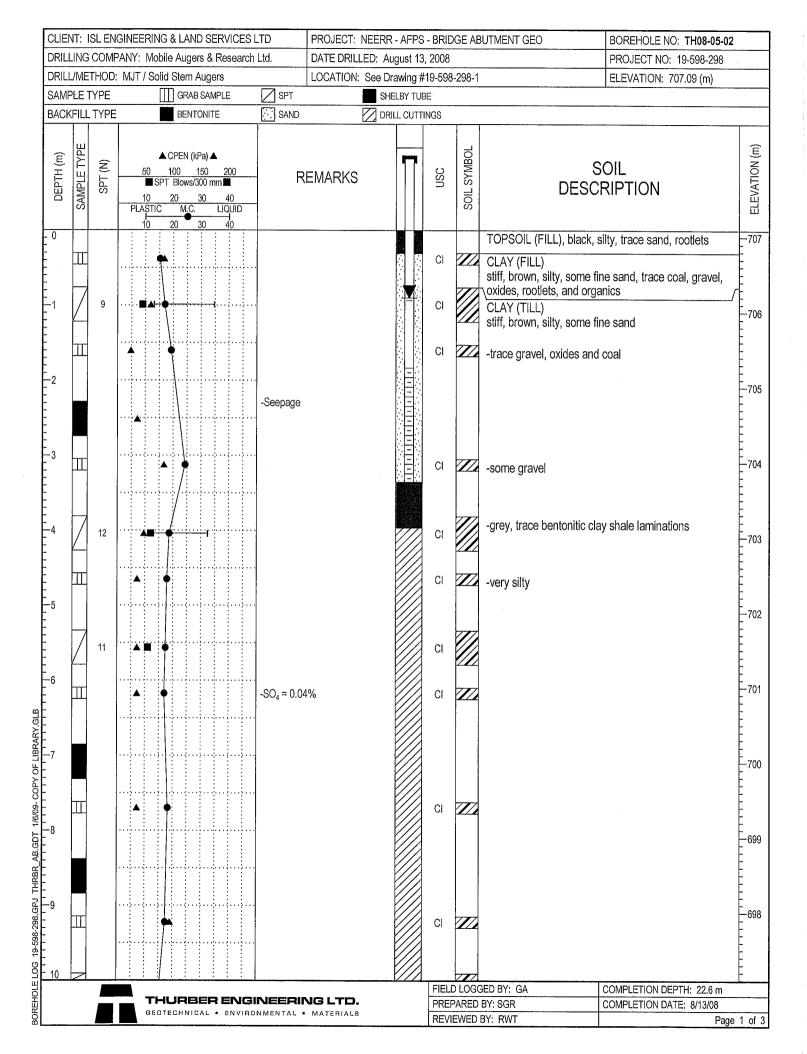


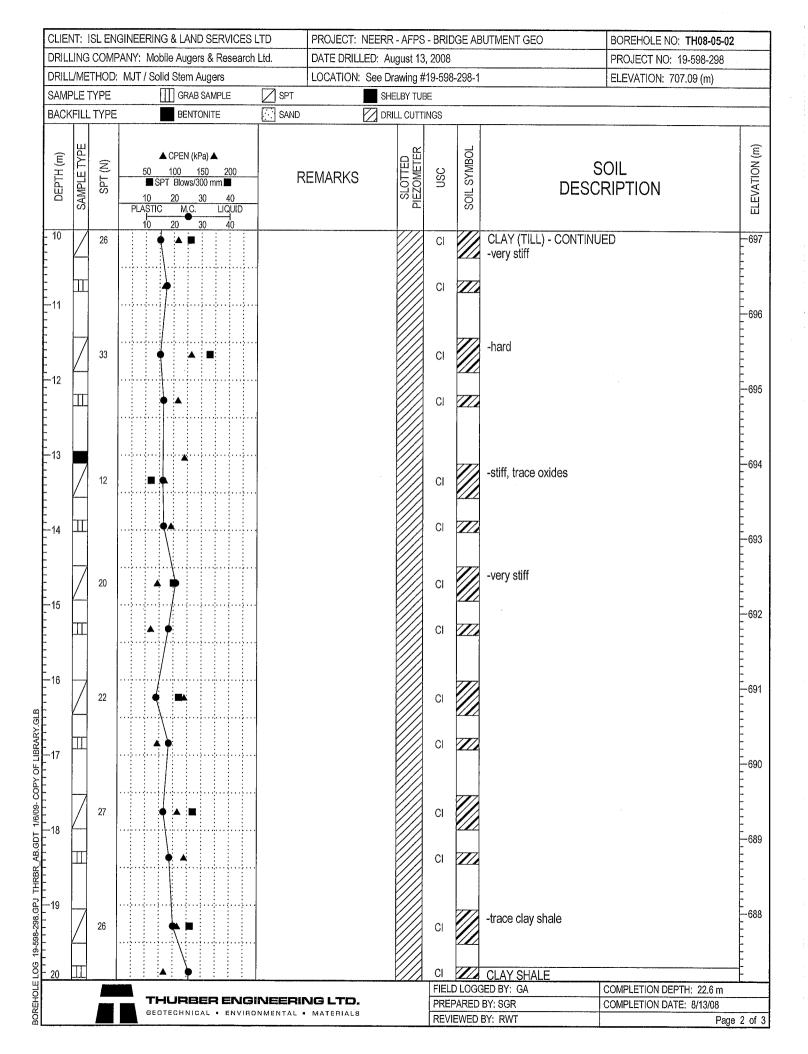


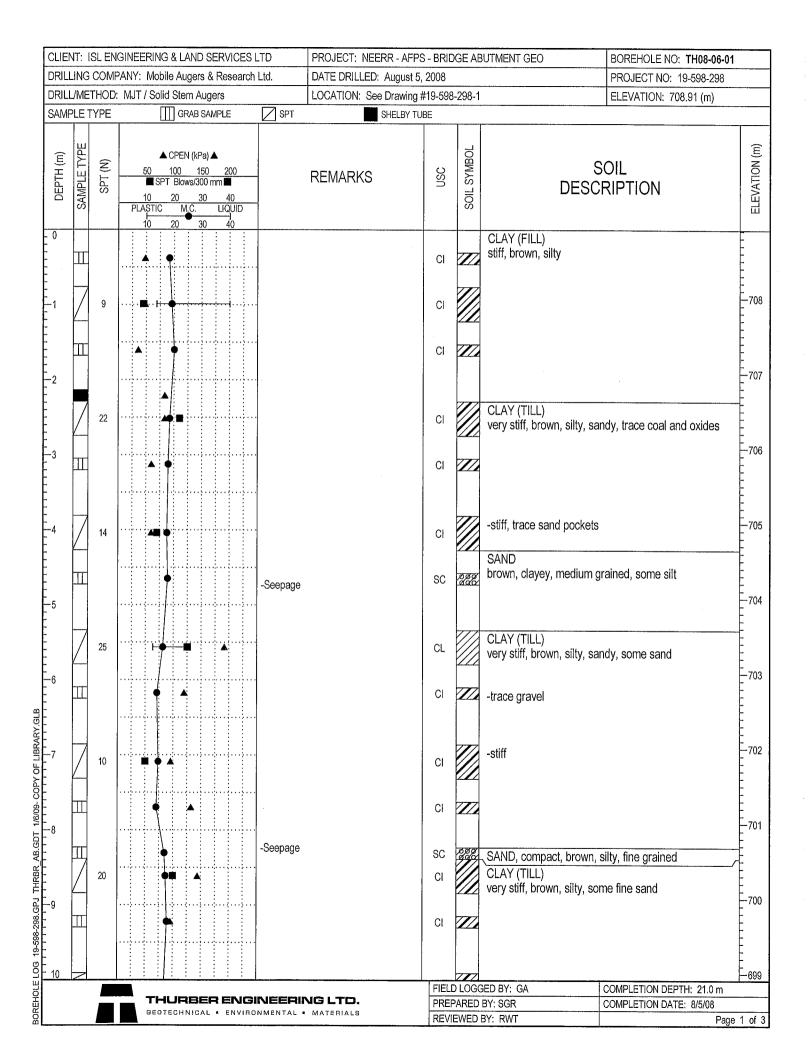


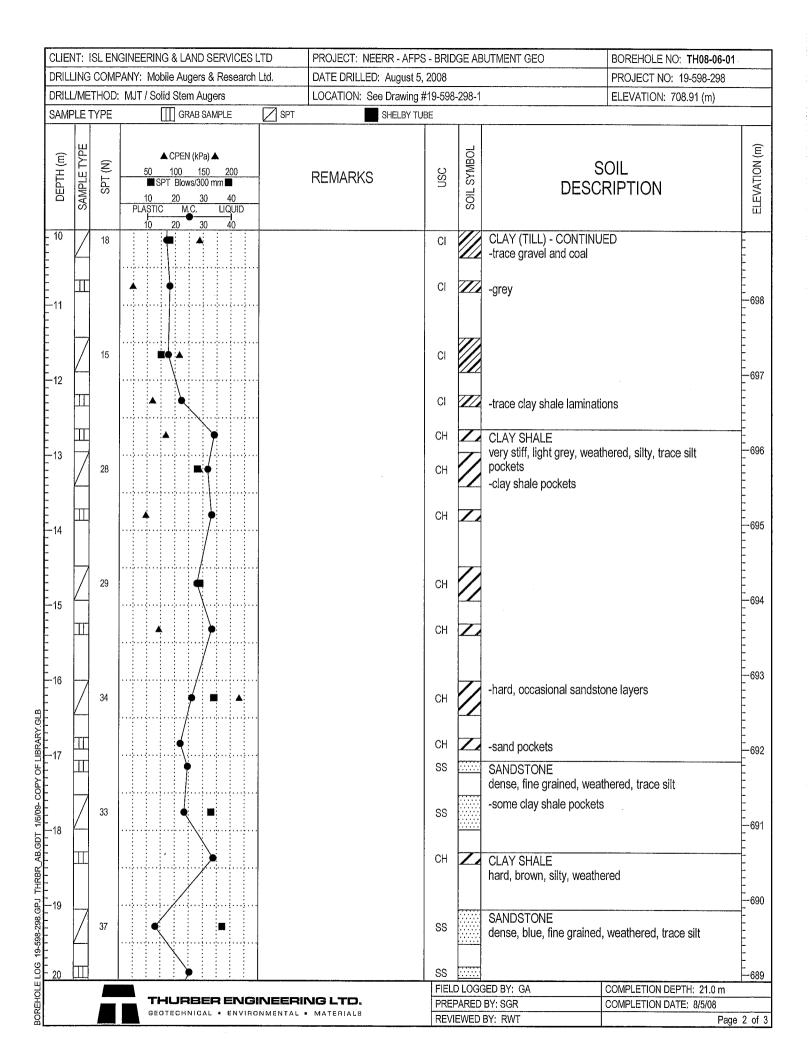


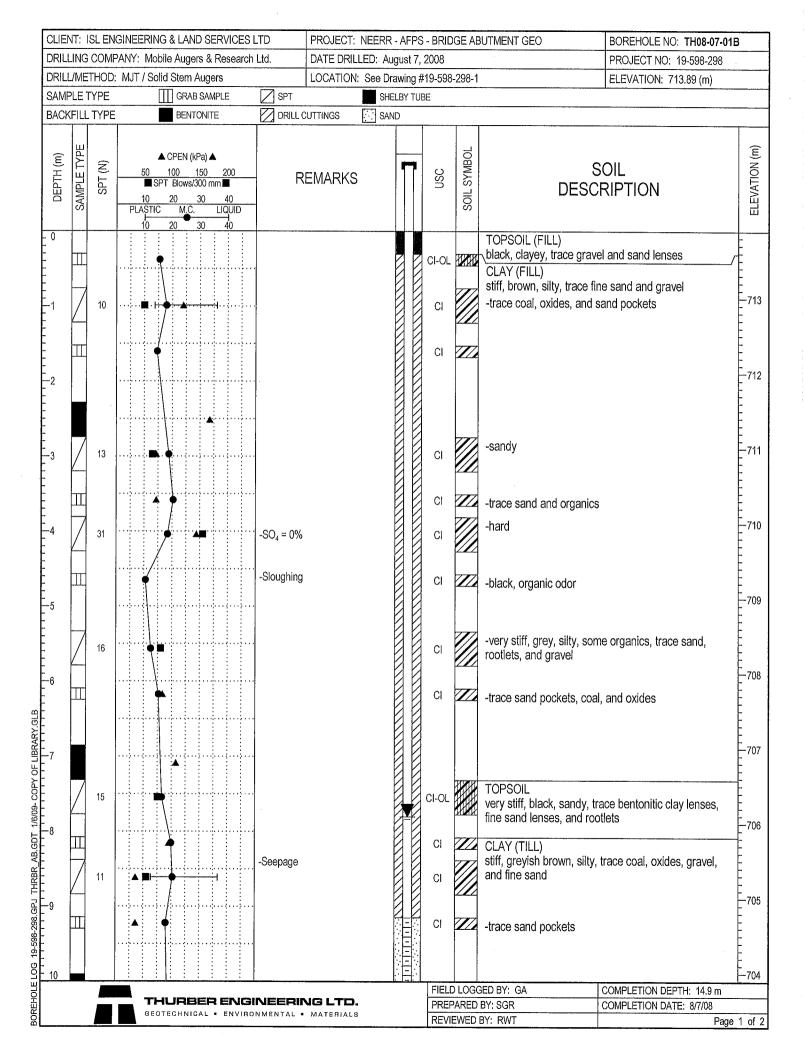


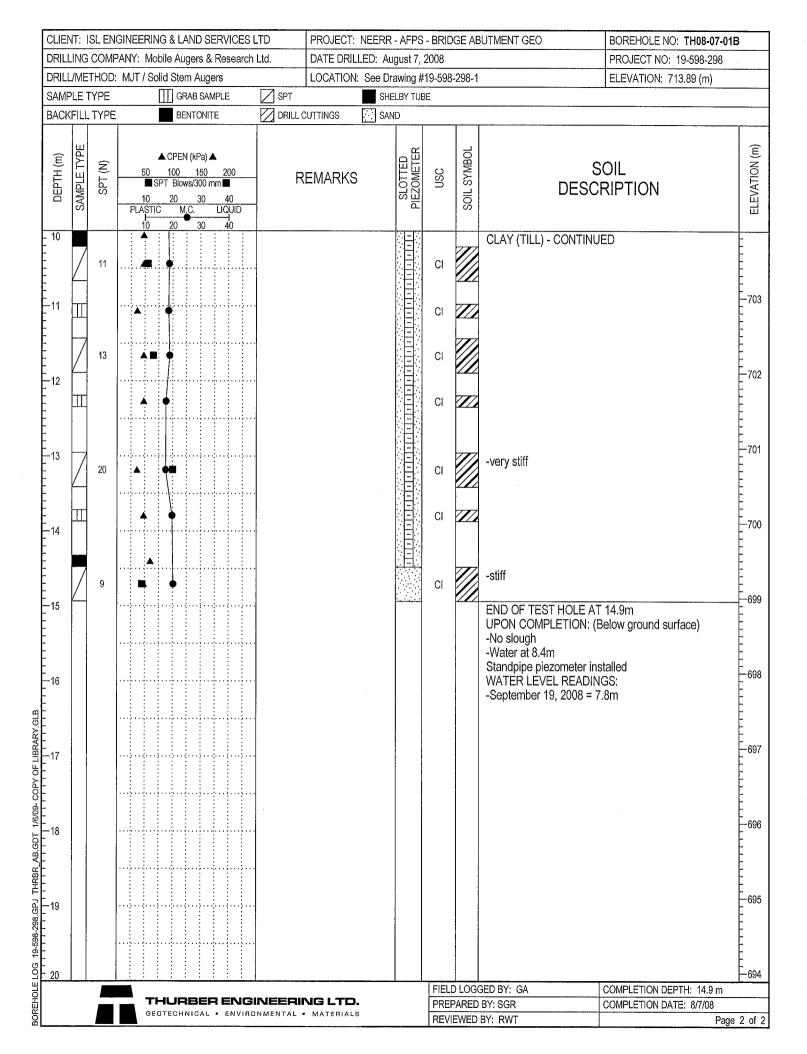


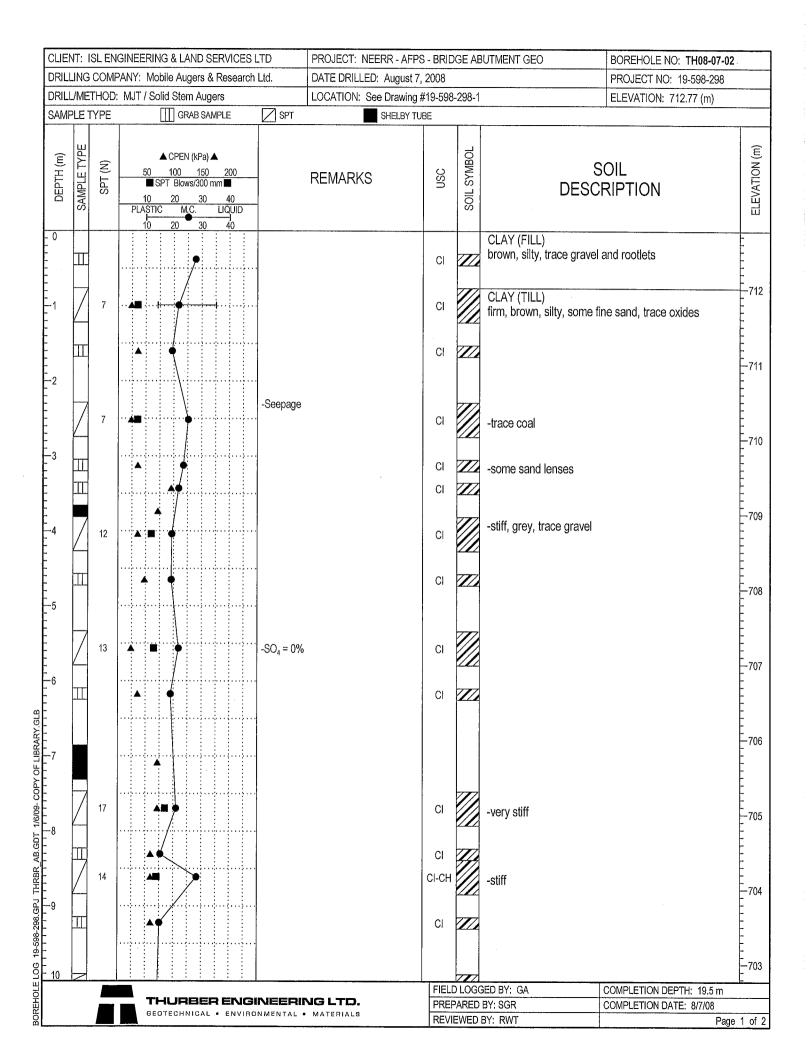

CLIENT: ISL ENGINEERING & LAND SERVICES		NEERR - AFPS -	BOREHOLE NO: TH08-04-02						
		LED: August 27, 2							
······································				3-1 ELEVATION: 690.82 (r					
	Received.								
CLIENT: ISL ENGINEERING & LAND SERVICES DRILLING COMPANY: Mobile Augers & Research DRILL/METHOD: M10 / Solid Stem Augers SAMPLE TYPE GRAB SAMPLE BACKFILL TYPE BENTONITE	Ltd. DATE DRIL	LLED: August 27, 2 k: See Drawing #19 SHELBY TUBE SAND SAND SAND SAND SAND	2008 9-598-298-1	SLOUGH	PROJECT NO: 19-598-298 ELEVATION: 690.82 (m) SOIL CRIPTION JED Il sand lenses				
-28 -29									
			FIELD LOGO PREPARED REVIEWED		COMPLETION DEPTH: 22.6 m COMPLETION DATE: 8/27/08 Par	Je 3 o			

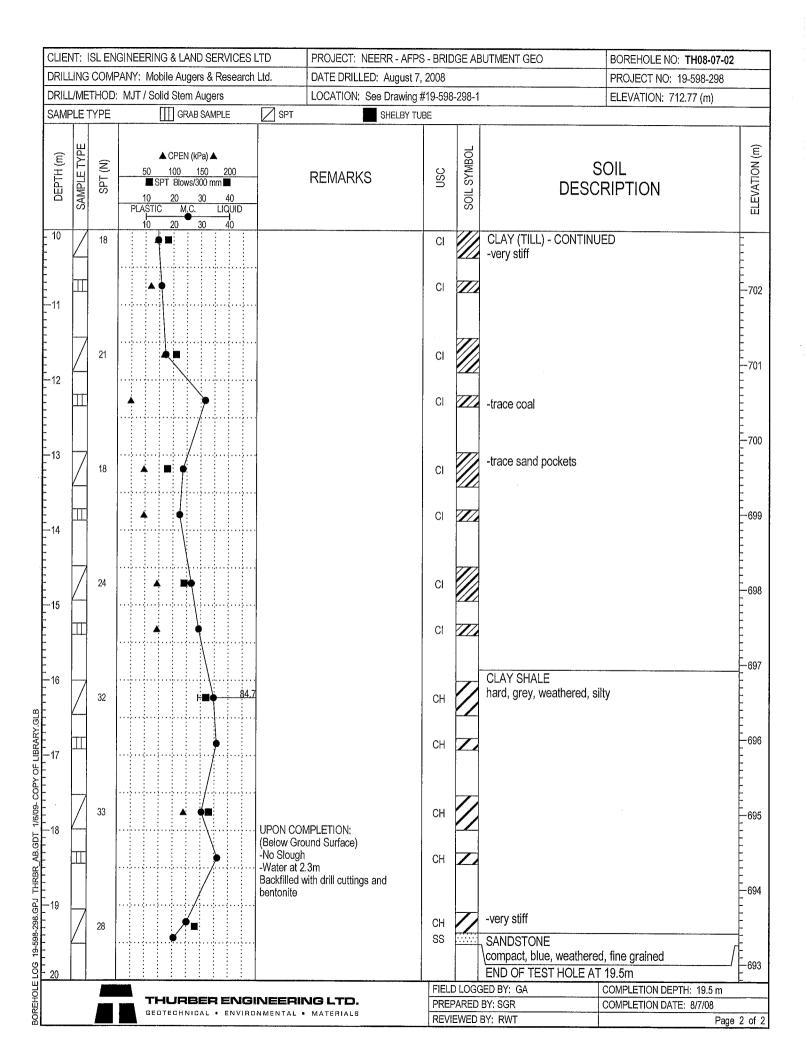


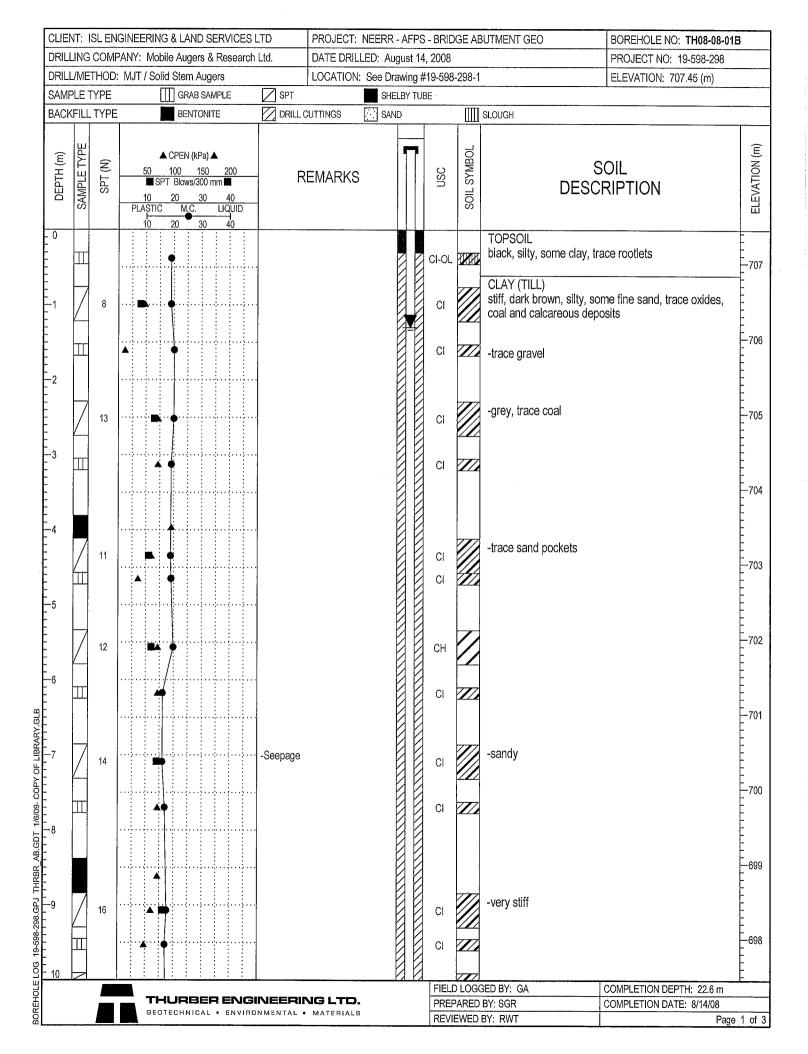

CLIEN	۱T:	ISL EN	GINE	RIN	G &	LA	ND S	SEF	RVIC	ES	LTD	PROJECT	: NEERR	- AFPS	- BRID	GE AB	BUTMENT GEO	BOREHOLE NO: TH08-05-0	1A	
DRILL	ING	G COM	PANY:	Мо	bile ,	Aug	ers	& R	ese	arch	Ltd.	DATE DRI	LLED: Au	gust 8	8 & 15, 2008 PROJECT NO: 19-598-298					
DRILL	JME	THOD	: M5/	Soli								LOCATION	√: See Dr	awing #	19-598	298-1		ELEVATION: 709.78 (m)		
SAMF	νLΕ	TYPE				GR/	B S/	AMP	LE		SPT		SHE	LBY TU	3E					
BACK	FILI	L TYPE				BEN	TON	ITE				UTTINGS	SAN	ID			SLOUGH			
DEPTH (m)	SAMPLE TYPE	SPT (N)	▲ CPEN (kPa) ▲ 50 100 150 200 ■ SPT Blows/300 mm 10 20 30 40 PLASTIC M.C. LIQUID 10 20 30 40				R	EMARKS	6	SLOTTED PIEZOMETER	nsc	SOIL SYMBOL	SOIL DESCRIPTION		ELEVATION (m)					
-21	Ζ	41			•				.						СН СН	Ŧ	CLAY SHALE - CONTIN -hard -trace sandstone inclusic		- 	
- 22 	Ζ	70			•					>>					СН			- 00.6m		
-23																	END OF TEST HOLE AT UPON COMPLETION: (E -Slough at 21.3m -Water at 20m (Above SI Standpipe piezometer ins WATER LEVEL READIN -August 19, 2008 = 4.4m -September 19, 2008 = 4	Below ground surface) ough) stalled GS:	- 687 - 686 - 686 - 685	
BOREHOLE LOG 19-588-288.GPJ THRBR. AB.GDT 1/6/09- COPY OF LIBRARY.GLB																				
9 - <u>30</u>					:														-680 E	
<u>P</u>				71							NEERI		· · · · · · · · · · · · · · · · · · ·				GED BY: GA	COMPLETION DEPTH: 22.6 m		
ORE											NMENTAL .						BY: SGR BY: RWT	COMPLETION DATE: 8/15/08	2 2 6 0	
<u>۵</u>																		Pag	ge 3 of 3	

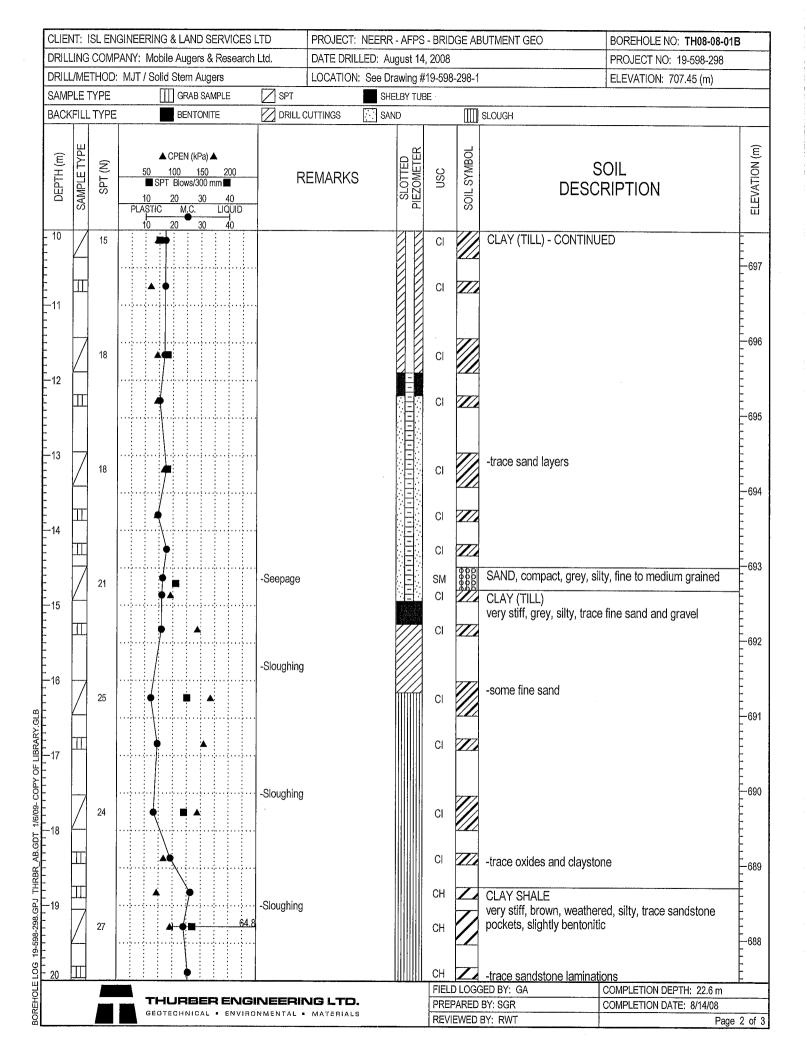


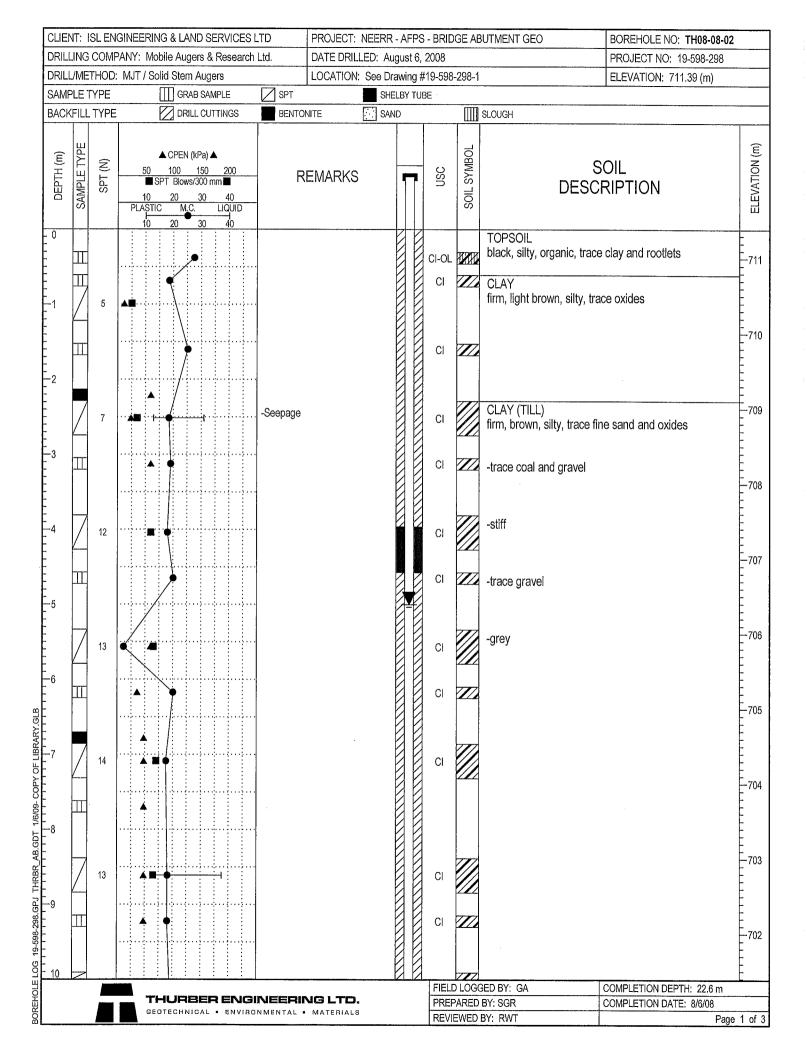

CLIE	CLIENT: ISL ENGINEERING & LAND SERVICES LTD									VIC	ES I	LTD	PROJECT	NEERR	BOREHOLE NO: TH08-05-02	2				
DRILI	ING	COM	PANY	: M	obi	le A	uge	ers &	k Re	esea	arch	Ltd.	DATE DRILLED: August 13, 2008 PROJECT NO: 19-598-298							
DRIL	./ME	THOD	MJ.	٢/ ٤	Solic	d Ste	em .	Aug	ers				LOCATION	l: See Dr	awing #	19-598	298-1		ELEVATION: 707.09 (m)	
SAMF	PLE .	TYPE			Π]] 0	GRAE	3 SA	MPL	E.		SPT		SHE	ELBY TU	3E				
BACK	FILL	_ TYPE				B	ENT	ONI	ΤE			SAND		🛛 DRI	LL CUTT	INGS		· · · · · · · · · · · · · · · · · · ·		
DEPTH (m)	SAMPLE TYPE	SPT (N)	▲ CPEN (kPa) ▲ 50 100 150 200 ■ SPT Blows/300 mm 10 20 30 40 PLASTIC M.C. LIQUID 10 20 30 40				-	EMARK	3	SLOTTED PIEZOMETER	DSU	SOIL SYMBOL			ELEVATION (m)					
20	Z	25			· · · · · · · · · · · · · · · · · · ·											CH CH SS		CLAY SHALE - CONTIN brown, weathered, silty, -trace clay till laminations SANDSTONE very dense, grey - blue, v	trace coal and gravel	E
23 24 25 26 27 28 29 30		70														SS		-blue, moderately weather END OF TEST HOLE AT UPON COMPLETION: (I -No slough -Water at 4.9m Standpipe piezometer in: WATER LEVEL READIN -August 19, 2008 = 0.7m -September 19, 2008 = 0.7m	T 22.6m Below ground surface) stalled NGS: 1	-685 -684 -683 -682 -682 -681 -681 -680 -679 -679
= <u>30</u>													NG LTD			PREF	ARED	GED BY: GA BY: SGR	COMPLETION DEPTH: 22.6 m COMPLETION DATE: 8/13/08	<u> </u>
1					- '											REVI	EWED	BY: RWT	Pag	e 3 of

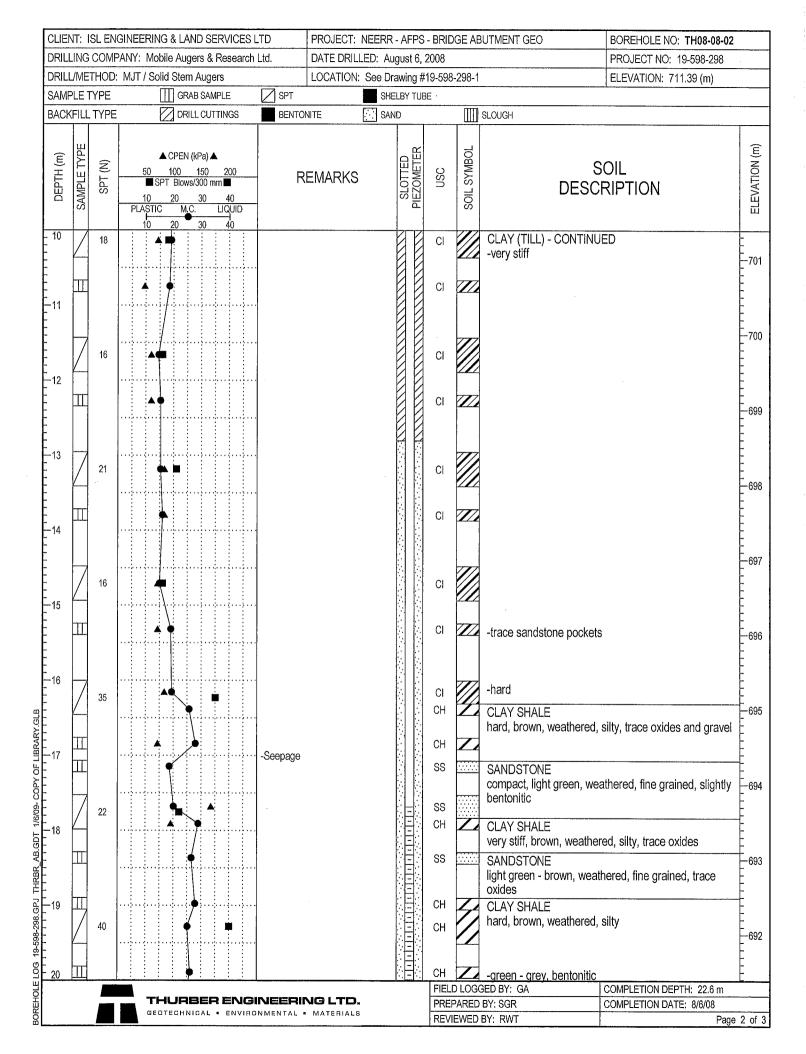


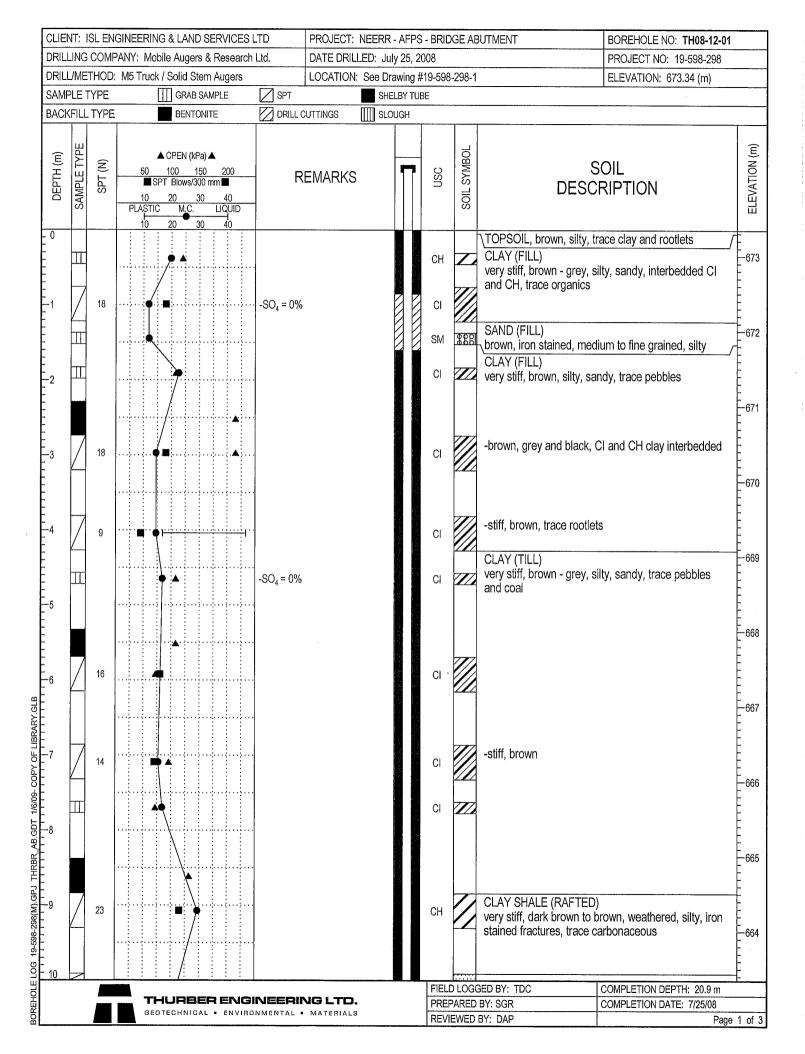


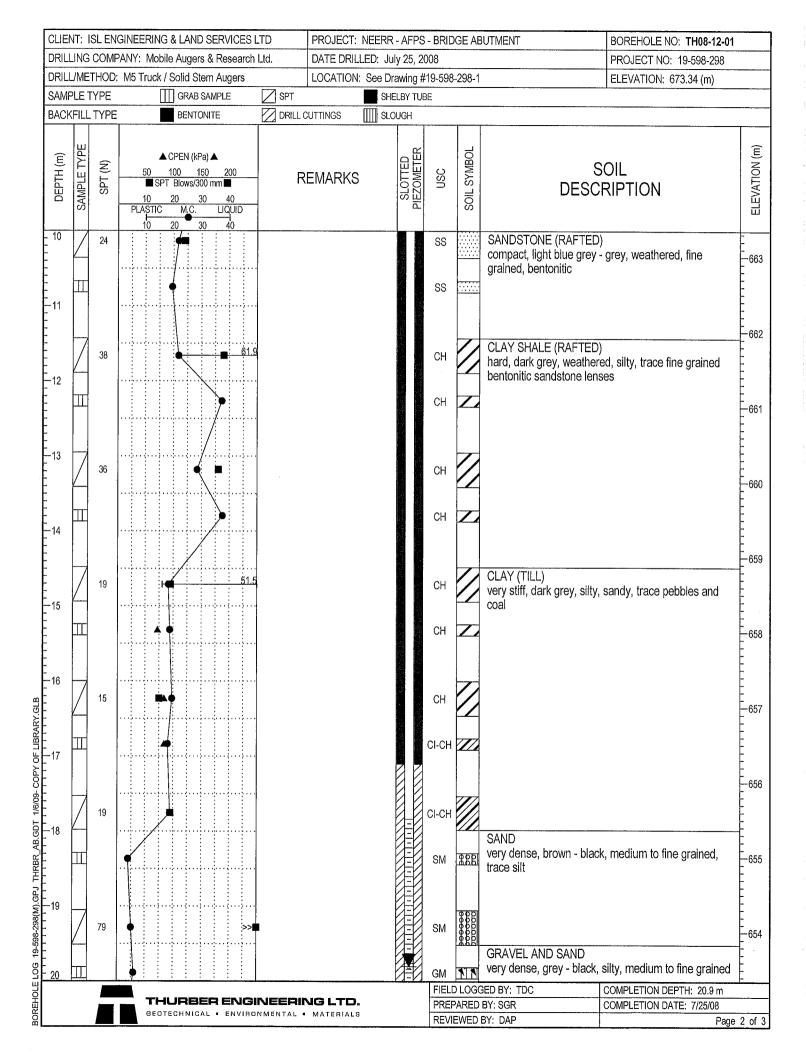

			GINEERING & LAND SERVICES LTD	PROJECT: NEERR - A	FPS - BRID	BOREHOLE NO: TH08-06-01 PROJECT NO: 19-598-298					
			ANY: Mobile Augers & Research Ltd.	DATE DRILLED: Augus	st 5, 2008						
			MJT / Solid Stem Augers		LOCATION: See Drawing #19-598-298-1 ELEVATION:						
SAM	PLE .	TYPE	GRAB SAMPLE	SPT SHELBY	' TUBE						
DEPTH (m)	SAMPLE TYPE	SPT (N)	▲ CPEN (kPa) ▲ 50 100 150 200 ■ SPT Blows/300 mm ■ 10 20 30 40 PLASTIC M.C. LIQUID 10 20 30 40	REMARKS	nsc	SOIL SYMBOL		SOIL CRIPTION	ELEVATION (m)		
20		50/60			SS		SANDSTONE - CONTIN -very dense, moderately END OF TEST HOLE A UPON COMPLETION: (-No Slough -Water at 4.6m Backfilled with drill cuttin	v weathered T 21.0m Below ground surface)			
-23									686		
-25 											
-27											
-27 -28 -29 -30											
							GED BY: GA	COMPLETION DEPTH: 21.0 m	0/8		
			GEOTECHNICAL • ENVIRONMEN				BY: SGR	COMPLETION DATE: 8/5/08			
					REVIE	WED	BY: RWT	Page	e 3 of		

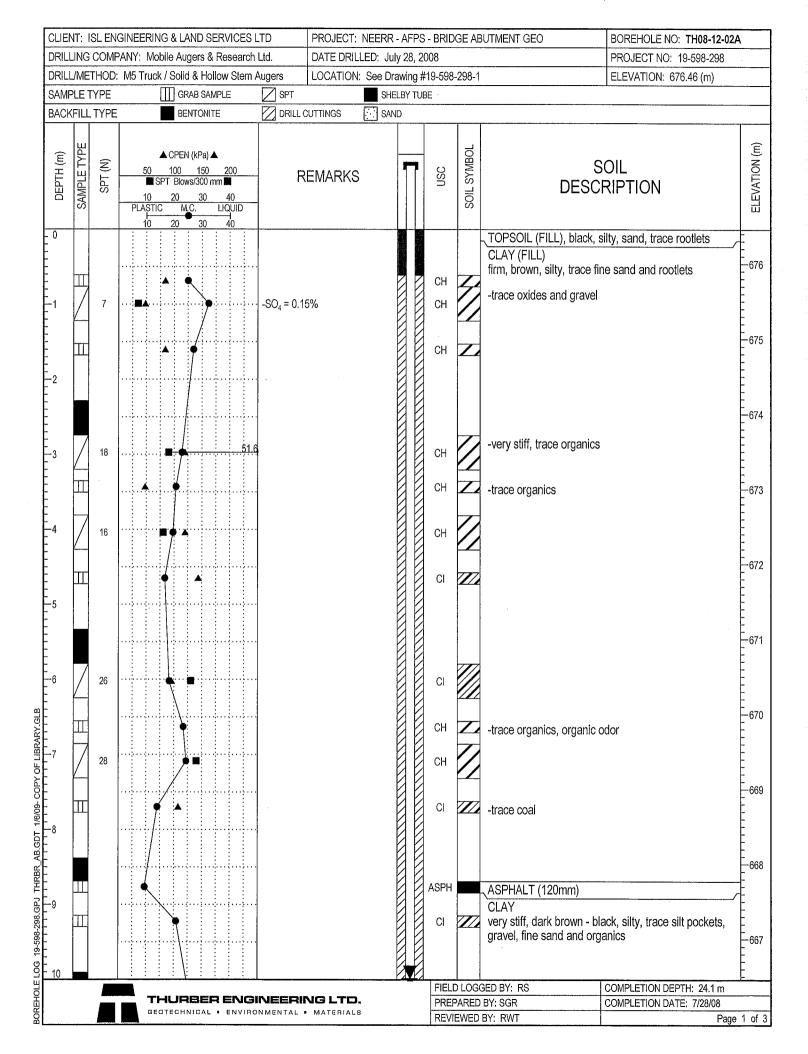


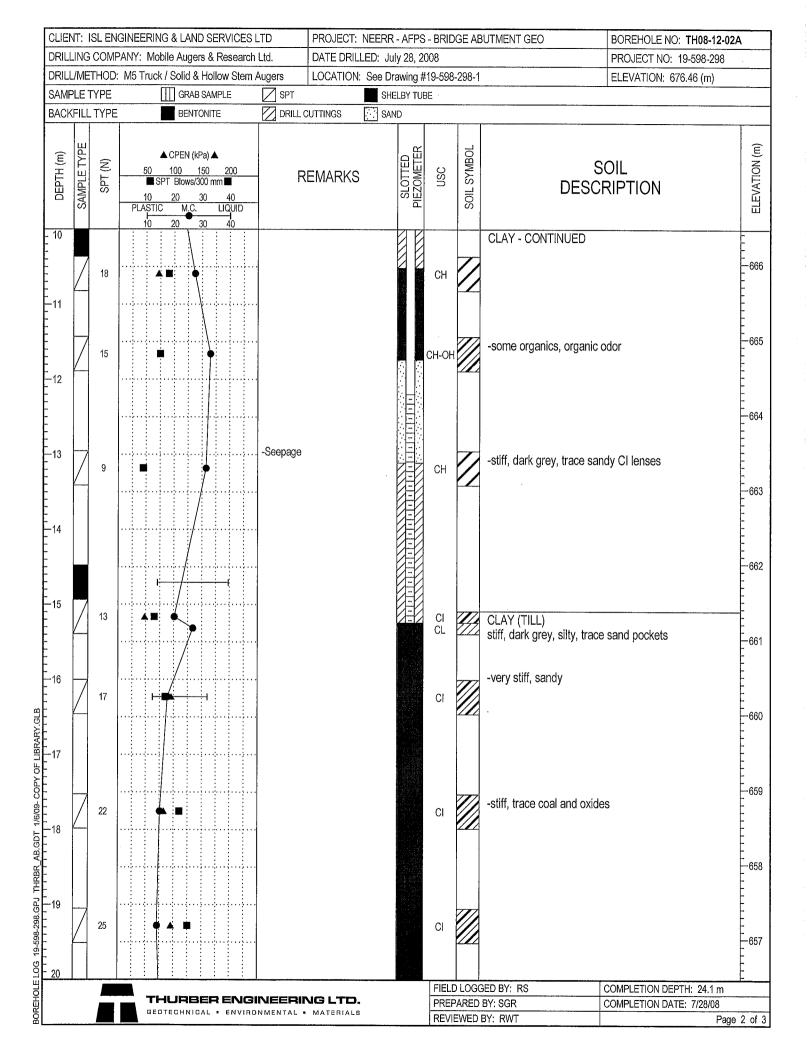


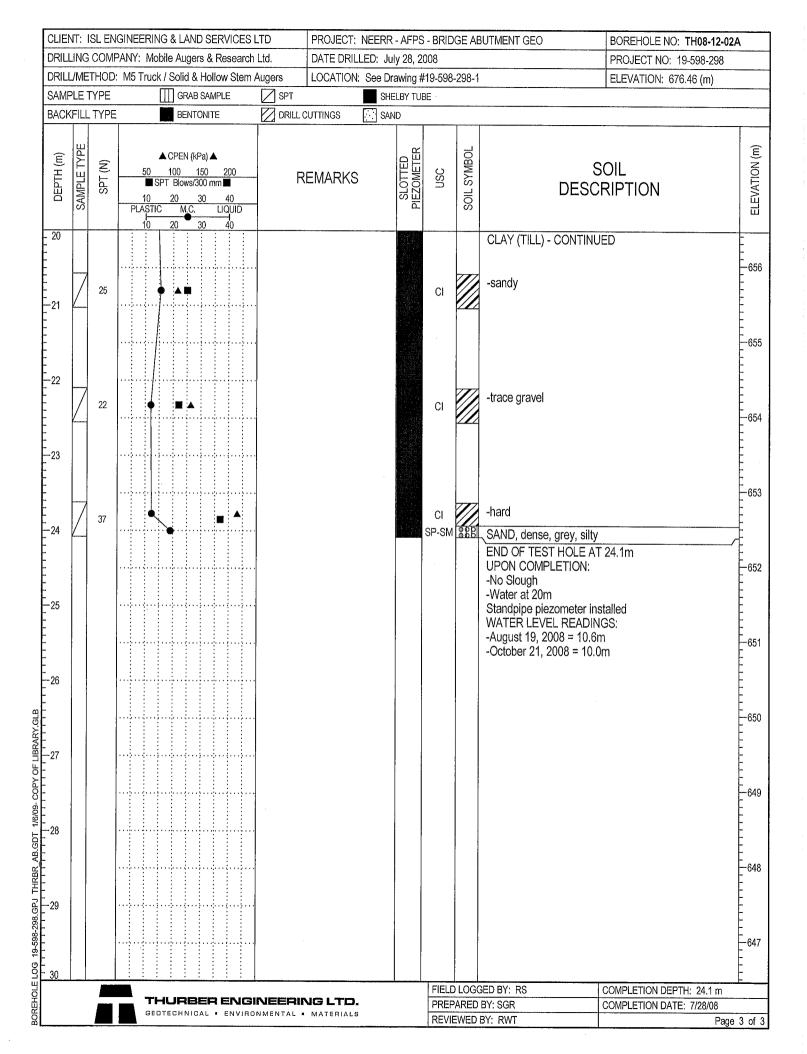


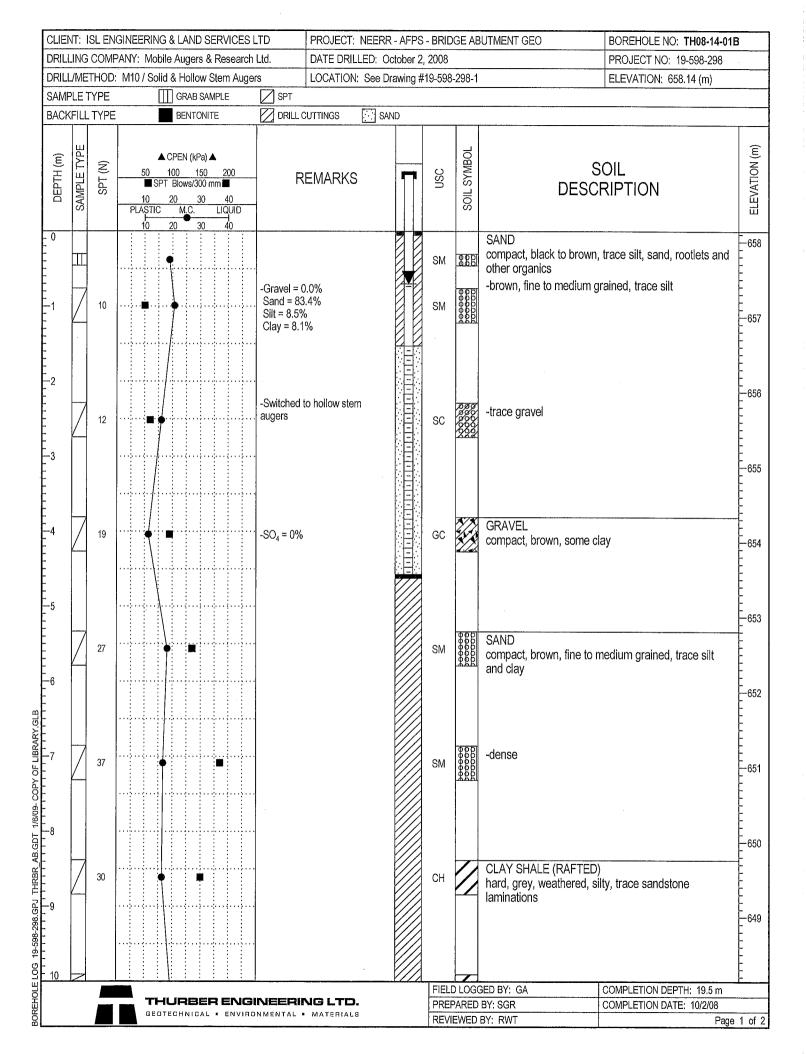


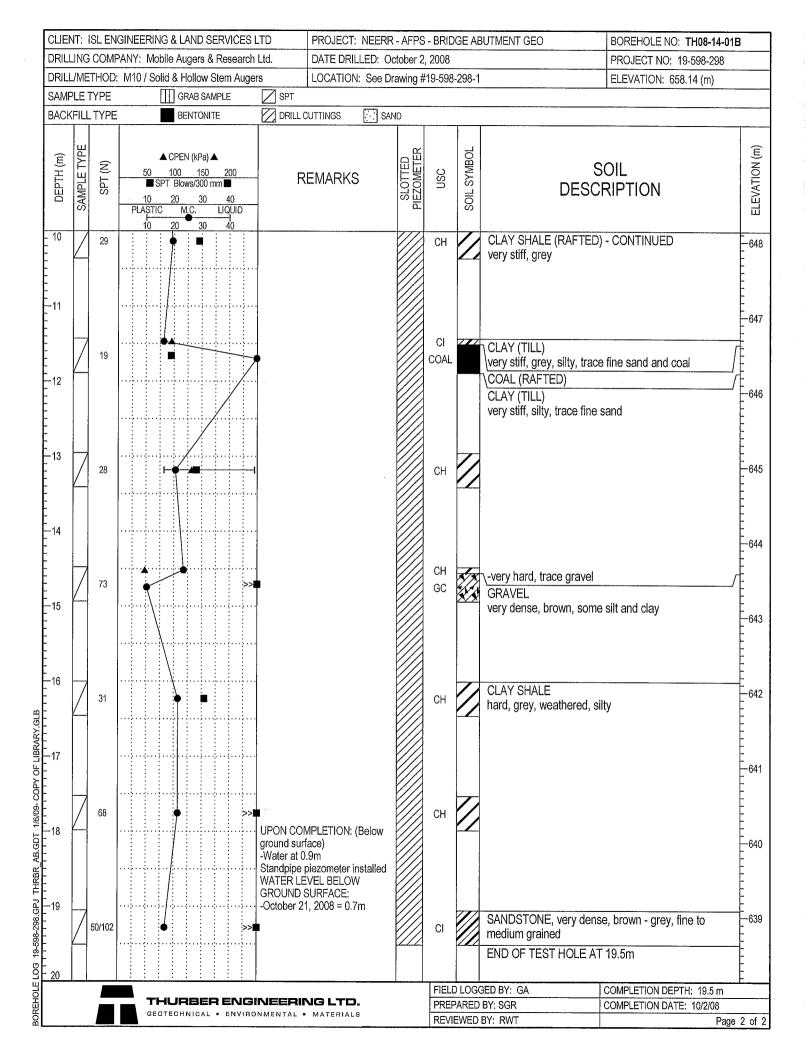

		SL EN	,		••••							PROJECT	: NEERR	- AFPS	- BRID	GE AB	BUTMENT GEO	BOREHOLE NO: TH08-08-0	1B
		COM		****						earc	h Ltd.	DATE DRI						PROJECT NO: 19-598-298	
	****	THOD	: MJT	' / So				<u> </u>				LOCATIO				298-1		ELEVATION: 707.45 (m)	
SAM	• • • • • • • • • • • • • • • • • • • •	TYPE				4		SAM			SPT				3E -			h	
BACh			1			BE			<u>د</u>			JUTINGS	SAN	10			SLOUGH		r
BEPTH (m)	SAMPLE TYPE	SPT (N)	PL	50 10 ASTI 10	1 SPT 2 C	00 Blow 20	1 vs/30 .C.	30		0 JID	- R	EMARK	S	SLOTTED PIEZOMETER	OSU	SOIL SYMBOL	DESC	SOIL RIPTION	ELEVATION (m)
- 20 - -											 -Sloughing	1					CLAY SHALE - CONTIN	UED	
	4	33													СН				
	T														СН	Z	-bentonitic		-
	Z	52		,	4	[>	•				SS		SANDSTONE, very dens laminations, bentonitic END OF TEST HOLE A	r 22.6m	
-23																	UPON COMPLETION: (I -Slough at 16.2m -Water at 8.0m (Above S Standpipe piezometer in: WATER LEVEL READIN -August 19, 2008 = 4.9m -September 19, 2008 = 4	lough) stalled IGS:	684
							•••												-
- - - - - - 26																			-682
2PY OF LIBRARY.GL																			-681
AB.GDT 1/6/09- CC																			
BOREHOLE LOG 19-598-298.GPJ THRRK AB.GDT 1/6/09- CDPY OF LIBRARY.GLB 																			-679
9 <u>-30</u>	<u> </u>			•					·	<u> </u>					FIELD	LLOG	GED BY: GA	COMPLETION DEPTH: 22.6 m	 -
KEH											ONMENTAL				PREF	ARED	BY: SGR	COMPLETION DATE: 8/14/08	
Sel					C				· c		GAMENTAL 1	- WATCHIAL			REVI	WED	BY: RWT	Pag	e 3 of 3

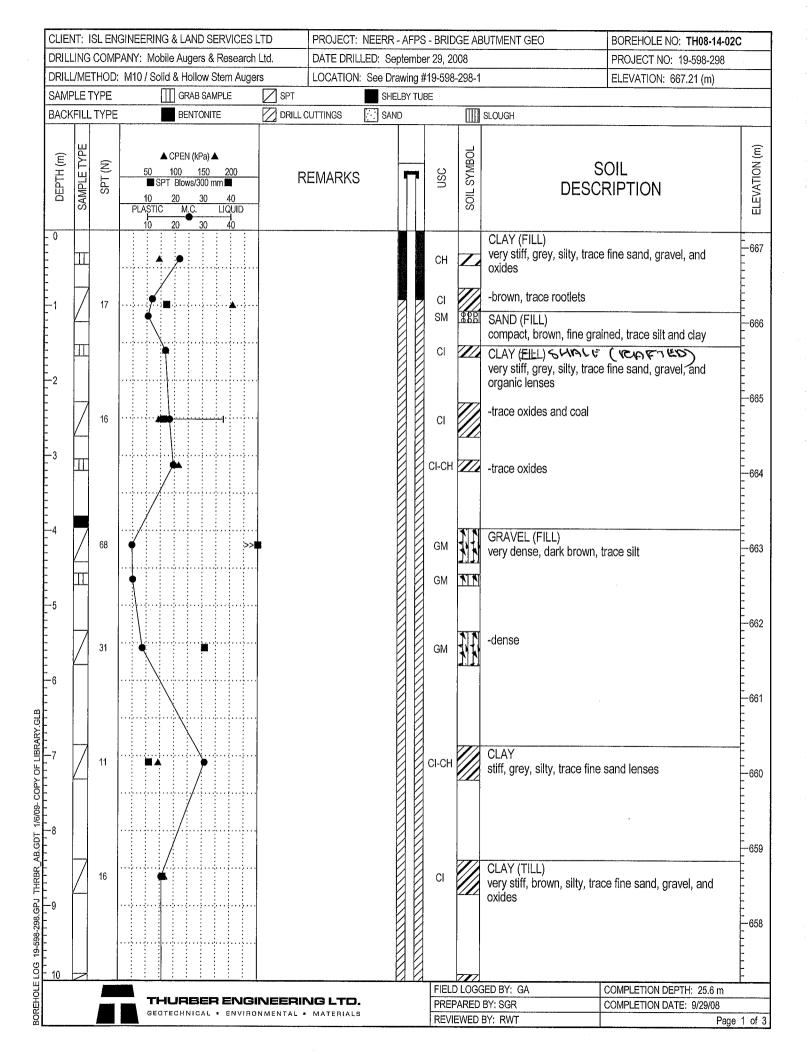


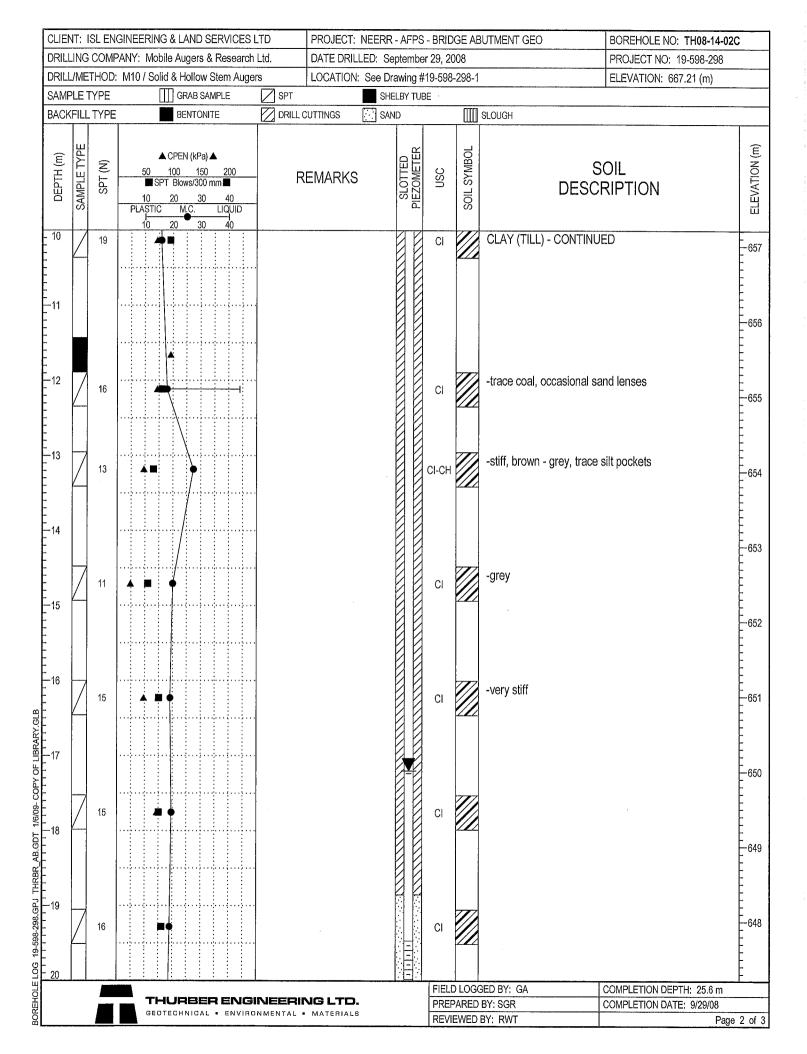

		ISL EN							·····									GE AI	BUTMENT GEO	BOREHOLE NO: TH08-08	
											sea	arch	Ltd.	DATE DR				000		PROJECT NO: 19-598-29	8
SAMF			: IVIJ	1/3			GR						SPT	LOCATIC		ELBY TU		-298-1		ELEVATION: 711.39 (m)	
I											IGS		BENTC		SH SA				SLOUGH		
DEPTH (m)	SAMPLE TYPE	SPT (N)		50 10 LAS J- 10	SP	CF 10 20	PEN 10 3low 0 M.	I (kP 1: /s/3(3 C.	a) 🖌	2 nm II LIC				REMARK		SLOTTED PIEZOMETER	nsc	SOIL SYMBOL	Ş	SOIL RIPTION	ELEVATION (m)
- 20 	Ζ	47									+0						СН	7	CLAY SHALE - CONTIN	UED	
		52					/	/			* * * * *	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					SS		-bentonitic SANDSTONE, very dens	se, blue, fine grained	
-23																	55		END OF TEST HOLE A UPON COMPLETION: (I -Slough at 22.1m -Water at 2.4m (Above S Standpipe piezometer in WATER LEVEL READIN -August 19, 2008 = 6.5m -September 19, 2008 = 5	Below ground surface) Slough) stalled IGS: I	
-27 -28 -29 -30																					- 68
				7			p	R	-	2 12		IC [.]	NEERII						GED BY: GA	COMPLETION DEPTH: 22.6 r	n
													NMENTAL						BY: SGR BY: RWT	COMPLETION DATE: 8/6/08	Page 3 of
			_																weir 13811		ayo 0 01

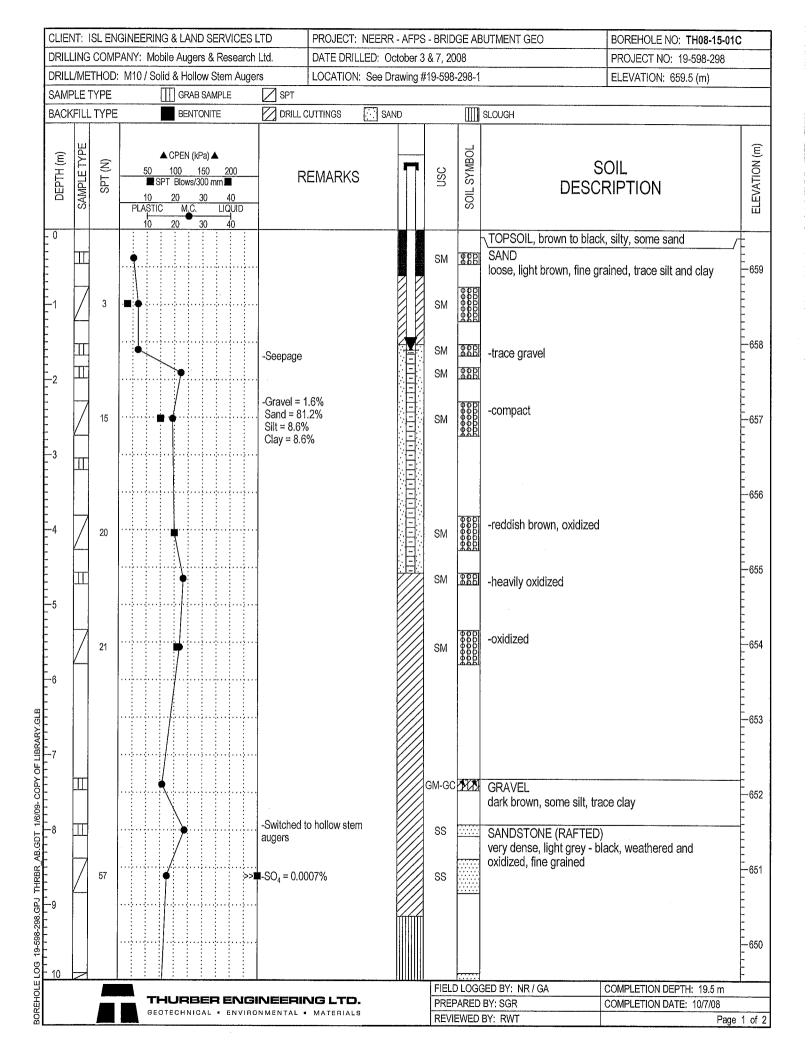


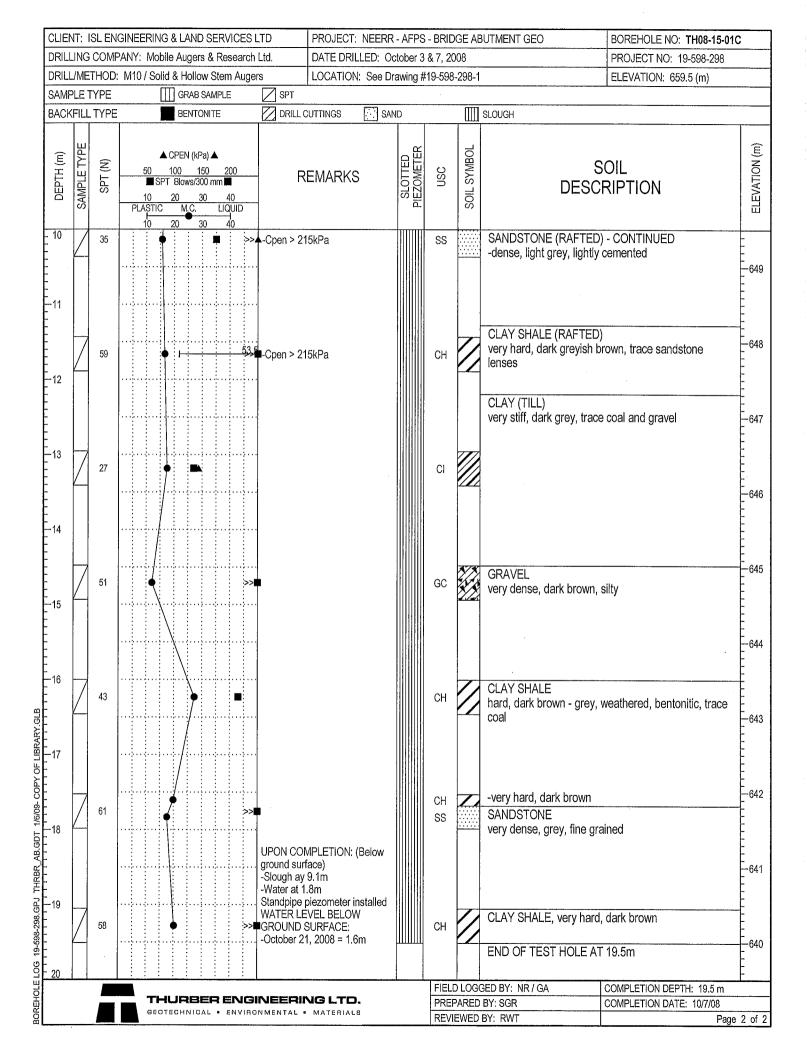


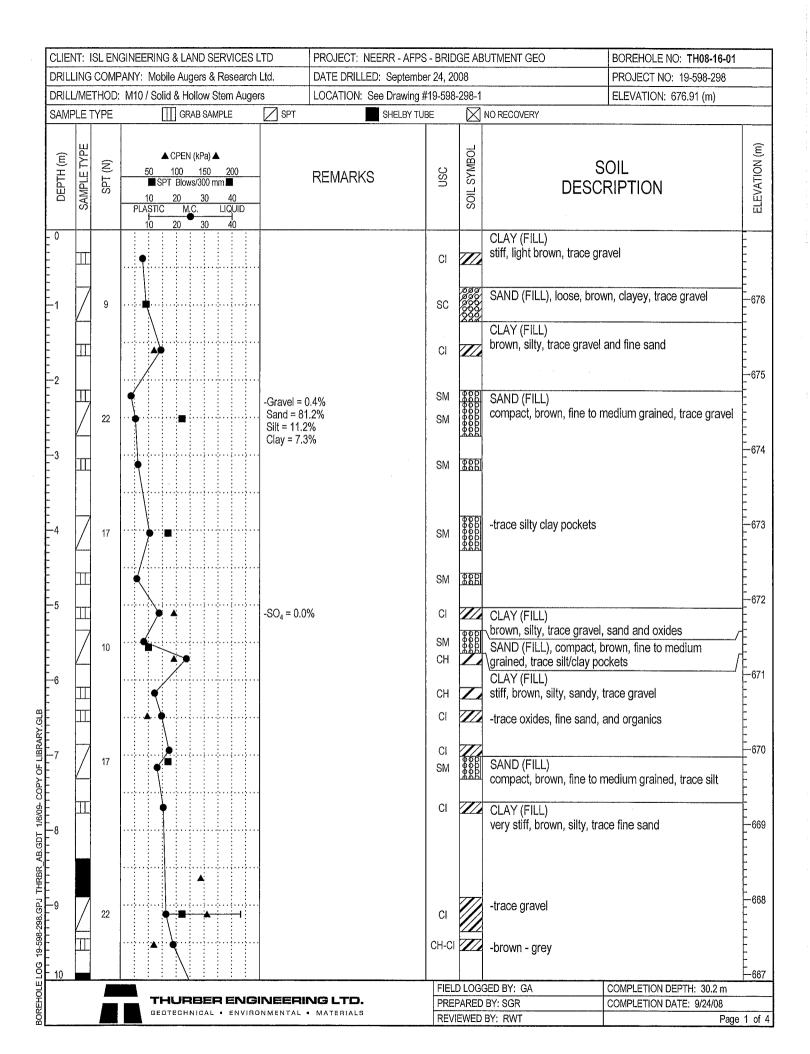

		ISL EN												PROJEC	T: NEERR	- AFPS	- BRID	GE A	BUTMENT	BOREHOLE NO: TH08-12-01	
		G COM				·····		-	_		_		Ltd.		RILLED: Ju	-				PROJECT NO: 19-598-298	
		ETHOD	: M5	nT d							<u> </u>	rs		LOCATIC	N: See Dr			-298-1		ELEVATION: 673.34 (m)	
		TYPE					1						SPT			ELBY TU	BE				
	Τ			•••••			•			ITE				CUTTINGS	IIII SLC	1					(in
DEPTH (m)	SAMPLE TYPE	SPT (N)	F	50 1(PLAS H 1() ISF) STIC	1 >T 2	00 Blov 20	1.C.	<u>150</u> 300 30	mm	200 40 1QU 40		- R	EMARK	S	SLOTTED PIEZOMETER	nsc	SOIL SYMBOL	DESC	SOIL RIPTION	ELEVATION (m)
20		2																बास	GRAVEL AND SAND - C	ONTINUED	- 653 -
-21	K	47/6	•									>> · · · ·	·				GM		END OF TEST HOLE AT	- 20.9m	
																		UPON COMPLETION: (I -Slough at 20.0m -Water at 19.8m Standpipe piezometer ins		- 652	
-22																	WATER LEVEL BELOW -July 25, 2008 = Dry -August 19, 2008 = 19.5 -September 19, 2008 = 1	GROUND SURFACE:	- 651		
-23																					
- - - 24																					
						• • •	,,,														
						• • •															-
-26																					
- - - 27																					647
-							• • • •												•		- 646
-28																					- -
-27 											•										644 E
										P									GED BY: TDC	COMPLETION DEPTH: 20.9 m	<u>-Г;</u>
													NEERII						BY: SGR BY: DAP	COMPLETION DATE: 7/25/08	3 of 3
				ni.						_								- * * L.L.L.		rage	<u>, 001</u> 3

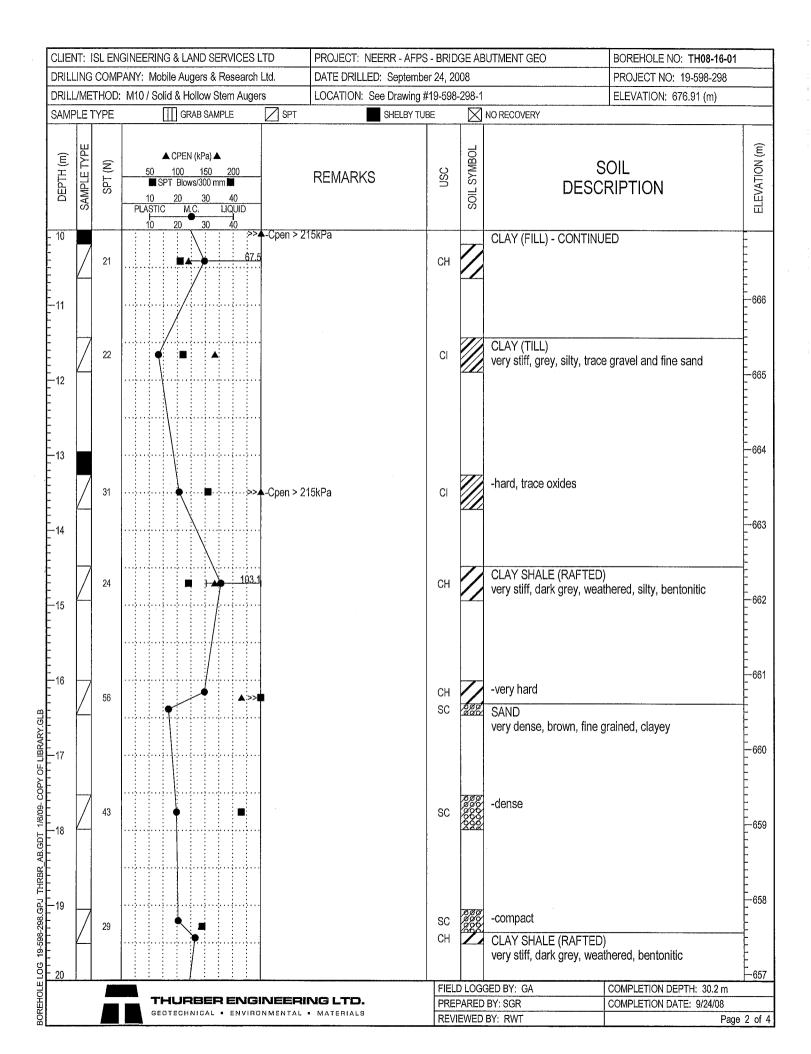


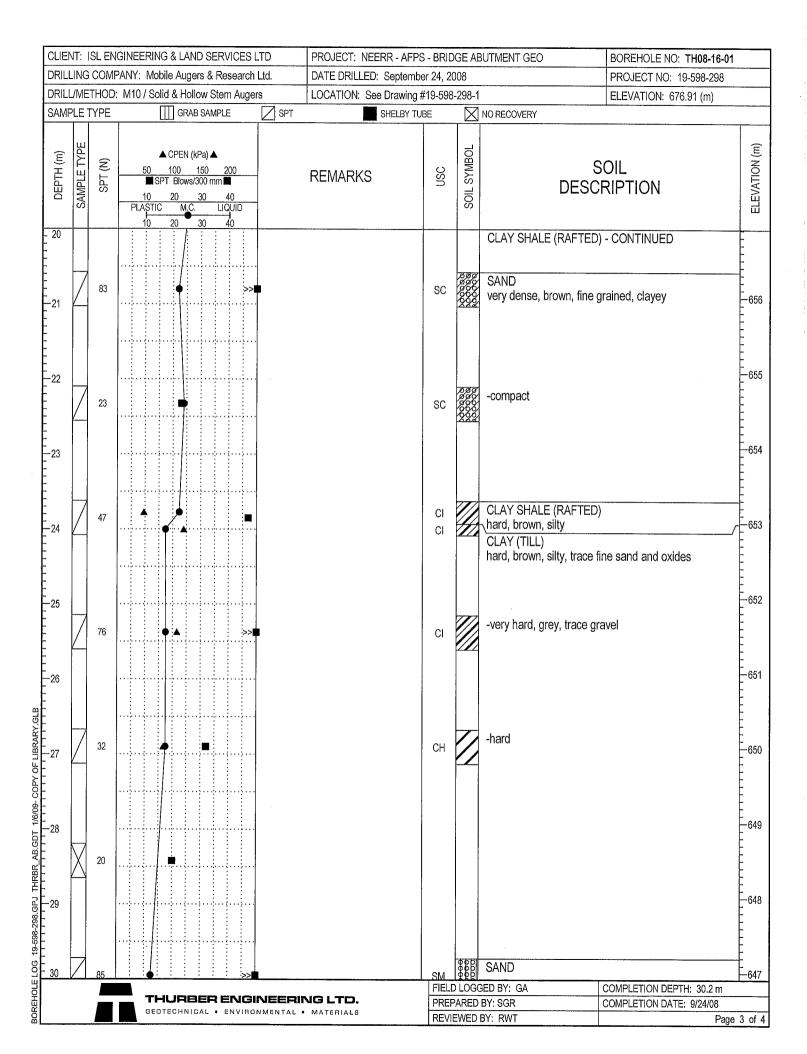


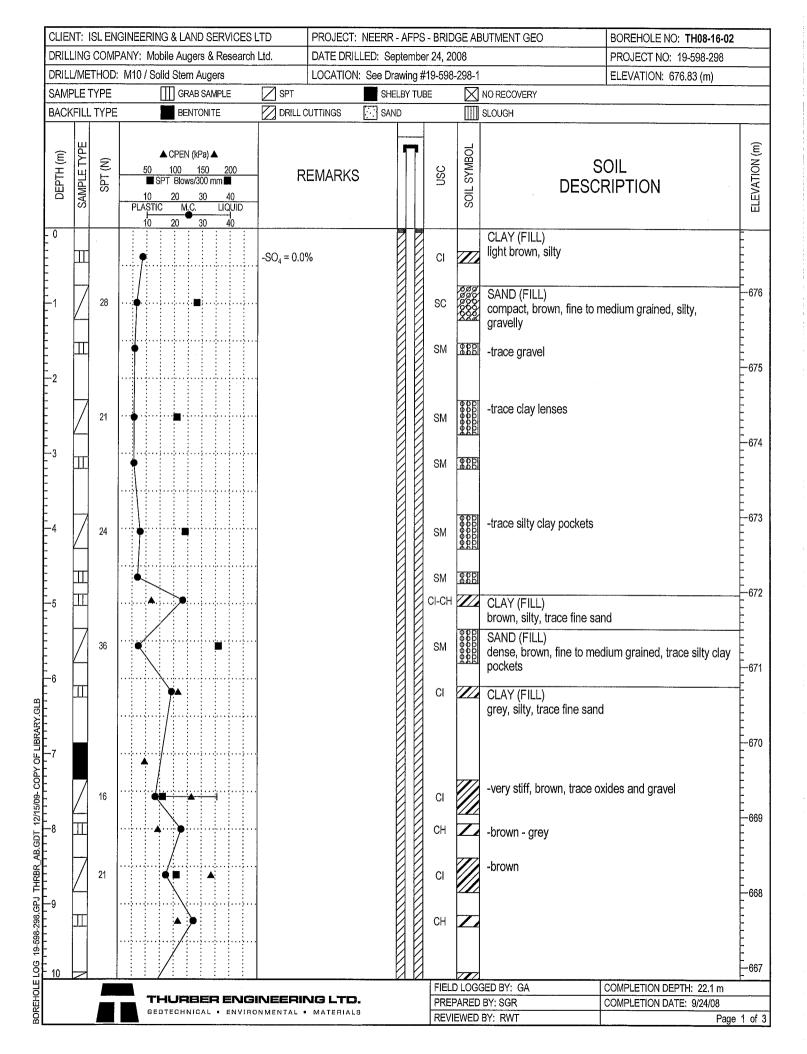


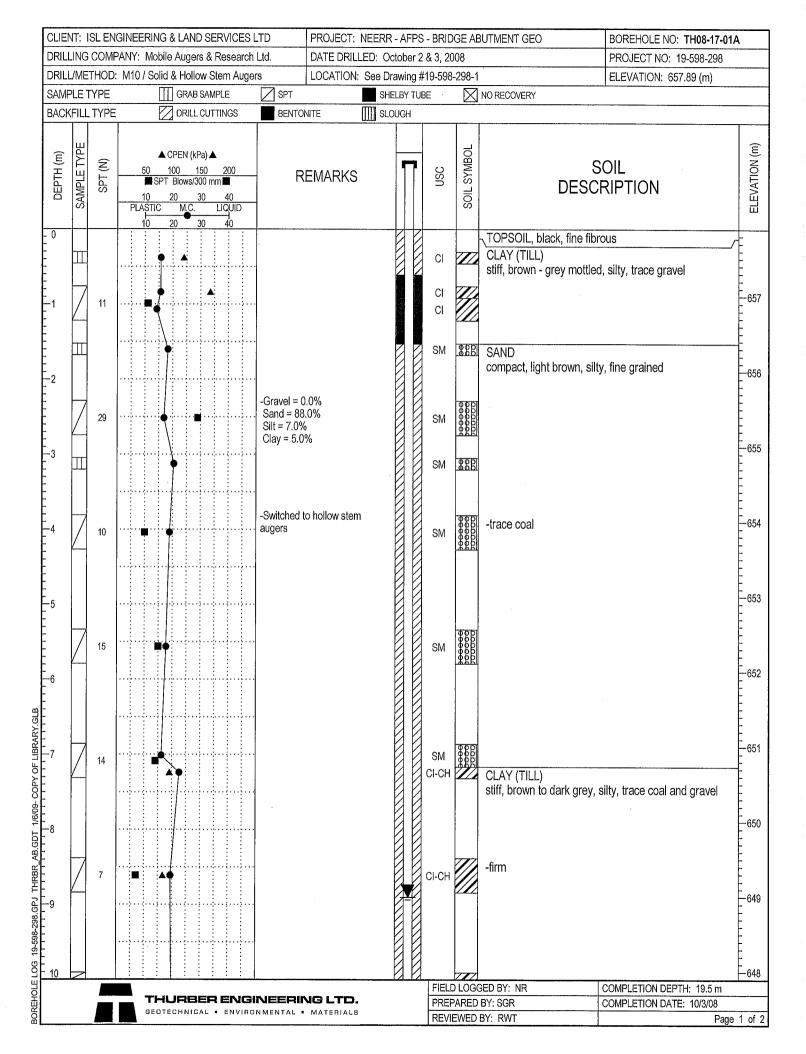


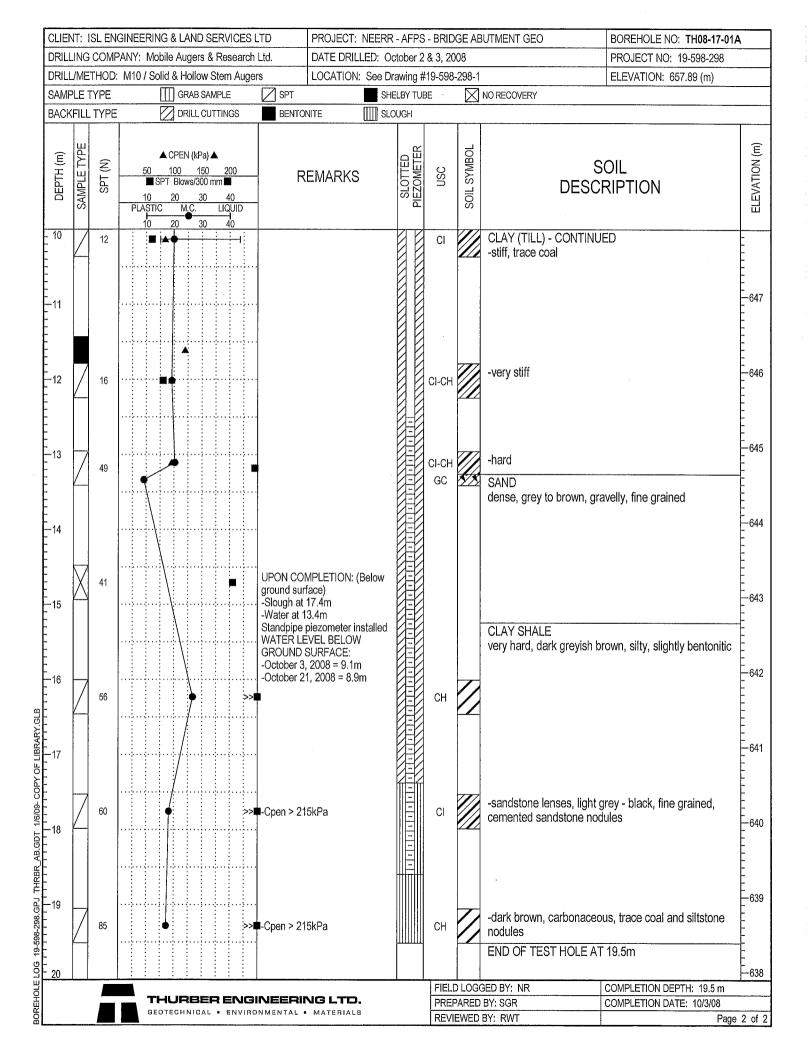


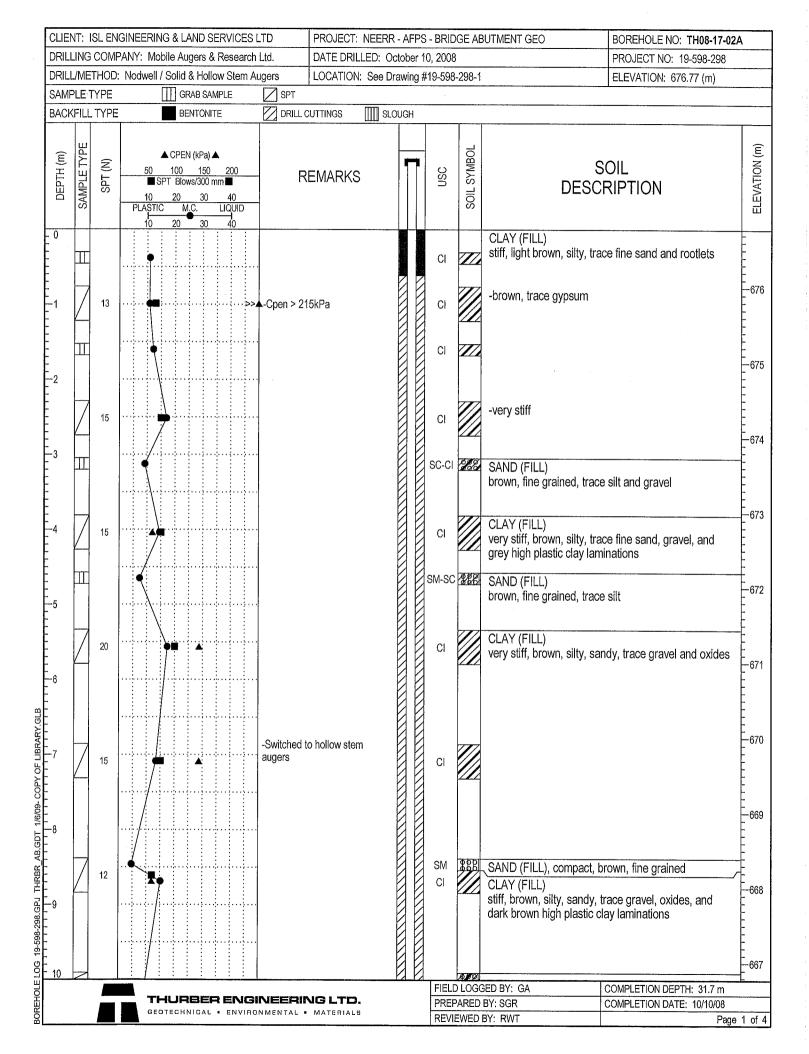


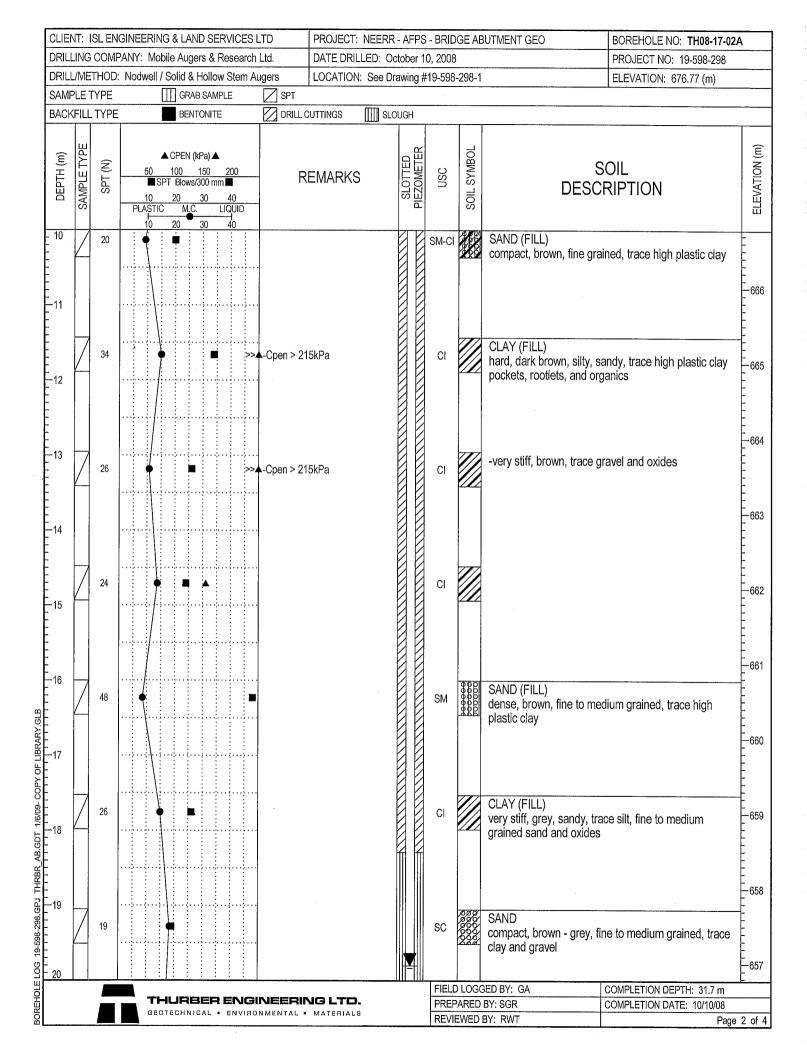

			GINEERI											BUTMENT GEO	BOREHOLE NO: TH08-14-0	2C
	-		PANY: Mo							LED: Se					PROJECT NO: 19-598-298	
			: M10 / S			·	Auge	I	CATION	: See Dr			298-1	······	ELEVATION: 667.21 (m)	
SAM					RAB SAN						LBY TU	BE ·				
BACK	T	. TYPE	:	BE	NTONIT	<u></u>			INGS	SAN	D T			SLOUGH		
DEPTH (m)	SAMPLE TYPE	SPT (N)	50 10 PLASTI 10	▲ CPEN 100 SPT Blow 20 IC M 20				REM	IARKS	5	PIEZOMETER	nsc	SOIL SYMBOL	DESC	OIL RIPTION	ELEVATION (m)
	Ζ	17		.								CI-CH		CLAY (TILL) - CONTINU	ED	647
-22	Ζ	45								·		GC-SC		SAND dense, brown, fine to mea trace silt and clay	dium grained, some gravel,	
24	Ζ	49										CI CH	Ż	CLAY SHALE hard, brown, weathered,	silty, bentonitic	
-25	Ζ	84		•			.>>	∎-Cpen > 215kPa	a			СН		-very hard, brown - grey,		642
-26 -27 -28 -29														UPON COMPLETION: (E -Slough at 25.0m -Water at 24.1m Standpipe piezometer ins WATER LEVEL READIN -September 29, 2008 = 1 -October 21, 2008 = 17.2	stalled GS: 7.2m	641 640 640 639 638
30				. : :	: :	:	:					FIELD	LOGO	GED BY: GA	COMPLETION DEPTH: 25.6 m	
		THURBER ENGINEERING LTD. GEOTECHNICAL • ENVIRONMENTAL • MATERIALS													COMPLETION DATE: 9/29/08	
			GE GE	UIEUHN	NIGAL	- cN	VIHU		TEHIALS) 		REVIE	WED	BY: RWT	Pag	e 3 of



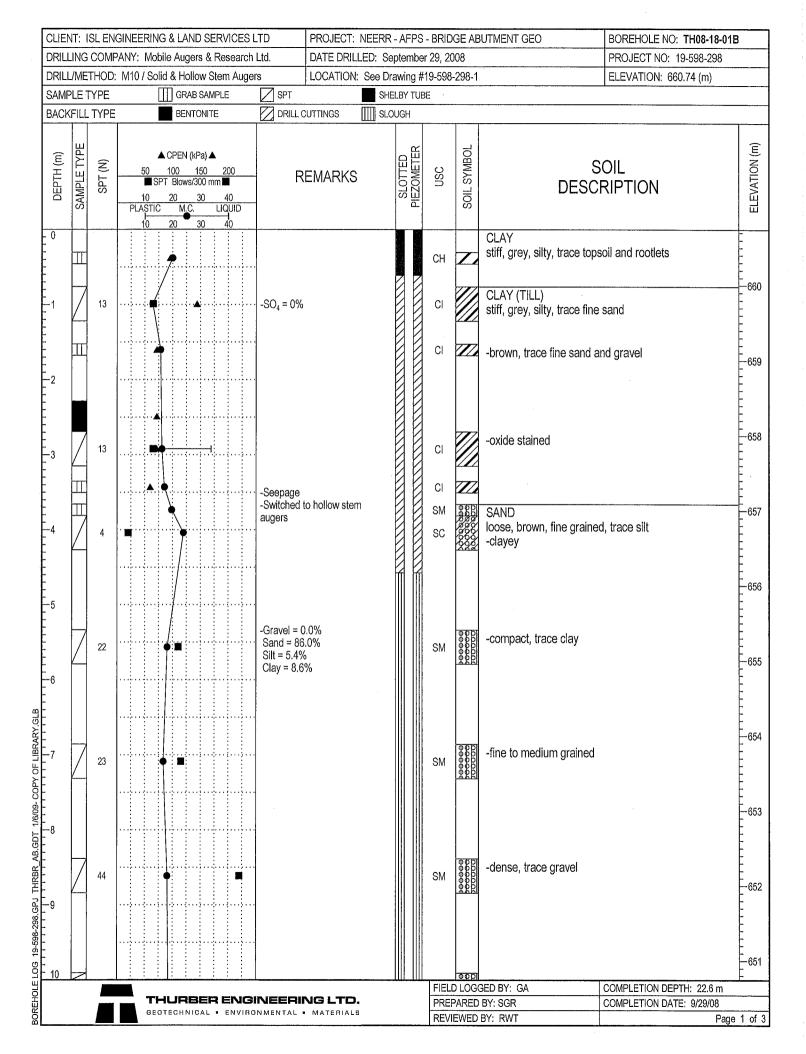


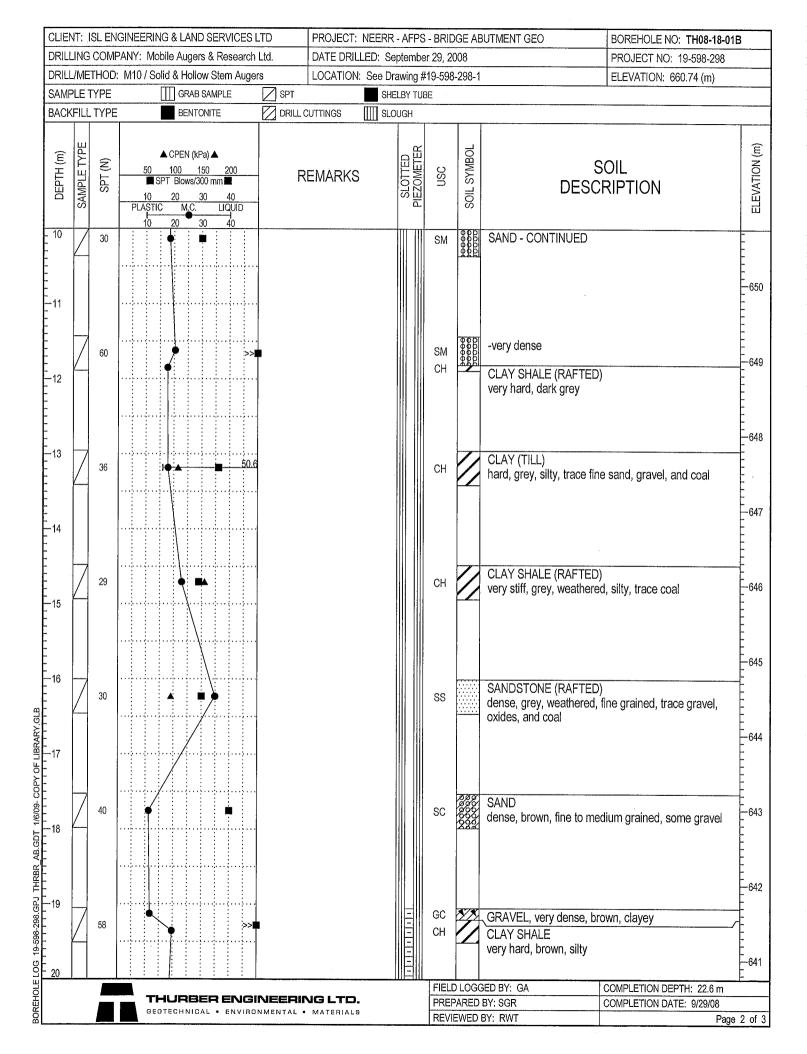

CLIENT: ISL ENGINEERIN	IG & LAND SERVICES LTD	PROJECT: NEERR - AFPS	S - BRIDO	GE AB	BUTMENT GEO	BOREHOLE NO: TH08-16-01		
DRILLING COMPANY: Mol	bile Augers & Research Ltd	I. DATE DRILLED: Septembe	ər 24, 20	08	-,	PROJECT NO: 19-598-298		
DRILL/METHOD: M10 / So	lid & Hollow Stem Augers	LOCATION: See Drawing #	¥19-598-	298-1		ELEVATION: 676.91 (m)		
SAMPLE TYPE	GRAB SAMPLE	SPT SHELBY TU	BE	\boxtimes	NO RECOVERY			
DEPTH (L DEPTH (L DEP	▲ CPEN (kPa) ▲ 100 150 200 PT Blows/300 mm ■ 20 30 40 C M.C. LIQUID 20 30 40	REMARKS	nsc	SOIL SYMBOL		SOIL RIPTION	ELEVATION (m)	
					very dense, grey, fine to gravel END OF TEST HOLE AT UPON COMPLETION: (E -Slough at 16.5m -No water Backfilled with cuttings at	30.2m Below ground surface)	-646 -645 -644 -643 -642 -641 -640 -639 -638	
	HURBER ENGIN		FIELD LOGGED BY: GA PREPARED BY: SGR REVIEWED BY: RWT			COMPLETION DATE: 9/24/08 Page 4 of 4		

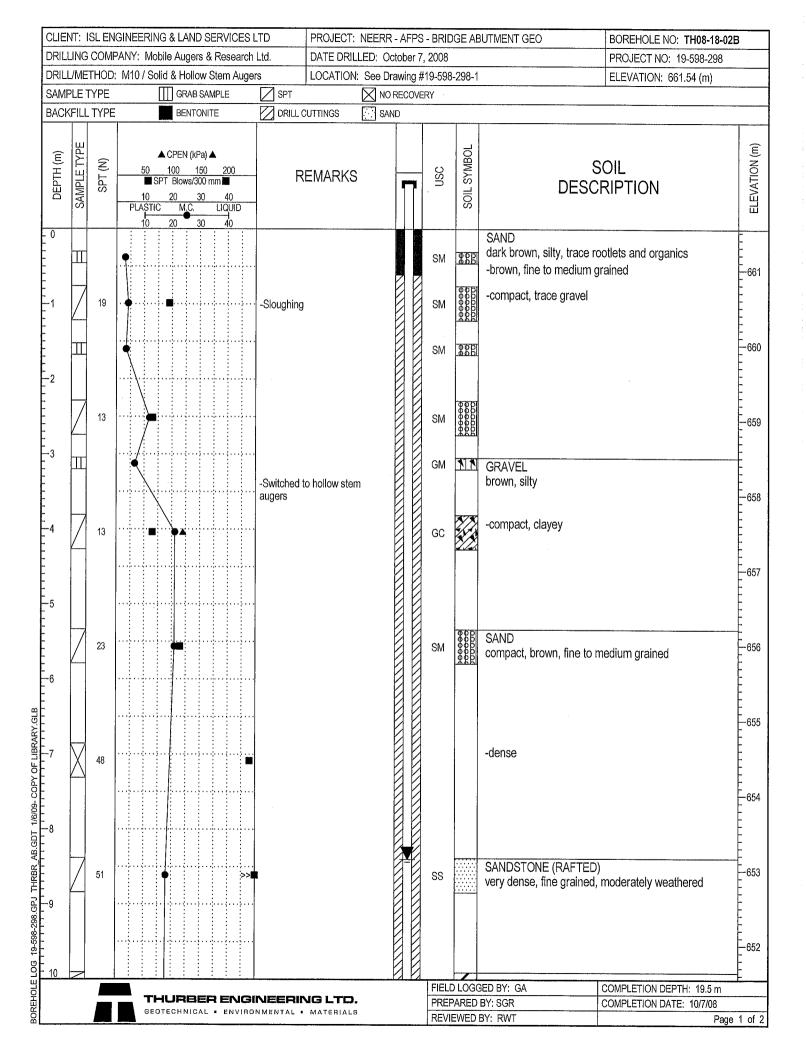


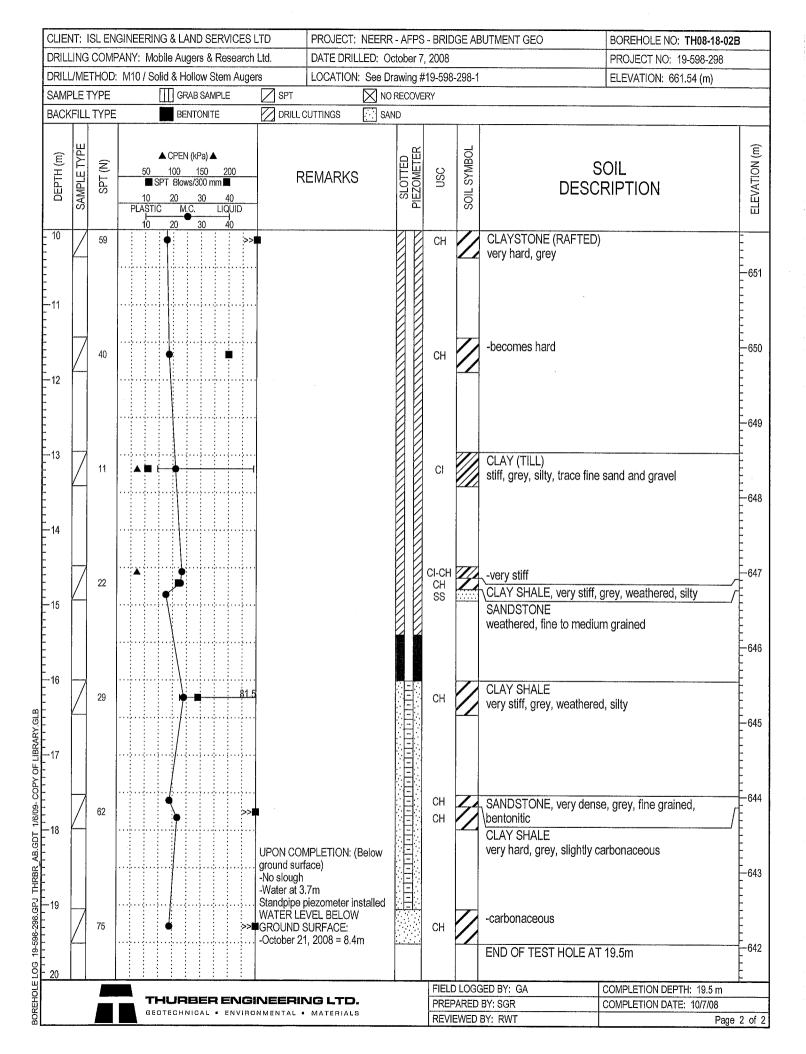


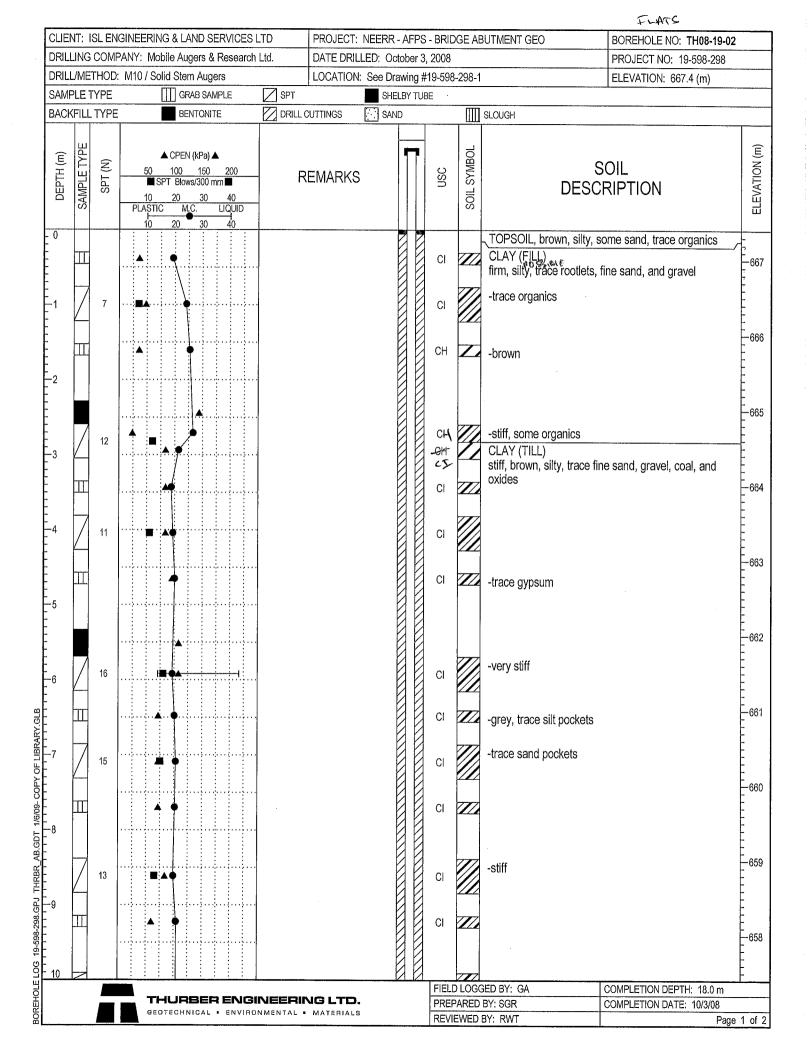
	IGINEERING & LAND SERVICES L		ROJECT:	NEERR - AF	PS - BRID	GE A	BUTMENT GEO	BOREHOLE NO: TH08-16-02	
	PANY: Mobile Augers & Research I			LED: Septer				PROJECT NO: 19-598-298	
	: M10 / Solid Stem Augers		OCATION:	See Drawir	-			ELEVATION: 676.83 (m)	
SAMPLE TYPE				SHELBY	TUBE		NO RECOVERY		
BACKFILL TYPE	BENTONITE	DRILL CUT	TINGS	SAND	<u> </u>		SLOUGH		
DEPTH (m) SAMPLE TYPE SPT (N)	▲ CPEN (kPa) ▲ 50 100 150 200 ■ SPT Blows/300 mm ■ 10 20 30 40 PLASTIC M.C. LIQUID 10 20 30 40	REM	MARKS	SLOTTED	PIEZOMETER	SOIL SYMBOL	DESC	SOIL RIPTION	
20 21 21 22 22	•				СН	7.	CLAY SHALE - CONTIN -dark grey END OF TEST HOLE AT UPON COMPLETION: (E -Slough at 15.2m -No water Standing piezometer ins	22.1m Below ground surface)	
23 24 25							Standpipe piezometer ins WATER LEVEL READIN -October 21, 2008 = Dry	GS:	
26 27 28 29 30 4									L 1 1 1 1 1 1 65 64 64 64
					FIELD LOGGED BY: GA COMPLETION DEPTH: 22.1 m PREPARED BY: SGR COMPLETION DATE: 9/24/08 REVIEWED BY: RWT Page				F 3 of

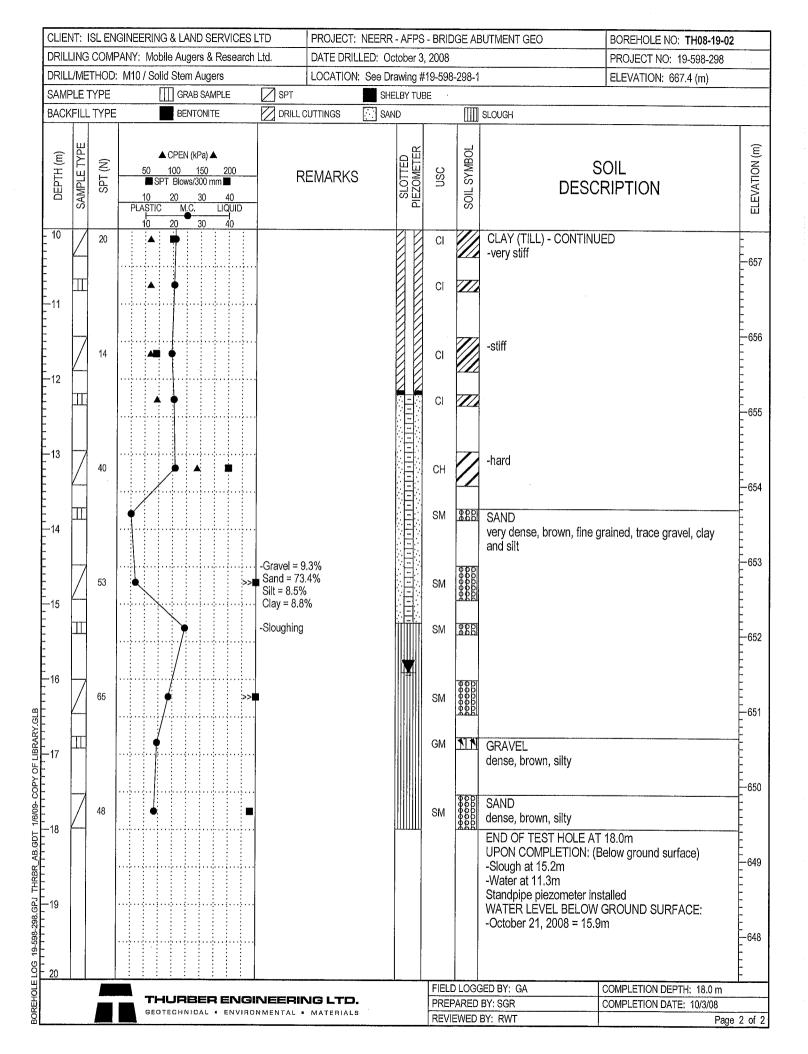


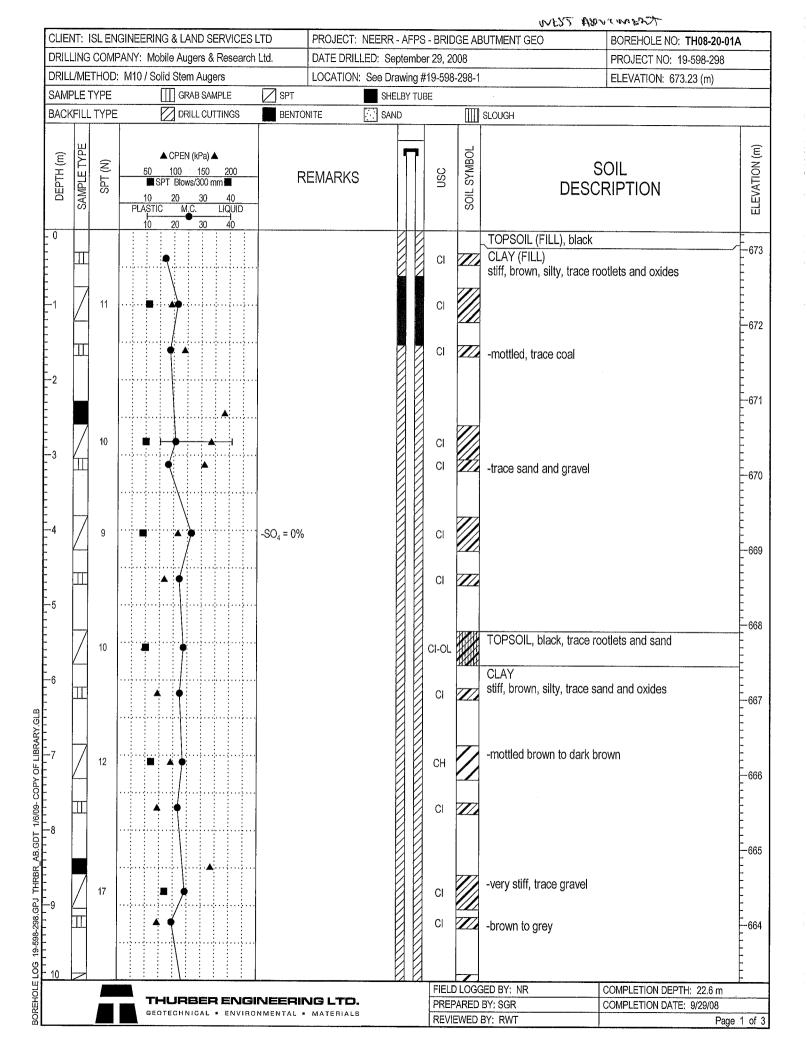


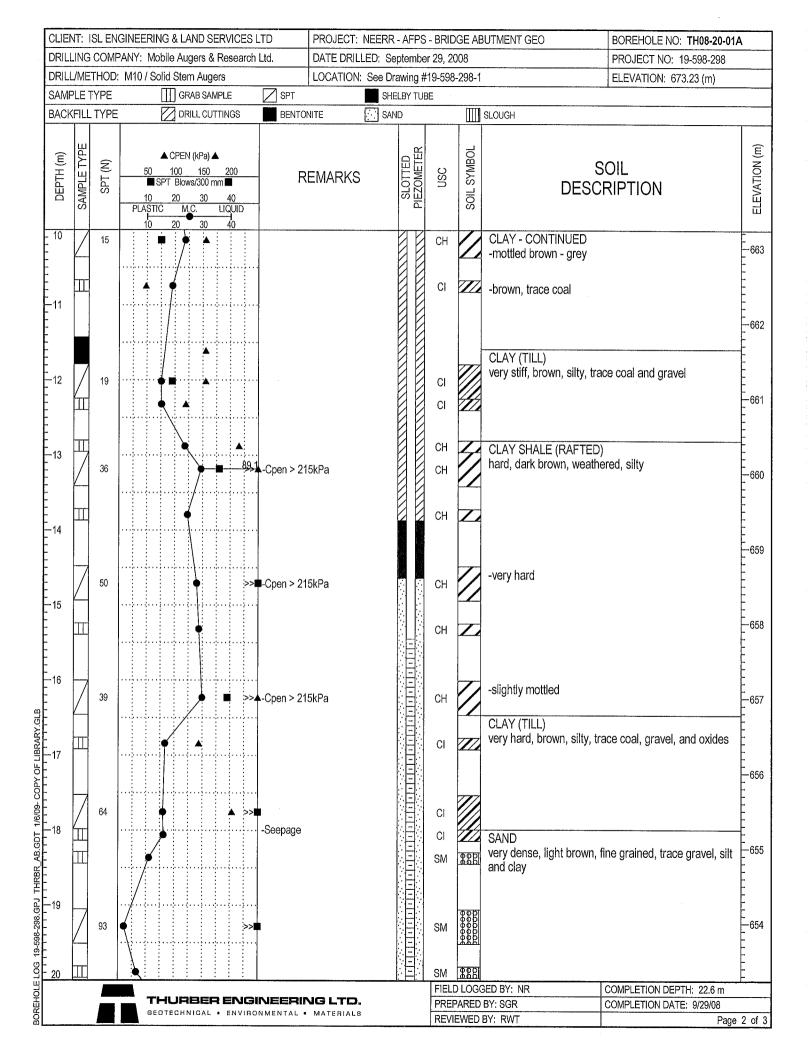


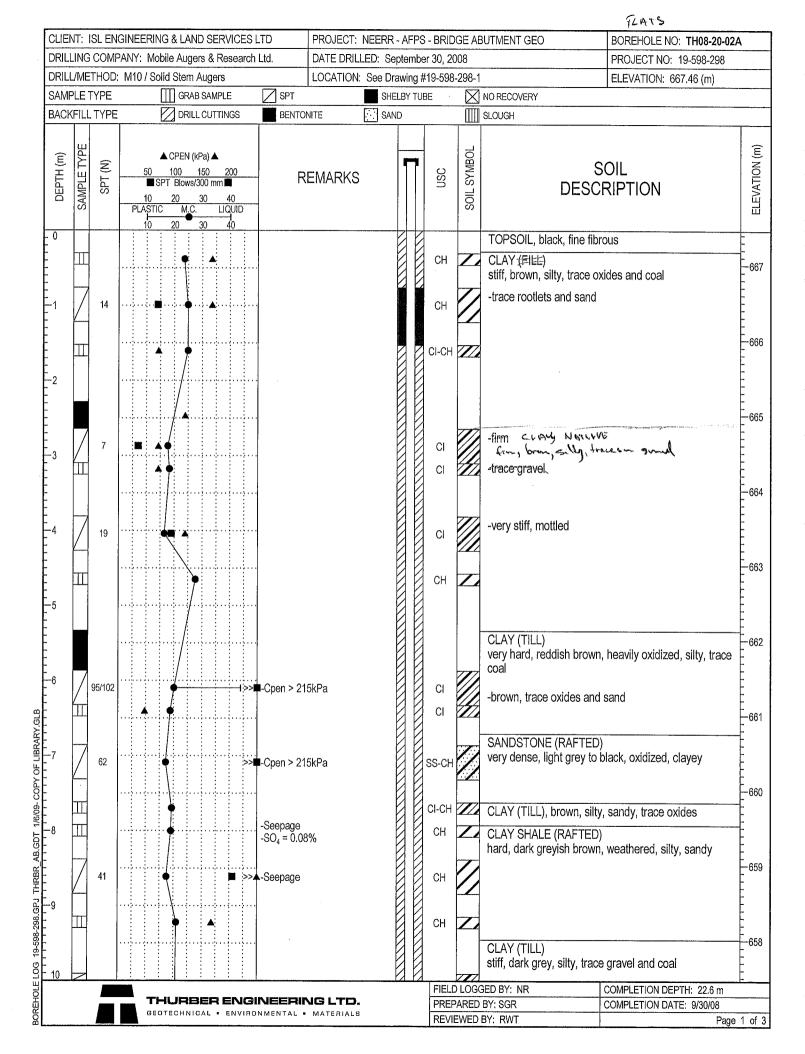

			GINEERI										GE AE	BUTMENT GEO	BOREHOLE NO: TH08-17-02/	4
			PANY: M				 		DATE DRIL				000.4		PROJECT NO: 19-598-298	•
		TYPE	nouwer						LUCATION	: See Dr	awing #	19-090-	290-1		ELEVATION: 676.77 (m)	
		TYPE		ليتيني .	BENT		 		CUTTINGS	SLC	UGH				· · · · · · · · · · · · · · · · · · ·	
DEPTH (m)	SAMPLE TYPE	(N) LdS		▲ CP 100 SPT B 20	PEN (k 0 Blows/3) M.C.	Pa) 🛦			REMARKS		SLOTTED SLOTTED	nsc	SOIL SYMBOL		SOIL RIPTION	ELEVATION (m)
BOREHOLE LOG 19-538-238.GPU THRBR. AB.GDT 1/6/09- COPY OF LIBRARY.GLB 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		16										СН		-trace coal END OF TEST HOLE AT UPON COMPLETION: (I -Slough at 18.3m -Water at 29.7m Standpipe piezometer in WATER LEVEL BELOW -October 21, 2008 = 19.8	Below ground surface) stalled GROUND SURFACE:	646 645 644 644 644 642 642 642 642 642 643 643
1 901 - 40					(P =	1)=r		NEED	NGLTD					GED BY: GA	COMPLETION DEPTH: 31.7 m	-637 E
ORE									MATERIAL					BY: SGR BY: RWT	COMPLETION DATE: 10/10/08 Page	e 4 of 4
<u>۵</u>							 							W11 1111	IFaye	, , , , , , , , 4

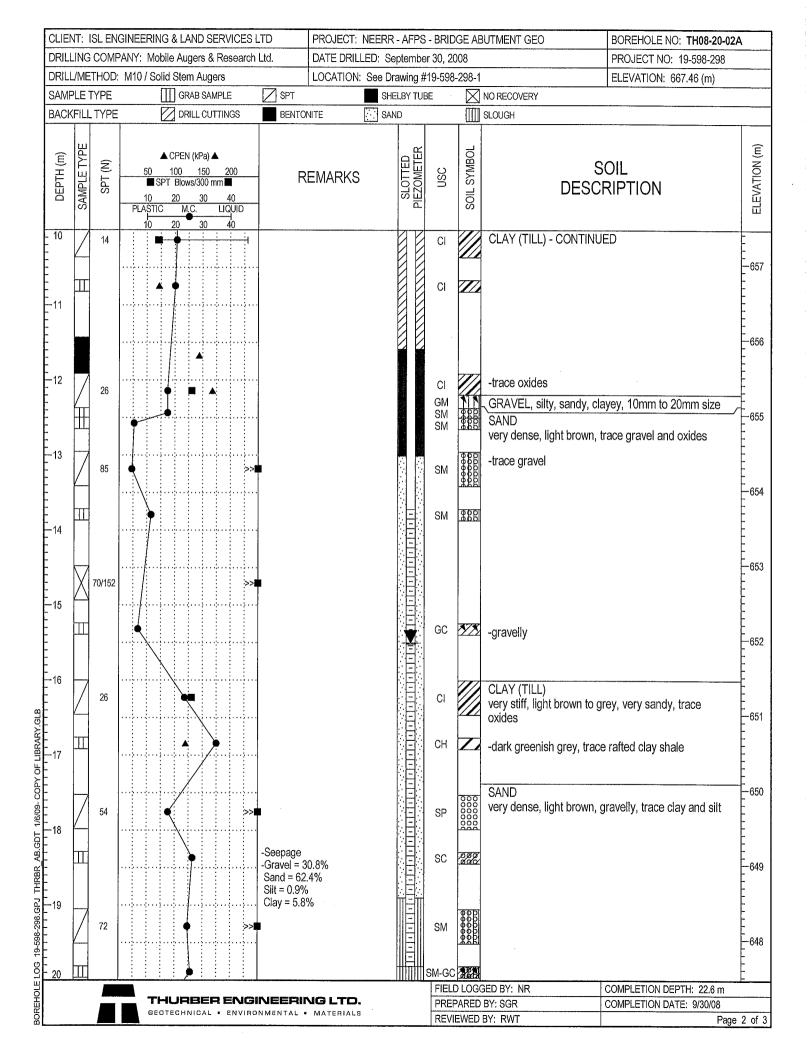


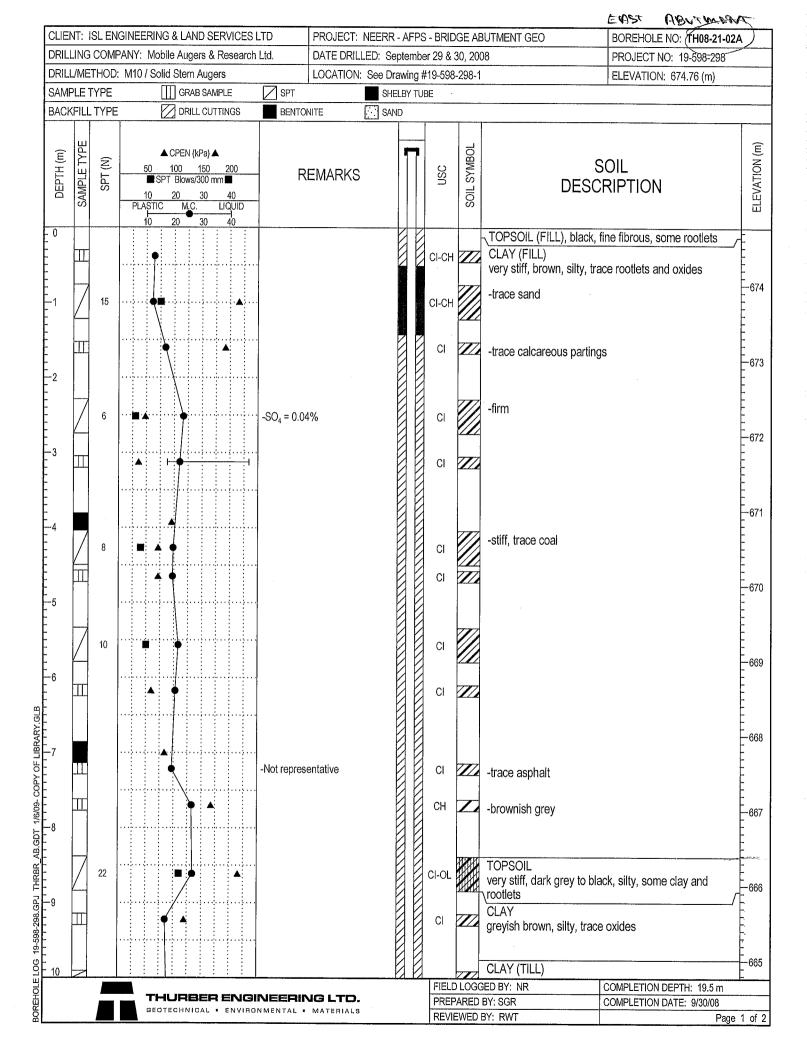


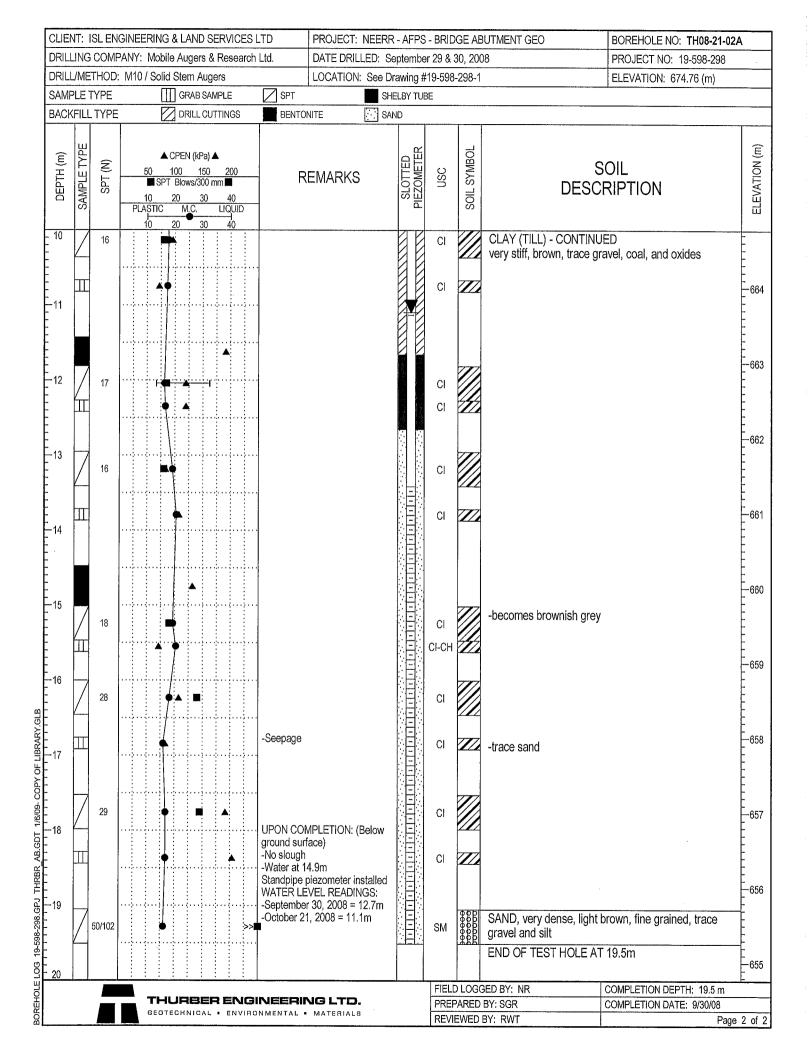

		ISL EN											_							BUTMENT GEO	BOREHOLE NO: TH08-18-01	В
			·····															er 29, 20			PROJECT NO: 19-598-298	
		ETHOD TYPE	: M1	<u> </u>					APLE		-	SPT		CATIO	N: See		wing # .BY TU	\$19-598	298-1		ELEVATION: 660.74 (m)	
			:					DNIT			×	DRILL		NGS		SLOU						
DEPTH (m)	SAMPLE TYPE			50 10 _ASTI	SPT	CPEN 100 Blov 20 M	N (KF 1 ws/30	Pa) ▲ <u>50</u> 00 m 30		0		******		ÄRK			PIEZOMETER	nsc	SOIL SYMBOL		SOIL RIPTION	ELEVATION (m)
- 20 	Z	82/102		<u>10</u>		20		30	4		>> 							CH SS	Z	CLAY SHALE - CONTIN SANDSTONE very dense, grey, fine to		640 640
22	/	50/254									····							COAL		COAL, black, very hard END OF TEST HOLE AT UPON COMPLETION: (I -Slough at 4.6m Standpipe piezometer in:	Below ground surface)	639 638 638
24																						636
26																						-635
27																						633 632 631
- 30	L			:	:	: :		: :	:									FIFI		GED BY: GA	COMPLETION DEPTH: 22.6 m	
											BINE									BY: SGR	COMPLETION DATE: 9/29/08	
				GE	018	CHI	NIC	AL	• E	NVI	RONME	NTAL	■ MA	TERIAL	.s					BY: RWT		3 of 3

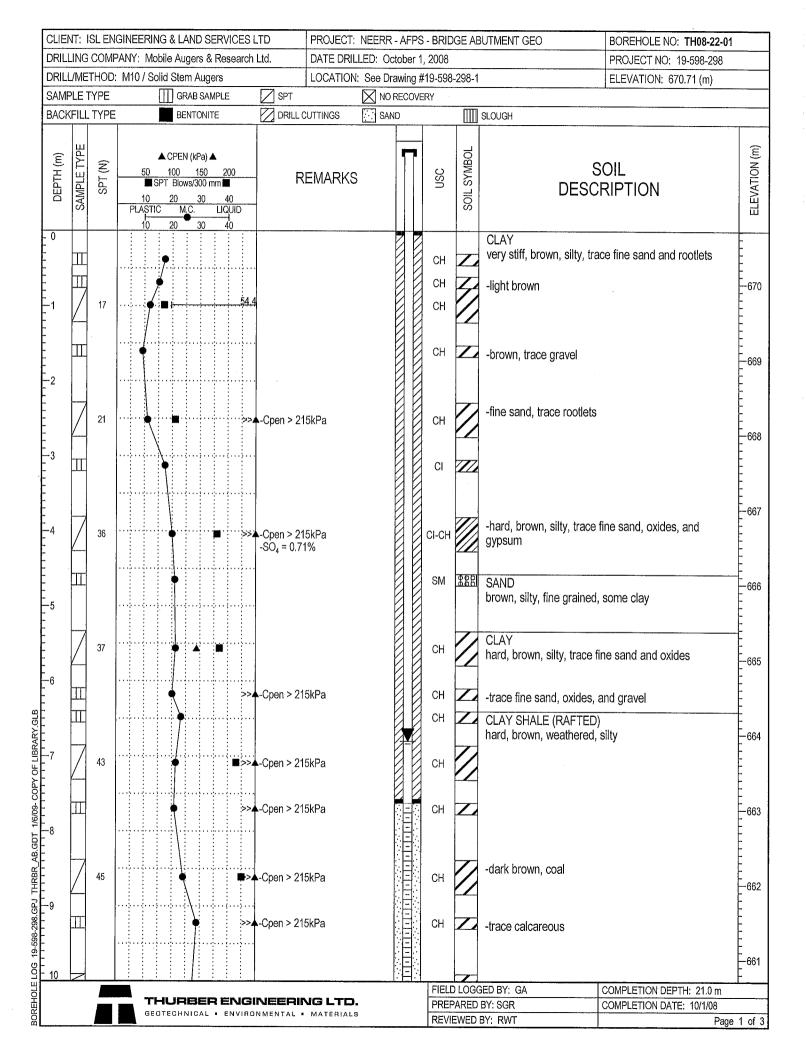


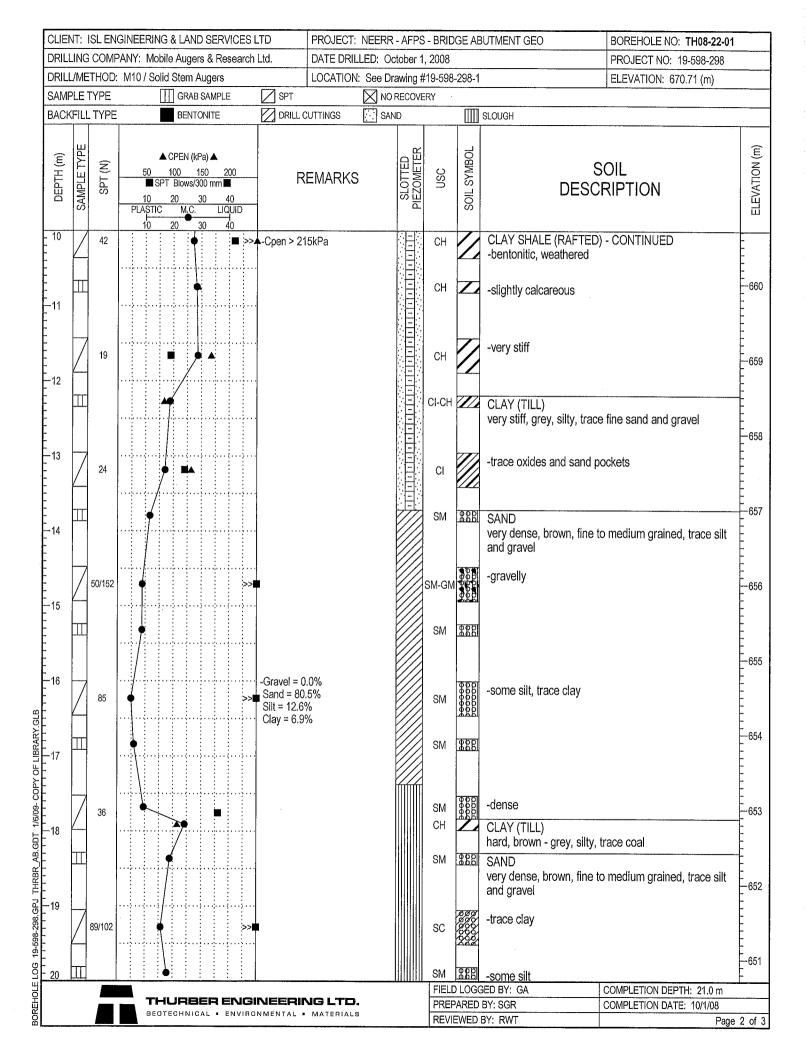




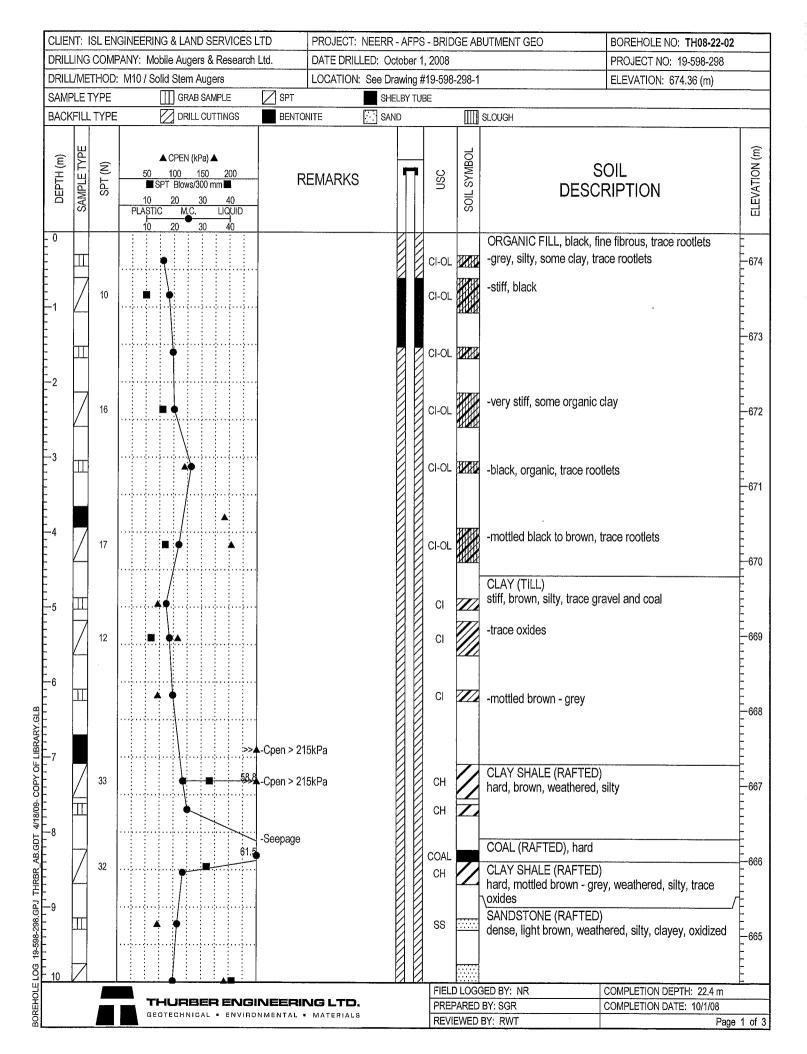


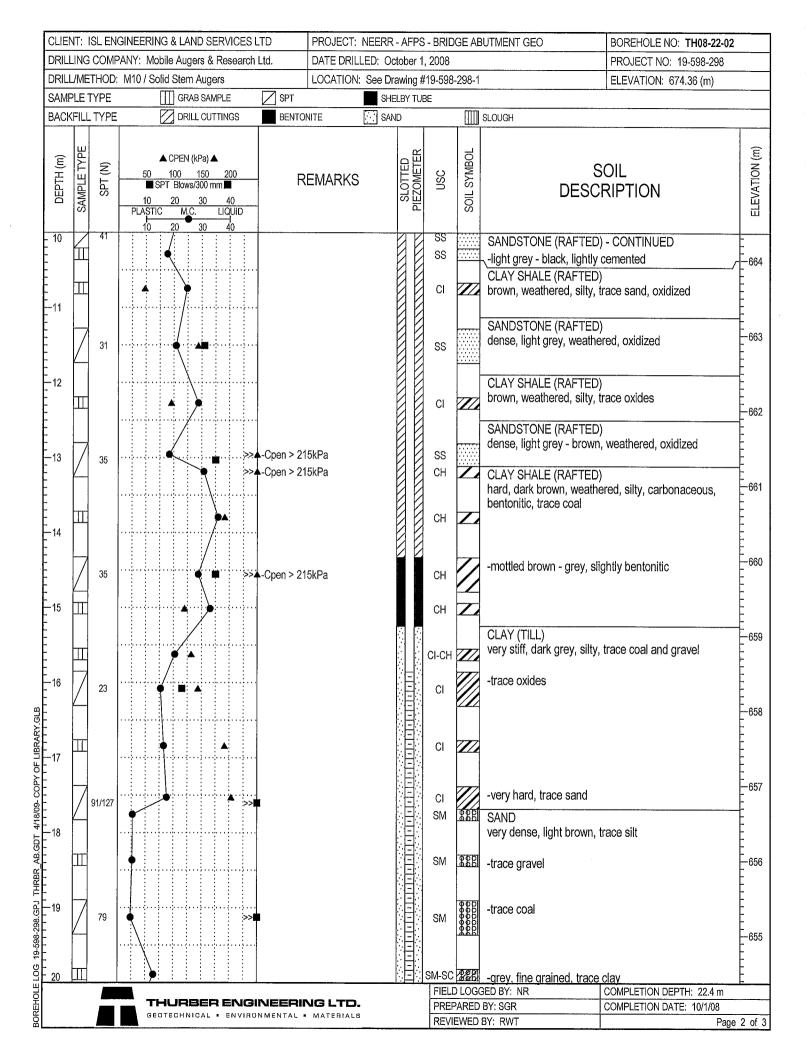

		ISL EN			** **	· · · ·														BUTMENT GEO	BOREHOLE NO: TH08-20-01	Α
		COM							-	_	earc	h Ltd.						er 29, 20			PROJECT NO: 19-598-298	
		THOD	: M1	07						rs PLE			1 SPT	LOCA	TION:			#19-598-	298-1		ELEVATION: 673.23 (m)	
		TYPE				-lalad							BENTC		[SHE SAN		BE		SLOUGH		
DEPTH (m)	SAMPLE TYPE	SPT (N)		50 1(PLAS) SF)	CF 10 PT E 20	PEN 0 Blows) M.((kPa 	a) ▲ 50 10 mi 0	20 m∎ 4(LIQI	0) DIL			REMAF		<u>· · · · · · · · · · · · · · · · · · · </u>	SLOTTED PIEZOMETER	nsc	SOIL SYMBOL	S	SOIL RIPTION	
20				10	<u>,</u>	20	<u>, </u>	3	0	4	<u>}</u>	.,								SAND - CONTINUED		
21	Z	67									×	>■						СН	\mathbb{Z}	very hard, dark greyish b	rown, silty, trace oxides	
22					/	•						S	eepage					SM	8 88		ck, fine grained, trace gravel,	
	\mathbb{Z}	65									>	>						SM			5 00 0	
23										· · · · · · · · · · · · · · · · · · ·		• •								END OF TEST HOLE AT UPON COMPLETION: (I -Slough at 21.5m -Water at 21.3m Standpipe piezometer in: WATER LEVEL READIN -September 29, 2008 = 2 -October 21, 2008 = 21.3	Below ground surface) stalled IGS: 20.8m	
25																						
26									••••													
27								,	••••													ببيناييين
8																						
9									••••													
30				:	:	:	:	:		:	:	<u> </u>					L	FIELD	L LOG	GED BY: NR	COMPLETION DEPTH: 22.6 m	_ <u>-</u>
														NGĽ						BY: SGR	COMPLETION DATE: 9/29/08	
				1	460	TEC	ιΗΝ	нси	AL	• E	NVIA	олм	ENTAL	MATE:	RIALS			REVI	EWED	BY: RWT	Page	е 3

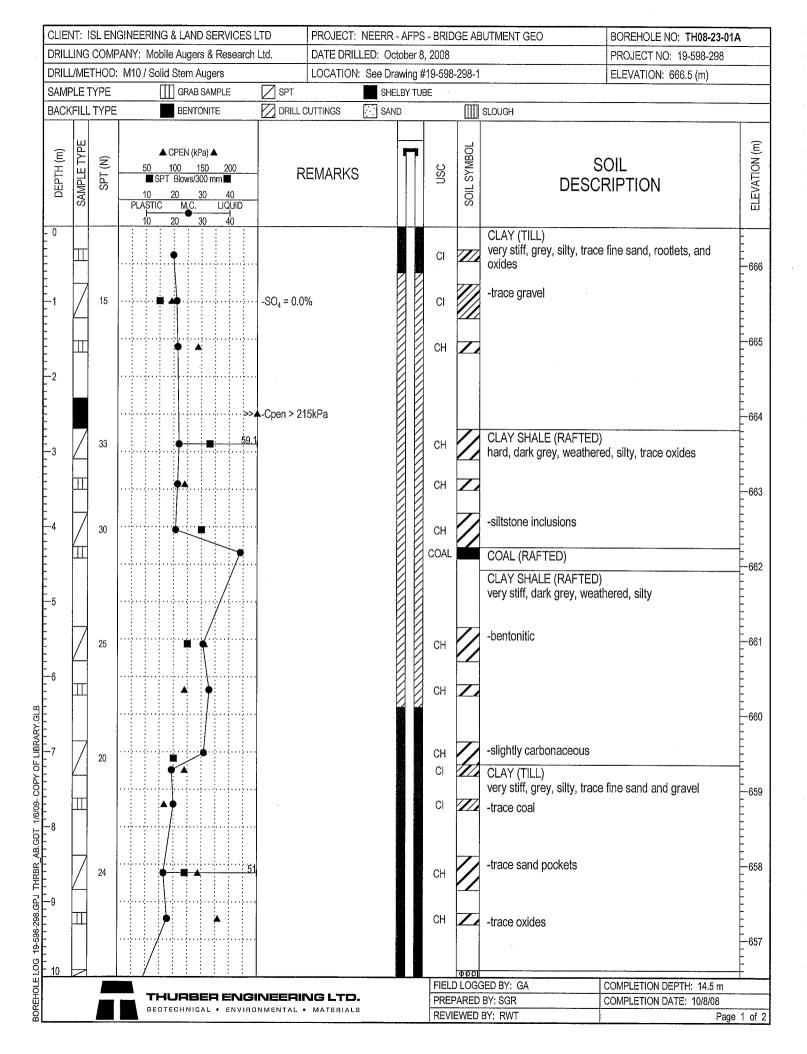




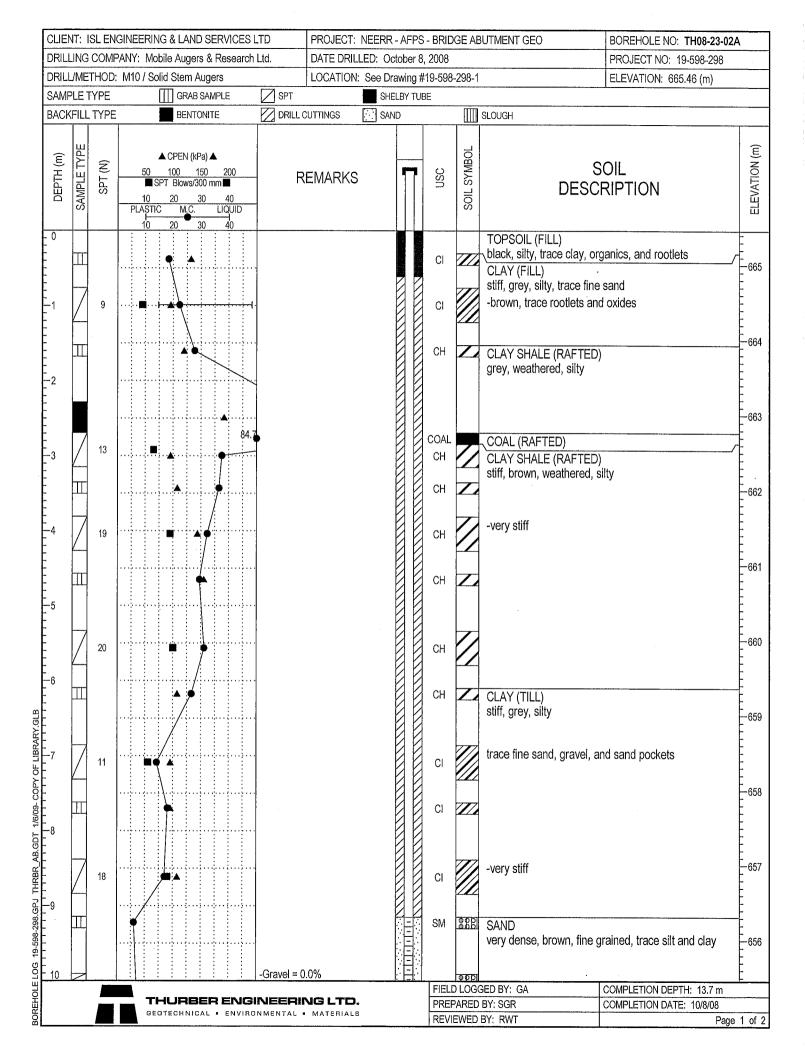
CLIEN	T: ISL E	NGI	VEERI	NG	& L./	ANE) SE	RVI	CES	LTD	PROJECT	: NEERR	- AFPS	G - BRID	GE AE	BUTMENT GEO	BOREHOLE NO: TH08-20-02	2A
	NG CO					_			earch	n Ltd.	DATE DR						PROJECT NO: 19-598-298	·
	METHO		110/S								LOCATIO						ELEVATION: 667.46 (m)	
	ETYPE				_			PLE		SPT			elby Tu	BE ·		NO RECOVERY		
BACKH	TLL TYF	<u>ر</u>			김마		CUT	TING	s	BENTC	NITE	SAI	ND 	1	<u> </u>	SLOUGH		
	SAMPLE TYPE SPT (N)		50 ■ 10 PLAST ■ 10	SPT 1C	20	1 ws/30	<u>50</u> 00 m 30	200 m ■ 	ID	- R	EMARK	S	SLOTTED PIEZOMETER	nsc	SOIL SYMBOL	DESC	OIL RIPTION	ELEVATION (m)
- 20 - -				/	/										-	SAND - CONTINUED		- - 647
-21	84		ſ				· · · · ·		>>	•				GC SS	XX	-some gravel SANDSTONE very dense, light grey - bl	lack, siltstone nodules	
	X																,	646
-22	50/10)2		· · \	•				>>	•				СН		CLAY SHALE, very hard,	· •	
-23														-		END OF TEST HOLE AT UPON COMPLETION: (E -Slough at 18.9m -Water at 15.7m Standpipe piezometer ins	Below ground surface)	
-24				•••••												WATER LEVEL BELOW -October 21, 2008 = 15.5	GROUND SURFACE:	644
																		- 643
		•••																- 642
26 1																		-
0PY OF LIBRAR																		
0-60/9/1 1/0/1 																		
59J THRBR AB.																		-639
BOREHOLE LOG 19-598-298.GPJ THRBR_AB.GDT 1/6/09- COPY OF LIBRARY.GLB 06 66 67 71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																		- 638
<u>9 - 30</u>			<u>:</u> ;	:	<u> </u>			:	:	<u> </u>								<u> </u>
1 EHO										INEERI						GED BY: NR 9 BY: SGR	COMPLETION DEPTH: 22.6 m COMPLETION DATE: 9/30/08	
BOR			G	EOTI	сн	NIC	AL	• EN	IVIR	DNMENTAL	MATERIA	LS				BY: RWT		e 3 of 3

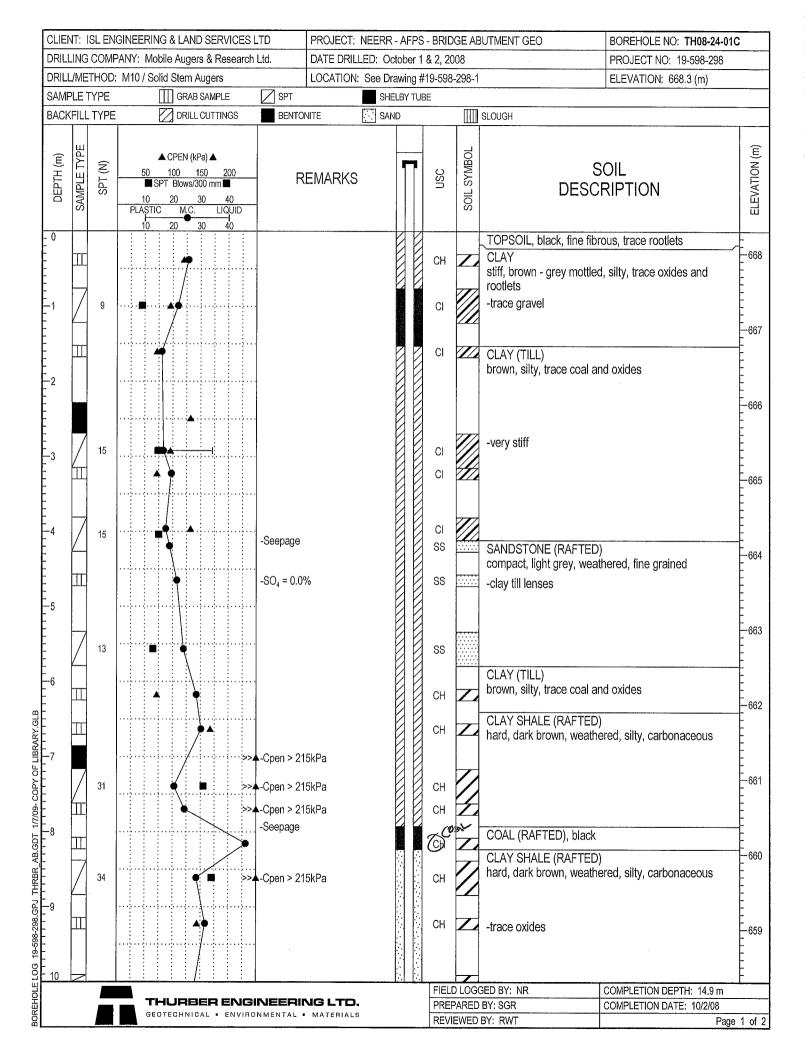


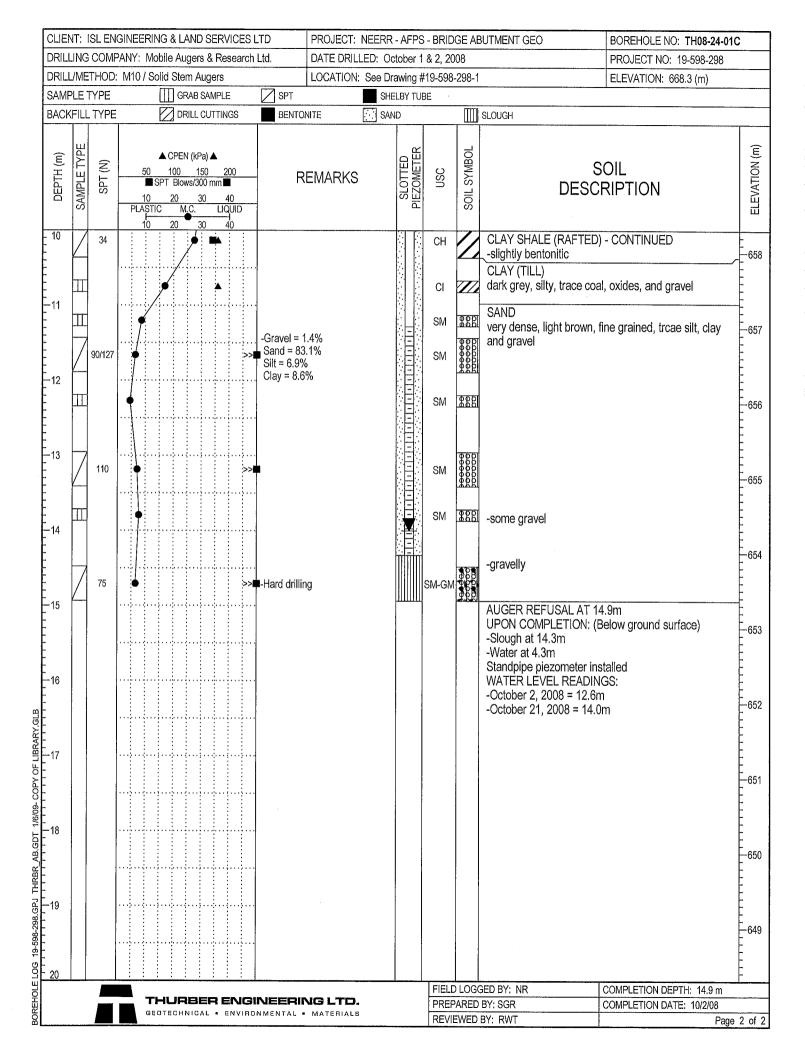


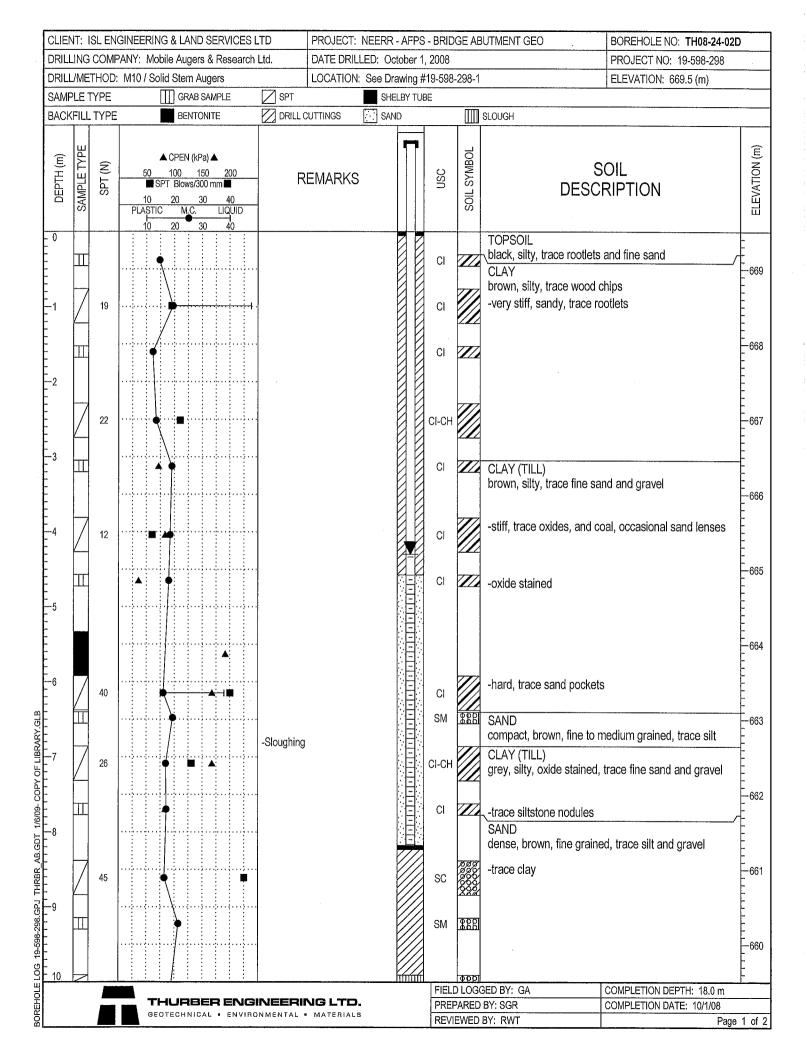


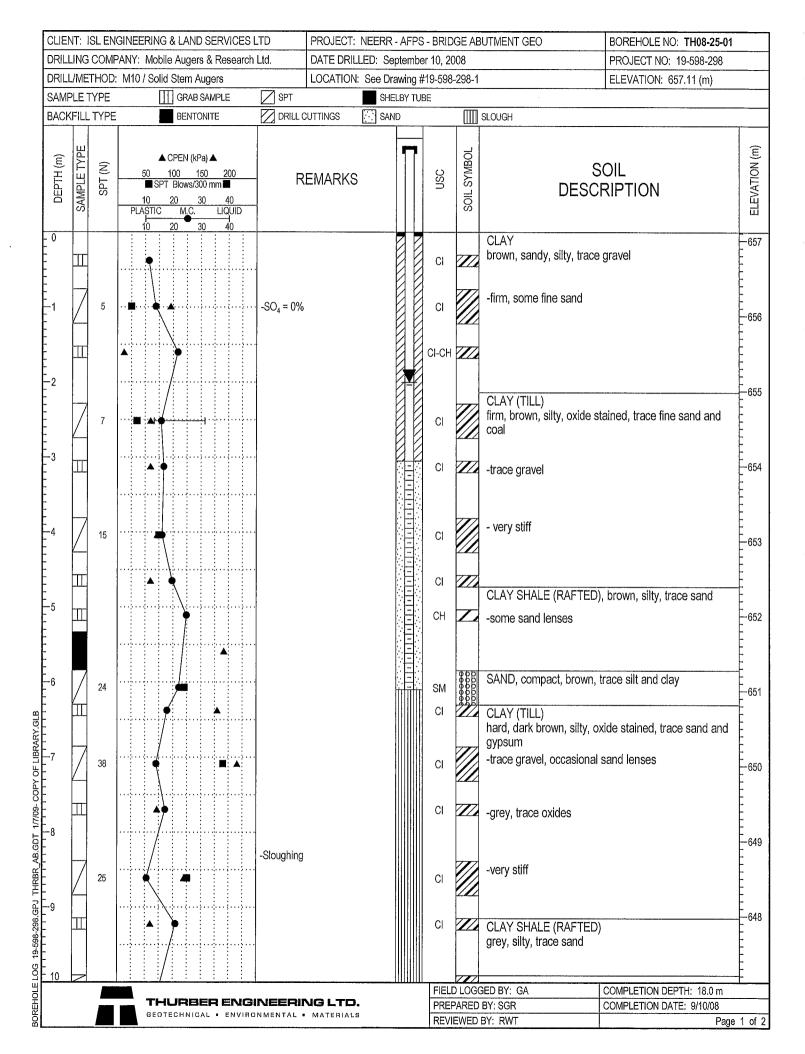
DRILLI														OJECT:					ABUTMENT GEO	BOREHOLE NO: TH08-2	
DRILL/I												LIU.							1	PROJECT NO: 19-598-29 ELEVATION: 670.71 (m)	
AMPL								3 SAI				SPT		0/1101		O RECOV		-2.00			
ACKF	ILL	TYPE						ONI					_ CUTTI	INGS	<u> </u>			Ш	SLOUGH		
	SAMPLE TYPE	SPT (N)	P	50 10 _AST 10	SPT	100 Blc 20	ws/	:Pa) 4 150 300 r 30 30	mm I	200 ■ 40 QUII 40)	- 1	REM	IARKS	3	SLOTTED	nsc	SOIL SYMBOL		SOIL CRIPTION	
20 21 22	X	50/51				······		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		>>							-	-Slough at 17.4m Standpipe piezometer i	(Below ground surface) nstalled N GROUND SURFACE:	
3					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·											2011	6
5						·····															
6						· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·											6
28			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·														- 64 - 64 - 64
0												NEERI NMENTAL					PRE	PAREI	GED BY: GA D BY: SGR D BY: RWT	COMPLETION DEPTH: 21.0 r COMPLETION DATE: 10/1/08	

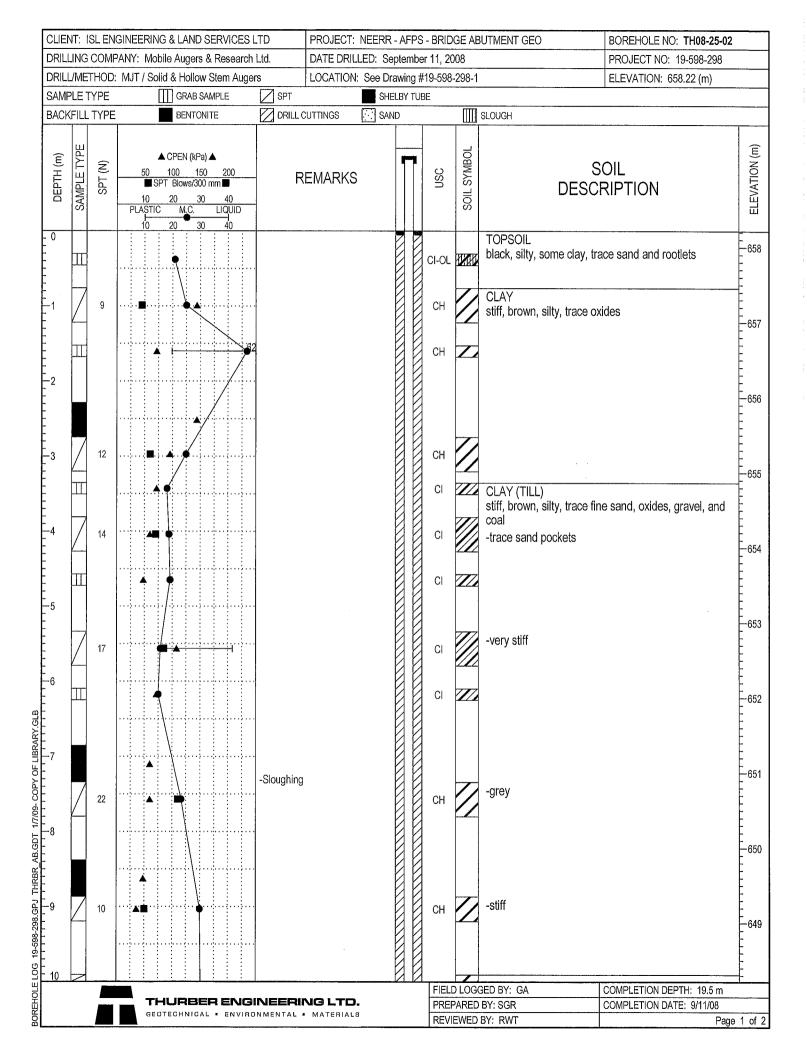


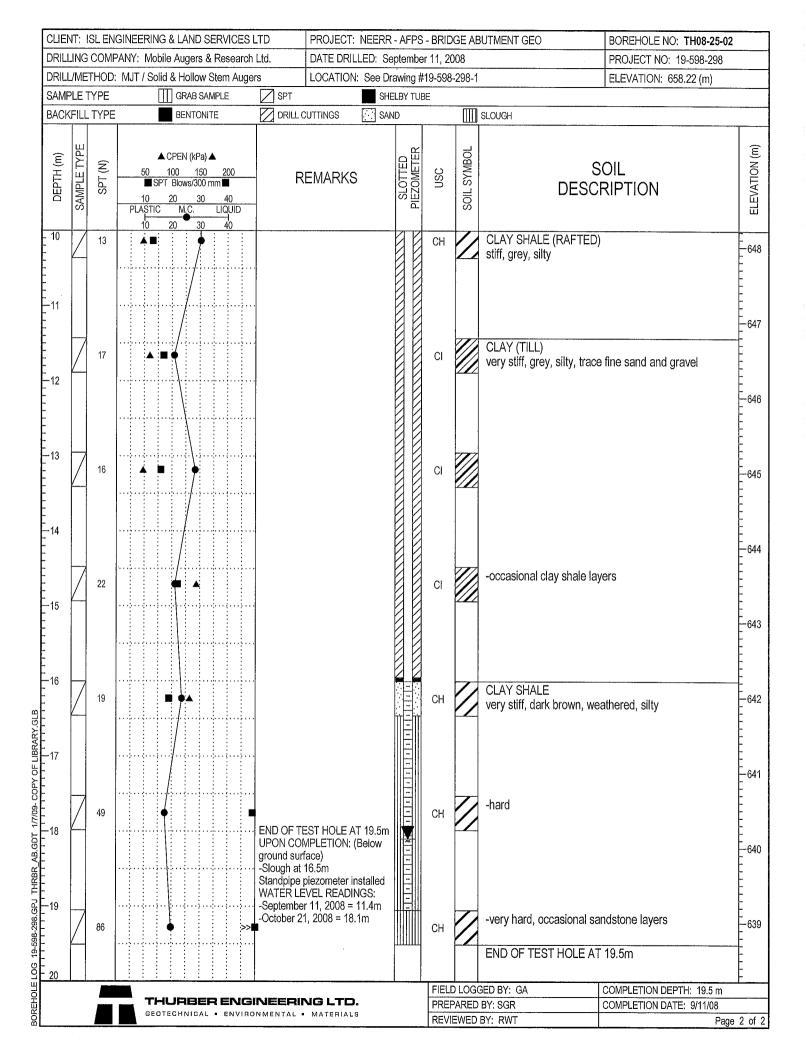

CLIE	VT:	ISL EN	IGIN	EE	RIN	١G	& L	AN	١D	SE	RV	ICE	ES I	LTD	PROJECT:	NEERR	- AFPS	- BRID	GE Al	BUTMENT GEO	BOREHOLE NO: T	H08-22-02	
												ea	rch	Ltd.	DATE DRI	LED: Oc	tober 1	, 2008			PROJECT NO: 19-	598-298	
		THOD	: M	10/						<u> </u>					LOCATION	I: See Dr	awing #	19-598	298-1		ELEVATION: 674.3	36 (m)	
SAMF	••••						-	RAI									LBY TU	BE					
BACK	FILL	_ TYPE	- 			\mathbb{Z}	1 D	RIL	LC	UT	ΓIN	3S		BENTC	NITE	SAN	ID			SLOUGH			
DEPTH (m)	SAMPLE TYPE	SPT (N)		1 PLA	0 • S 0	PT C	CPE 100 Blc 20 100 20 20	ws/	<u>150</u> 300	0) mr)	20 n	0 UID		- F	REMARKS	\$	SLOTTED PIEZOMETER	nsc	SOIL SYMBOL	DESC	OIL RIPTION		ELEVATION (m)
- 20		85		/									>>					SM					- 654
-22	7	80		\														SM	0000 0000				
		00												-Seepage				SM	966666 960000 9000000	END OF TEST HOLE AT UPON COMPLETION: (E -Slough at 20.9m -Water at 11.7m Standpipe piezometer ins WATER LEVEL READIN -October 1, 2008 = Dry -October 21, 2008 = Dry	Below ground surfac	e)	- 652 - 651 - 649 - 648 - 647 - 646
2 - <u>30</u>				: 			<u>.</u>	•	•									FIELD	LOG	GED BY: NR	COMPLETION DEPTH	: 22.4 m	<u> </u>
															MATERIAL			PREF	ARED	BY: SGR	COMPLETION DATE:	10/1/08	
											2				MATERIAL	-		REVI	EWED	BY: RWT		Page	3 of 3

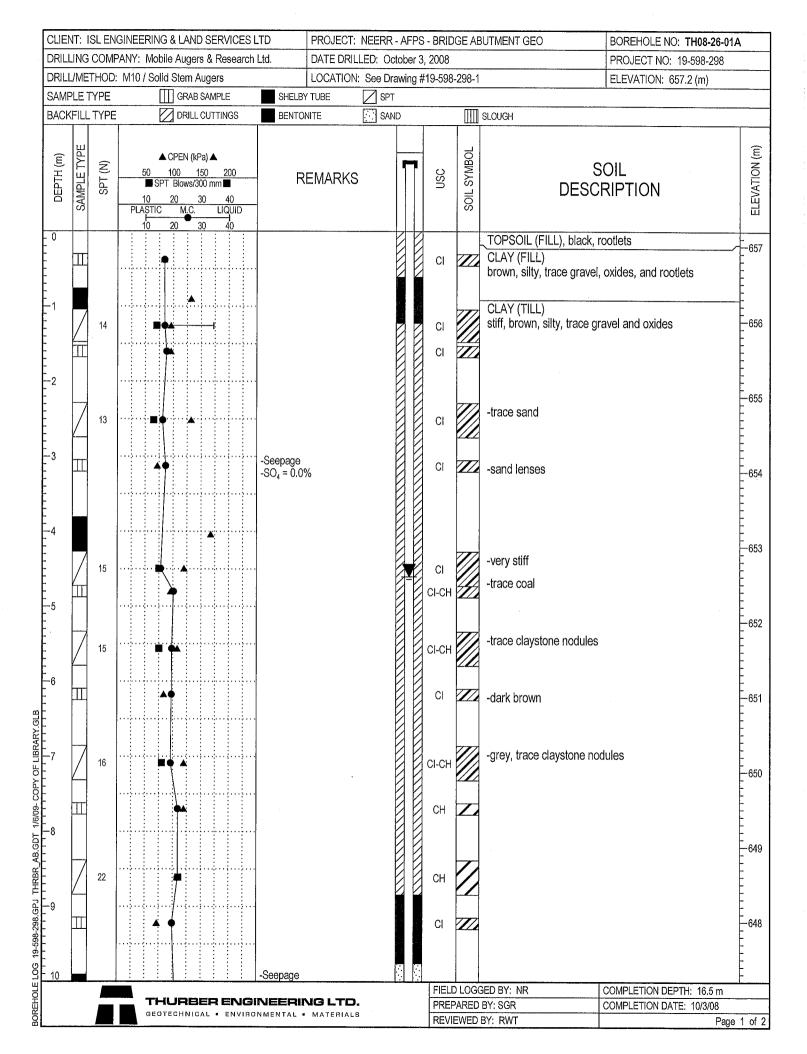


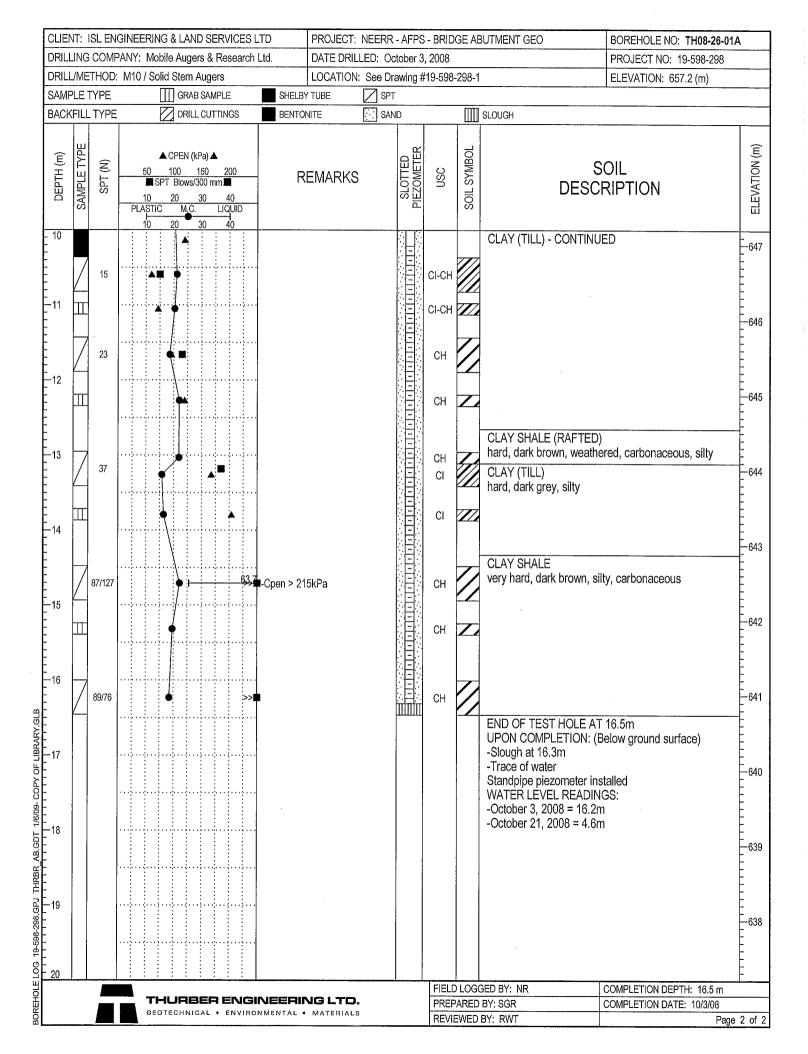

				••••							·····		GE AE	BUTMENT GEO	BOREHOLE NO: TH08-23-01	A
			PANY: M M10/S					11 LIG.				· · · · ·	200 4	······································	PROJECT NO: 19-598-298	
		TYPE	WHU7 a		RAB S			SPT	LOCATION		awing # LBY TUE		-298-1		ELEVATION: 666.5 (m)	
					ENTON		.⊑		CUTTINGS	SAN			m			
BACI				BI	=NTOP				CUTTINGS	SAN				SLOUGH		
DEPTH (m)	SAMPLE TYPE	SPT (N)	50 ■ 10 PLAST 10	▲ CPE 100 SPT Blo 20 IC M 20		0 0 mm 1) Ll	200 ■ 40 QUID -1 40	- F	REMARKS	3	SLOTTED PIEZOMETER	nsc	SOIL SYMBOL		OIL RIPTION	
10	4	50/152	•				· · · · · · · · · · · · · · · · · · ·	> II			- 	SM	00000 00000	SAND very dense, brown, fine g stained	rained, trace silt, oxide	
·11	Π		•									SM	485	SANDSTONE (RAFTED	\	
12	\mathbb{Z}	87	•				· · · · · · · · · · · · · · · · · · ·	· > D				SS		very dense, brown, weat	, nered, fine grained	
12	Π		•									SS				
13	Z	50/127	•				·····	· · ·				SS		-trace gravel		111111
14			•									GM	NN	SAND AND GRAVEL brown, trace silt		
15								•						END OF TEST HOLE AT UPON COMPLETION: (E -Slough at 13.6m Standpipe piezometer ins	Below ground surface) stalled	6
16						· · · · · · · · · · · · · · · · · · ·								WATER LÉVEL BELOW -October 8, 2008 = 14.1r -October 21, 2008 = 14.1	n	
17																
					· · · · · · · · · · · · · · · · · · ·											
18																
19																
20																Ē
<u> </u>									NG LTD					GED BY: GA BY: SGR	COMPLETION DEPTH: 14.5 m COMPLETION DATE: 10/8/08	
			G	LOTECH	NICA	L •	ENVH	ONMENTAL	MATERIAL	8		REVI	EWED	BY: RWT		e 2 d

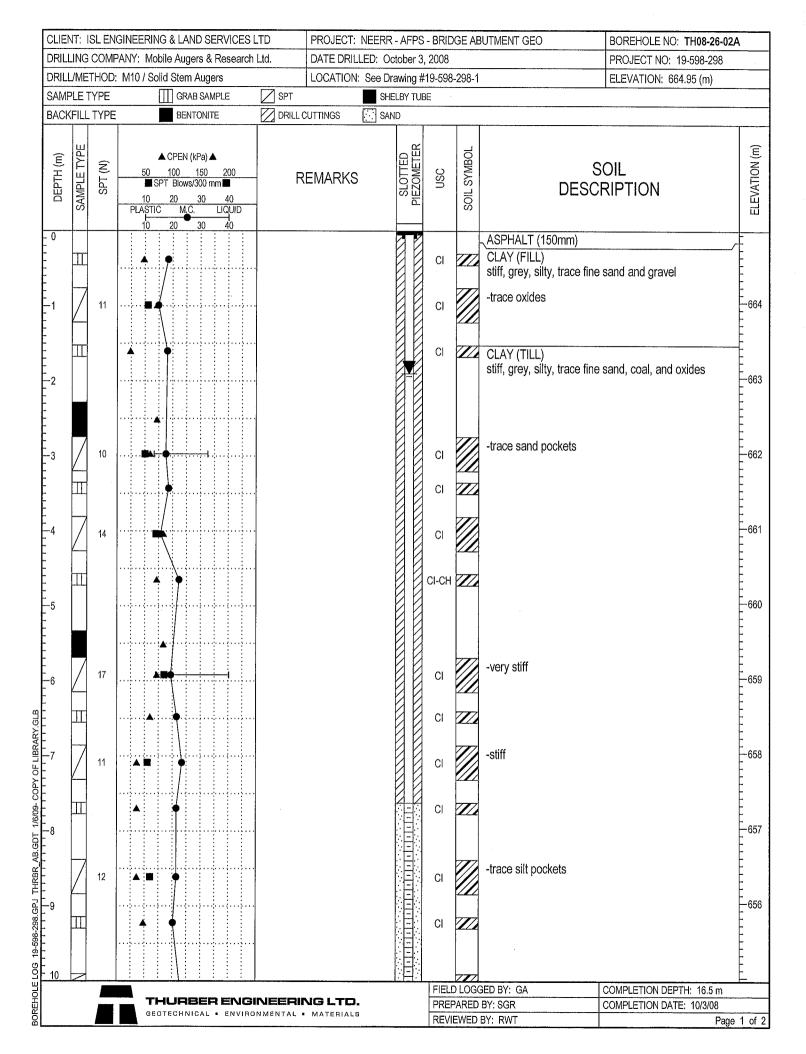

CLIEN	NT: I	SL EN	GINE	ERI	NG a	& L/	ANE) se	ERV	'ICE	S LTD		PROJ	ECT: I	NEERR	- AFPS	S - BRID)GE A	BUTMENT GEO	BOREHOLE NO: TH	108-23-02A	
										sear	ch Ltd.				ED: Oc					PROJECT NO: 19-5	98-298	
		THOD	: M1()/S				_					LOCA	TION:	See Dr	·		3-298-1	1	ELEVATION: 665.46	i (m)	
SAMF									1PLE		X	SPT				ELBY TU	BE					
BACK	FILL	. TYPE	: T			BE	NTC	DNIT	E			DRILL	CUTTING	S	SAN	1D			SLOUGH			
DEPTH (m)	SAMPLE TYPE	SPT (N)	PI	50 10 ASTI 10	1 SPT 2 C	20	1 vs/3(.C.	<u>50</u> 00 m 30		0 UID			EMAF	RKS		SLOTTED PIEZOMETER	nsc	SOIL SYMBOL	DESC	SOIL RIPTION		ELEVATION (m)
- 10 -	Ц	77						•			Silt	nd = 85 = 7.1% y = 7.4	6				SM	00000 00000	SAND - CONTINUED -trace gravel			
- - 	I							· · · · ·									SM					-655
	Ζ	91										ughing				1 1 1 1 1 1 1 1	SM	000000 0000000 0000000				-654
																	SM	<u>888</u>			- - - - -	-653
-13	Z	64									····						GM GM-GC		END OF TEST HOLE A	Г 13.7m		-652
																			UPON COMPLETION: (-Slough at 10.7m Standpipe piezometer in WATER LEVEL BELOW -October 8, 2008 = 1.5m -October 21, 2008 = 10.1	stalled GROUND SURFACE		-651
																						-650
				· · · · · · · · · · · · · · · · · · ·																		-649
																					- - - - - - - - - - - 	-648
-18							,															-647
																						-646
20				<u>.</u>			····			· ·	l						FIEL	L LOG	GED BY: GA	COMPLETION DEPTH:	<u>– –</u> 13.7 m	
													MATER				PREF	PARED	BY: SGR	COMPLETION DATE: 10		
3L				95	មាដ		<i>1</i> ت ה		- t:	N V I I	лым М & N	IAL .	WATER	HALS			REVI	EWED	BY: RWT		Page 2	of 2

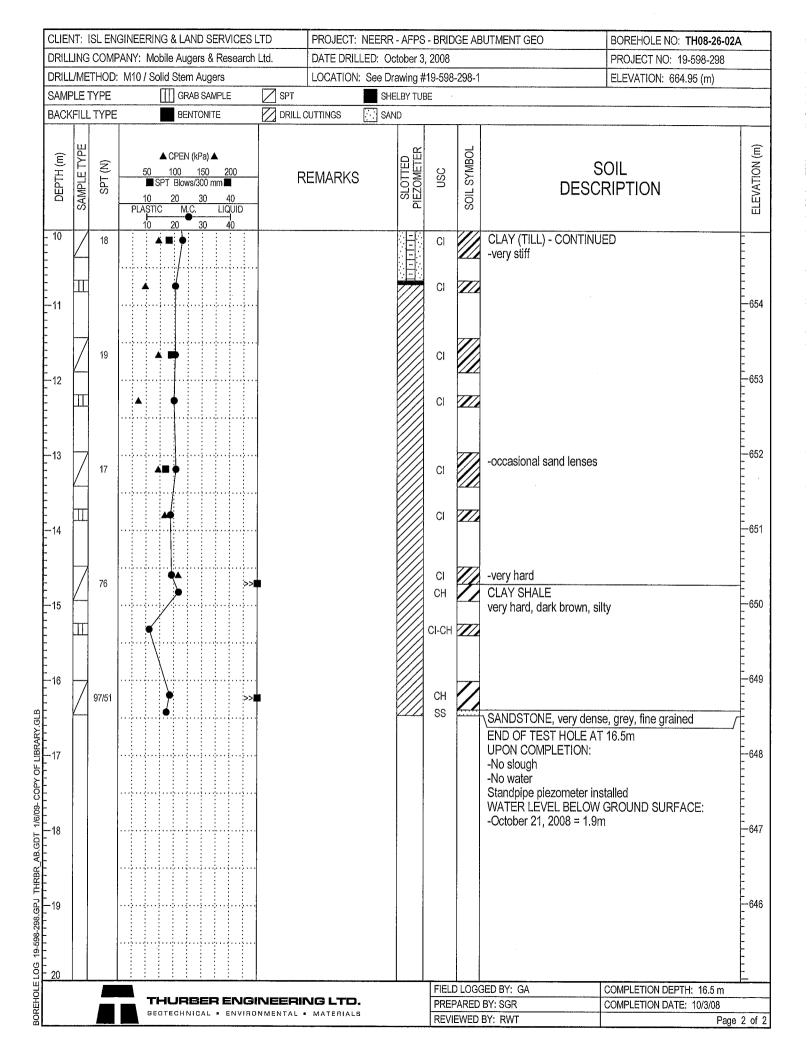


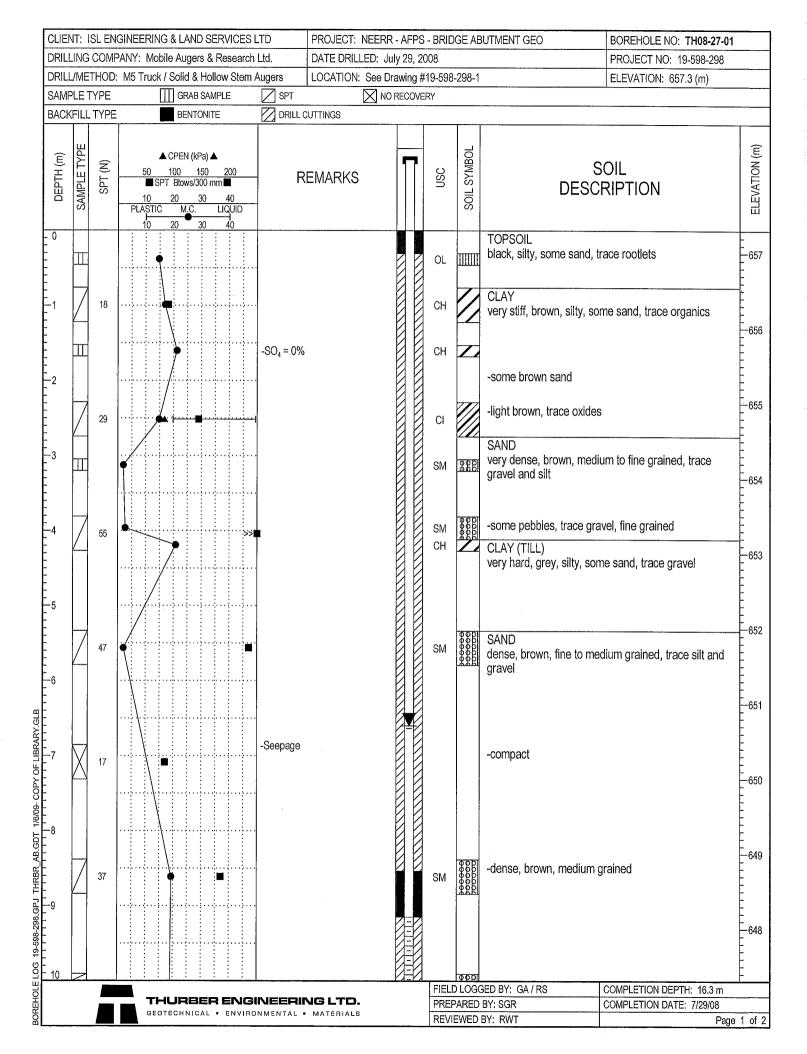


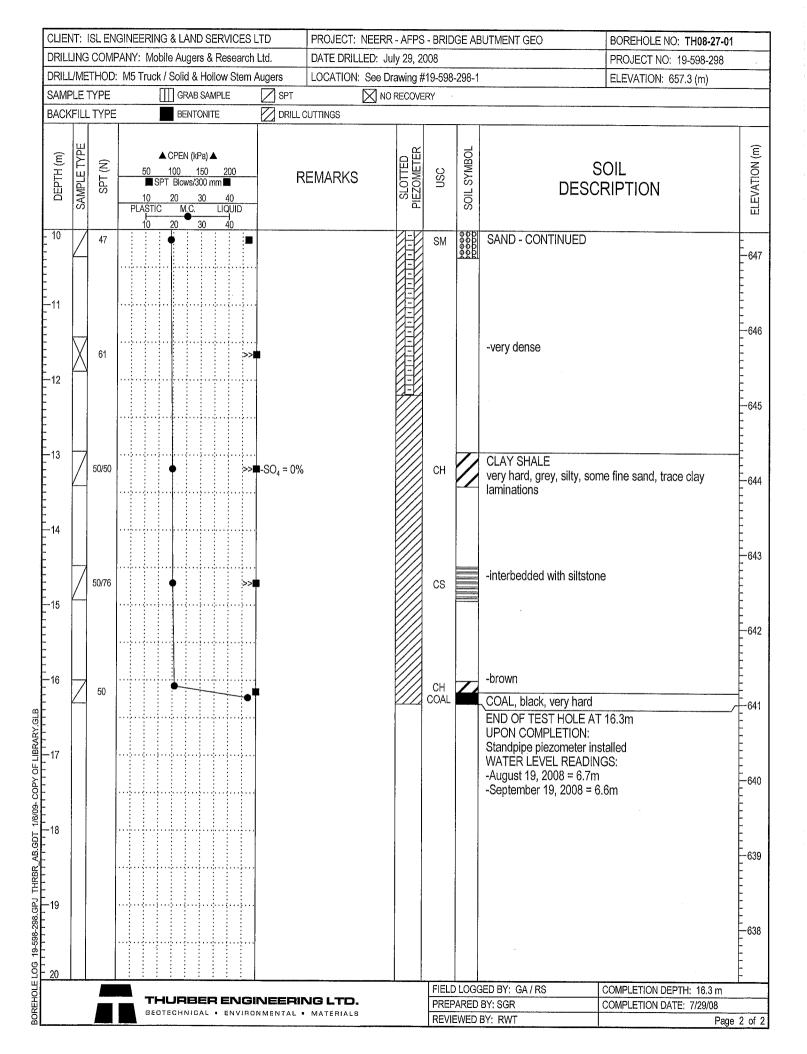

LUNETHOR: MOY Selet Sam Auges LOCATION See Drawing #19-589-284-1 ELEVATION: 699 5 (m) WHE TYPE Invasion (m) See Contract See Contract See Chart Type Invasion (m) See Contract See Contract See Chart Type Invasion (m) See Contract See Contract See Contract See Chart Type Invasion (m) See Contract See Contract See Contract See Chart Type Invasion (m) See Contract See Contract See Contract See Chart Type Invasion (m) See Contract See Contract See Contract See Chart Type Invasion (m) See Contract See Contract See Contract See Chart Type Invasion (m) ReMARKS See	LIENT: RILLIN														DGE AI	BUTMENT GEO	BOREHOLE NO: TH08-24-02 PROJECT NO: 19-598-298	D
MELETYPE I great sharte I great or the second to the												·			3-298-1			
COPILITYPE BOWRSTE DEPLICATINGS	v									SPT					2.00			
29 • • • 29 • • • • 21 • • • • • 28 • • • • • • 28 • • • • • • • 29 •	ACKFIL	LTY	ΡE			BEN	TONI	TE			CUTTINGS	SAN	D		m	SLOUGH	· · · · · · · · · · · · · · · · · · ·	
29 SM Image: SM Sector Contributed in the sector compact in the sector	DEPTH (m) SAMPI F TYPF	SPT (N)		10 PLASTI	10 SPT E 20 C	IO Blows D M.C	150 /300 i 30 ;.	2 mm II LIC			REMARKS	3	SLOTTED	USC	Γ	Ç	SOIL RIPTION	
Image: Second	0	29			•									SM	000000	SAND - CONTINUED -compact		
Image: Constraint of the constraint	1				•	•								CI		very stiff, grey, silty, trac	e fine sand, gravel, and silt	
III III III III III III IIII IIII IIII IIII IIII IIII IIII IIII IIIII IIIII IIIII IIIIII IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2	28				•	••••••••••••••••••••••••••••••••••••••							CI		-trace sand pockets, occ	asional sand lenses	بببيآيد
Image: Constraint of the second se		-		•										CI				
Image: Second state in the second s	3	62		4	/					> #				SM	000000 0000000 00000000000000000000000		o medium grained, trace silt	
31 •	•	-		ł										SM	\$ 88	-trace gravel		
Z Z	, L	31					••••							SM	000000 0000000000000000000000000000000	-dense		
27 SM-SC SM	Ш	-				•								SM	<u>888</u>			
END OF TEST HOLE AT 18.0m UPON COMPLETION: (Below ground surface) -Slough at 9.9m Standpipe piezometer installed WATER LEVEL BELOW GROUND SURFACE: -October 21, 2008 = 4.3m	° Z	27					••••••							SM-SC		-compact, trace clay sha	le	11111
END OF TEST HOLE AT 18.0m UPON COMPLETION: (Below ground surface) -Slough at 9.9m Standpipe piezometer installed WATER LEVEL BELOW GROUND SURFACE: -October 21, 2008 = 4.3m	,	-												SM-SC	, 28 8	-trace rafted coal		
UPON COMPLETION: (Below ground surface) -Slough at 9.9m Standpipe piezometer installed WATER LEVEL BELOW GROUND SURFACE: -October 21, 2008 = 4.3m	8	7															5 40 Oct	
	9															UPON COMPLETION: (-Slough at 9.9m Standpipe piezometer in WATER LEVEL BELOW	Below ground surface) stalled GROUND SURFACE:	
	0							:										
FIELD LOGGED BY: GA COMPLETION DEPTH: 18.0 m THURBER ENGINEERING LTD. PREPARED BY: SGR COMPLETION DATE: 10/1/08				т	HU	RE	3EI	RE	ENI	JINEERI	NG LTD	-						
GEOTECHNICAL • ENVIRONMENTAL • MATERIALS REVIEWED BY: RWT Page 2																		3 2

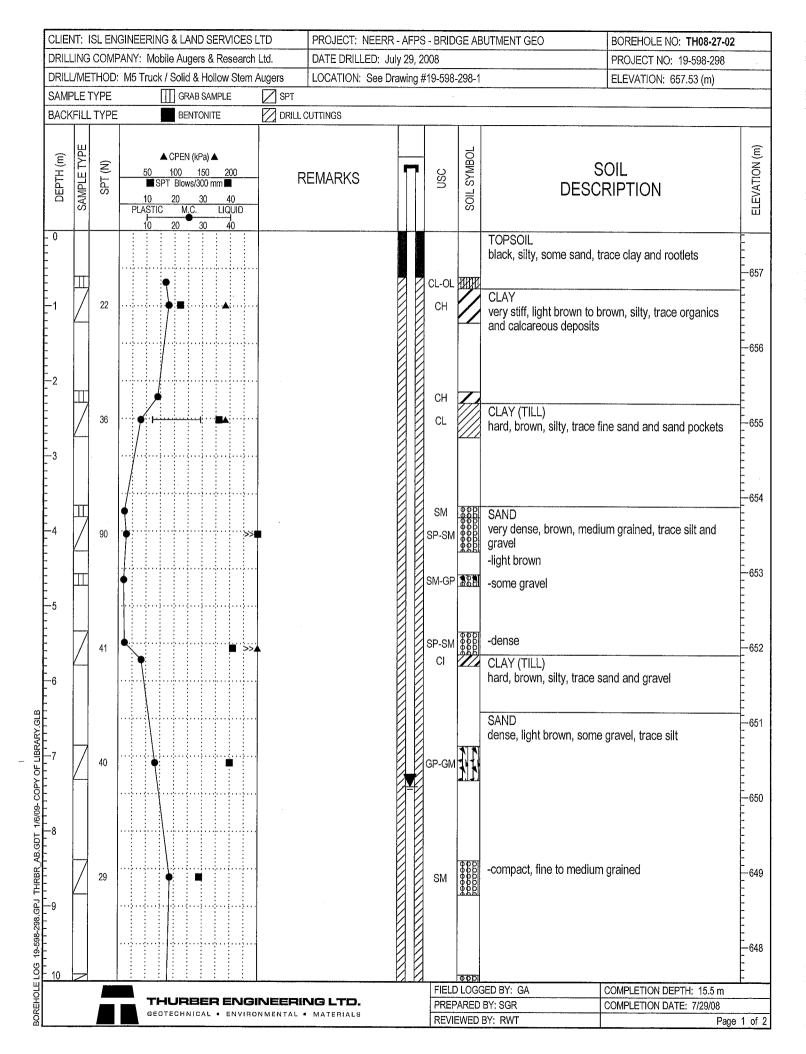




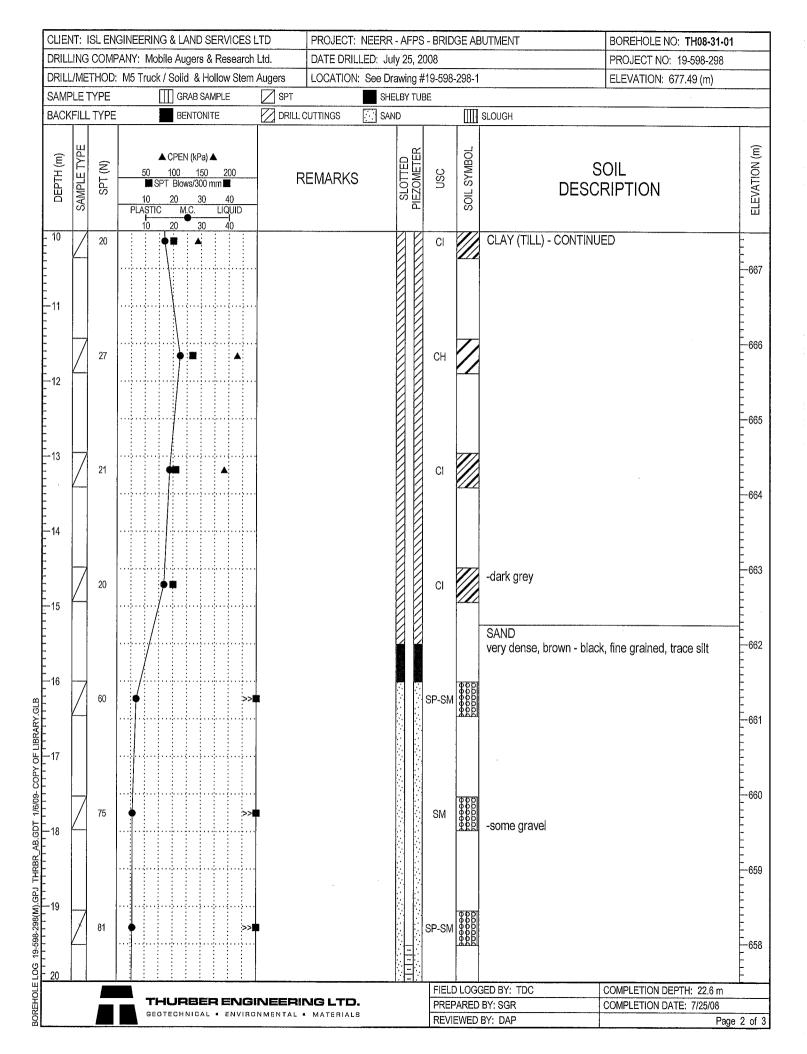


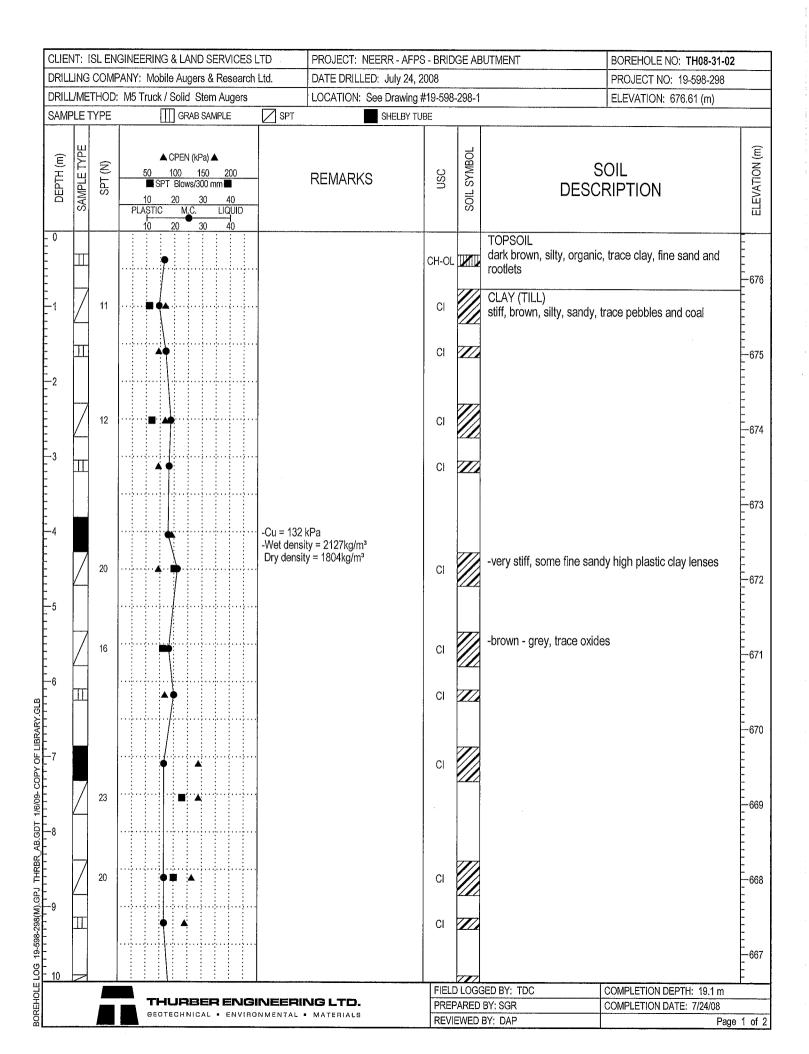


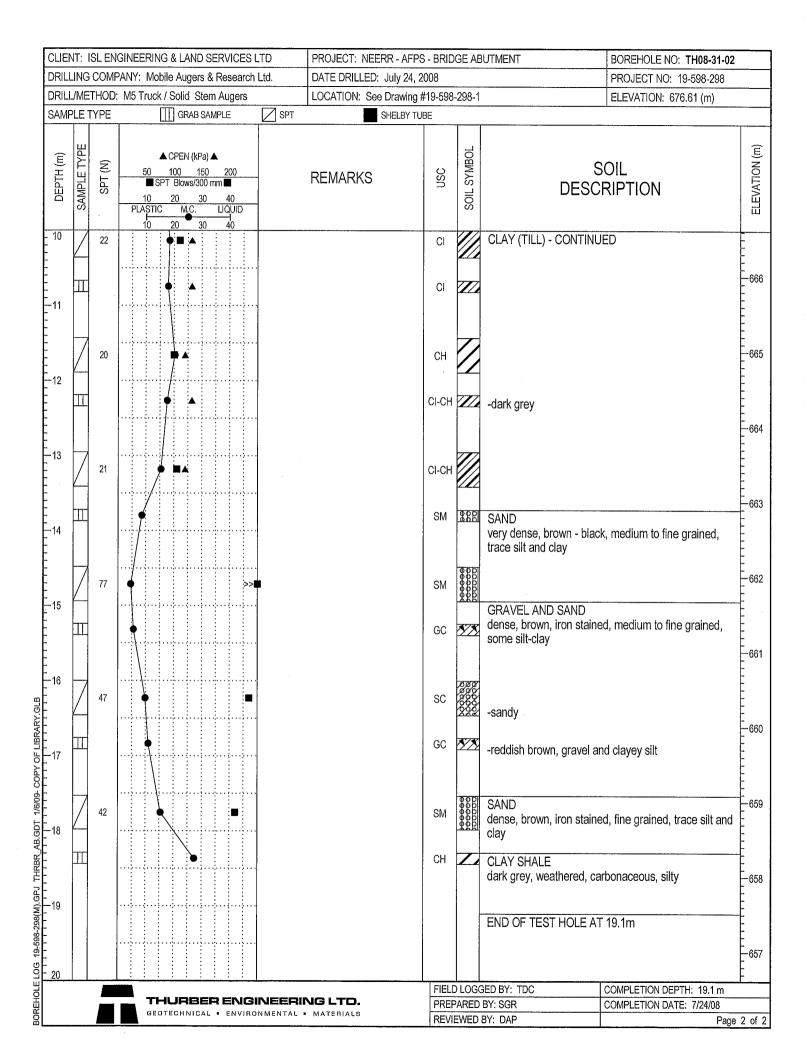


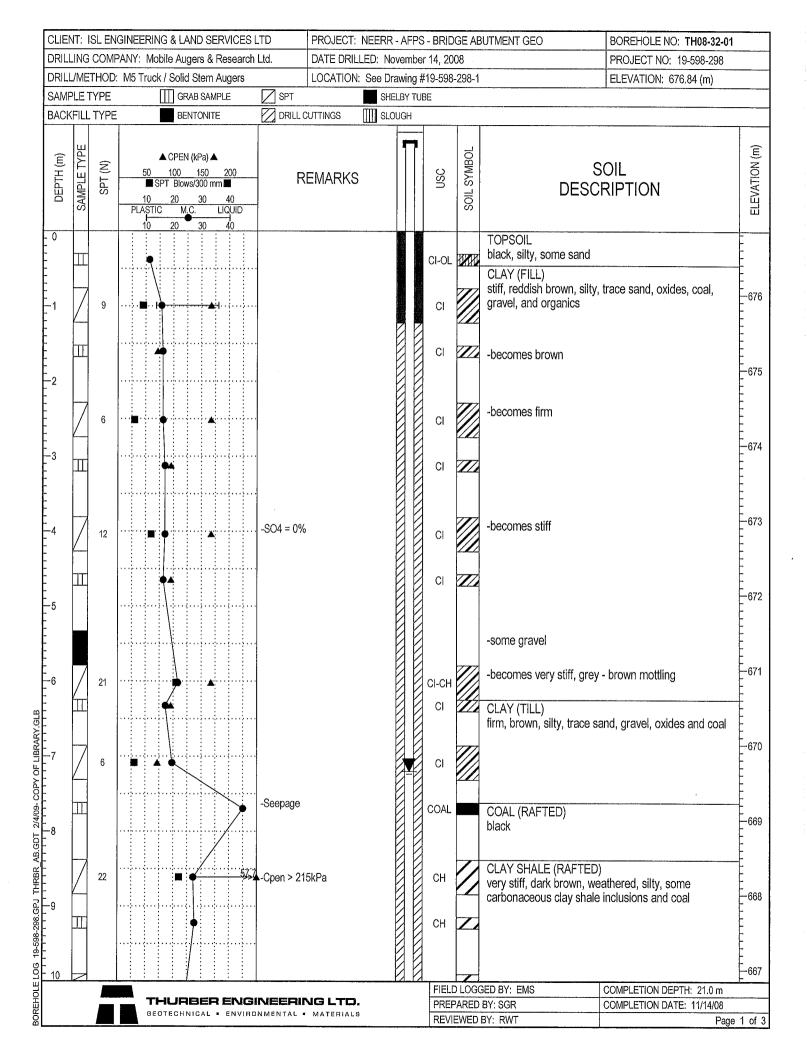


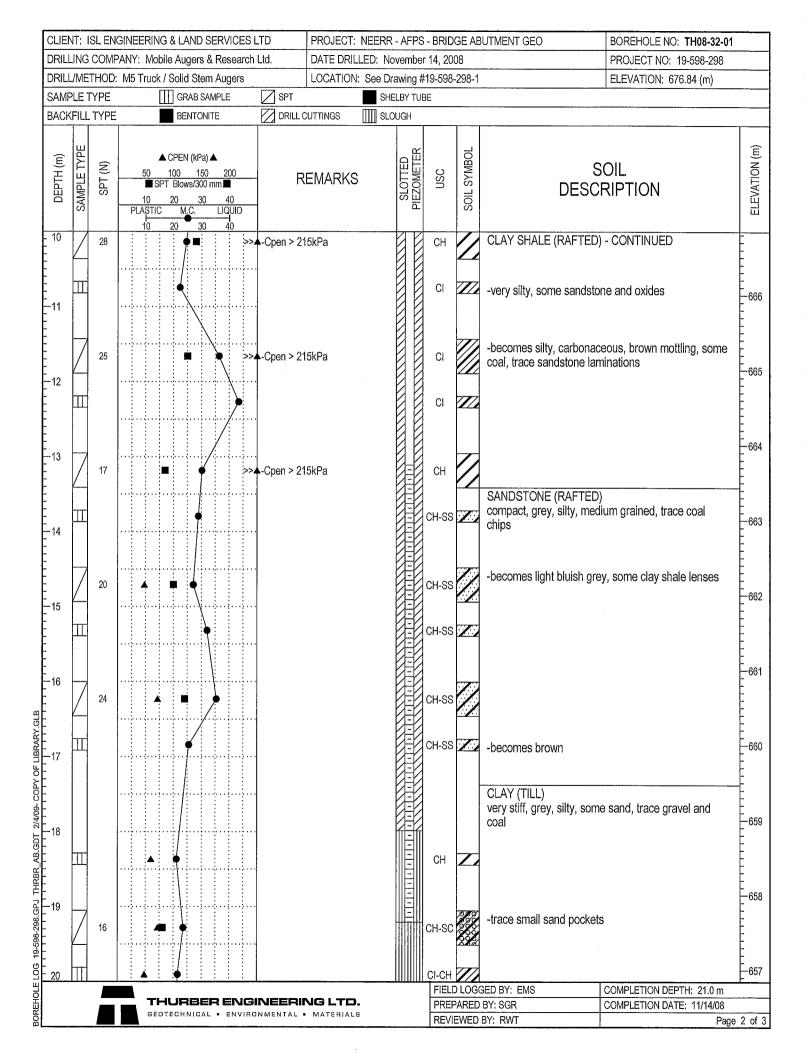




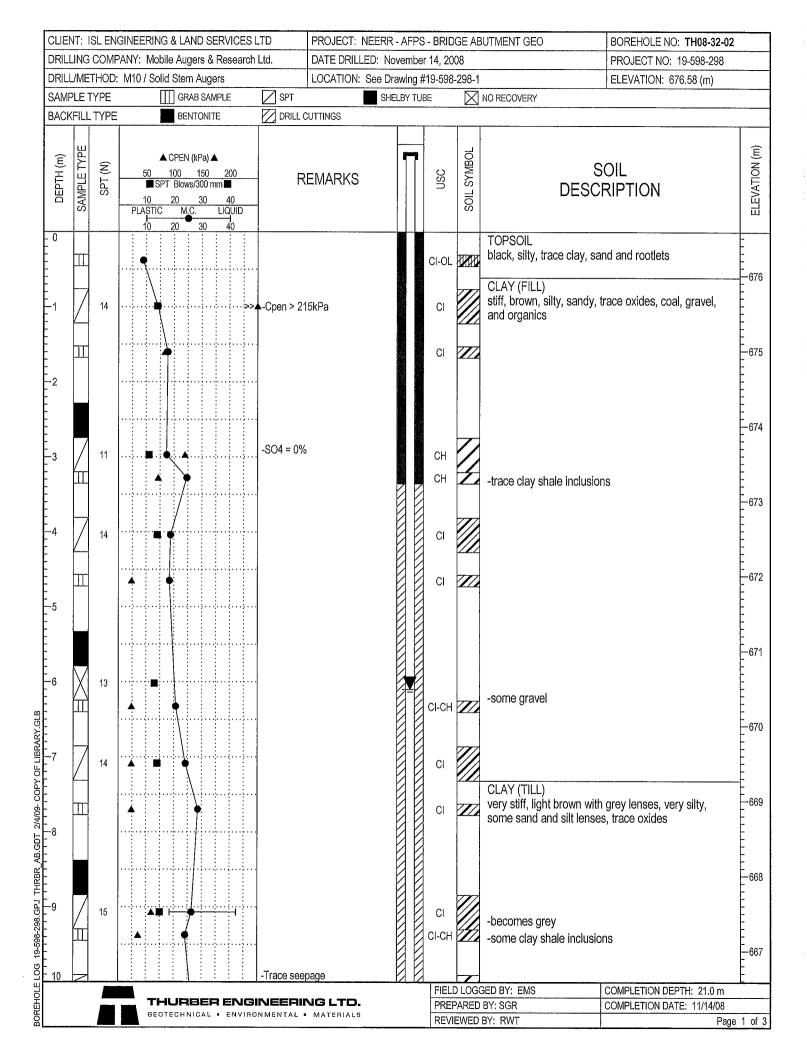


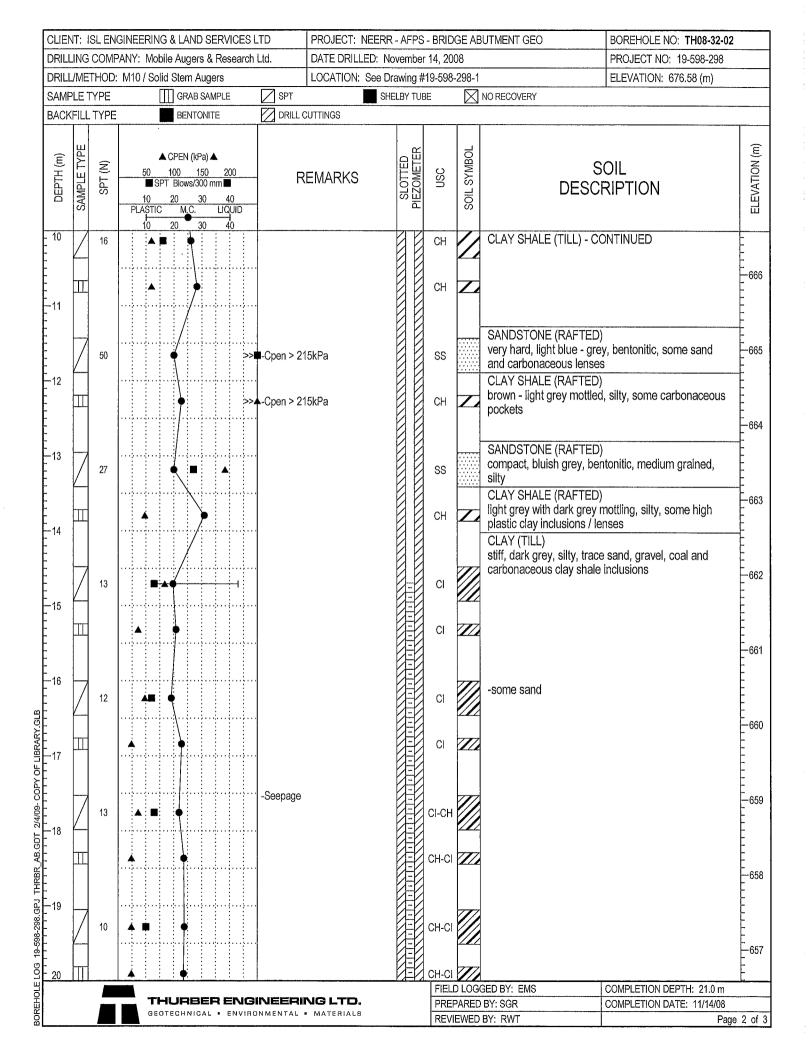

			GINEERING & LAND SERVICES L		PROJECT: NEEP			GE AE	BUTMENT GEO	BOREHOLE NO: TH08-27-02	
			ANY: Mobile Augers & Research		DATE DRILLED:			000 4		PROJECT NO: 19-598-298	
		TYPE	M5 Truck / Solid & Hollow Stem /	Augers	LOCATION: See	Drawing #	19-598-	298-1		ELEVATION: 657.53 (m)	
		TYPE	BENTONITE		ITTINGS						
DEPTH (m)	SAMPLE TYPE		▲ CPEN (kPa) ▲ 50 100 150 200 ■ SPT Blows/300 mm ■ 10 20 30 40 PLASTIC M.C. LIQUID 10 20 30 40		EMARKS	SLOTTED PIEZOMETER	nsc	SOIL SYMBOL		SOIL RIPTION	ELEVATION (m)
-11	Ζ	50	•	•			SM	000001 000001	SAND - CONTINUED -brown		-64
-12	Ζ	50/40	• >	•			SS		SANDSTONE very dense, grey, fine to	medium grained, some silt	
13 14	Ζ	80/40	•				SS				64!
15		50/30 50/25	× ×				SS CH CH		CLAY SHALE very hard, brown, silty, tr carbonaceous	ace silt/sand laminations,	
16 17									END OF TEST HOLE AT UPON COMPLETION: -No Slough -Water at 13m Standpipe piezometer in: WATER LEVEL READIN -August 19, 2008 = 10.6r -September 19, 2008 = 7	stalled IGS: n	
18											- 64(
19											63
20											<u> </u>
				NEERIN	IG LTD.				GED BY: GA BY: SGR	COMPLETION DEPTH: 15.5 m COMPLETION DATE: 7/29/08	
			GEOTECHNICAL . ENVIRO	NMENTAL .	MATERIALS				BY: RWT		e 2 of

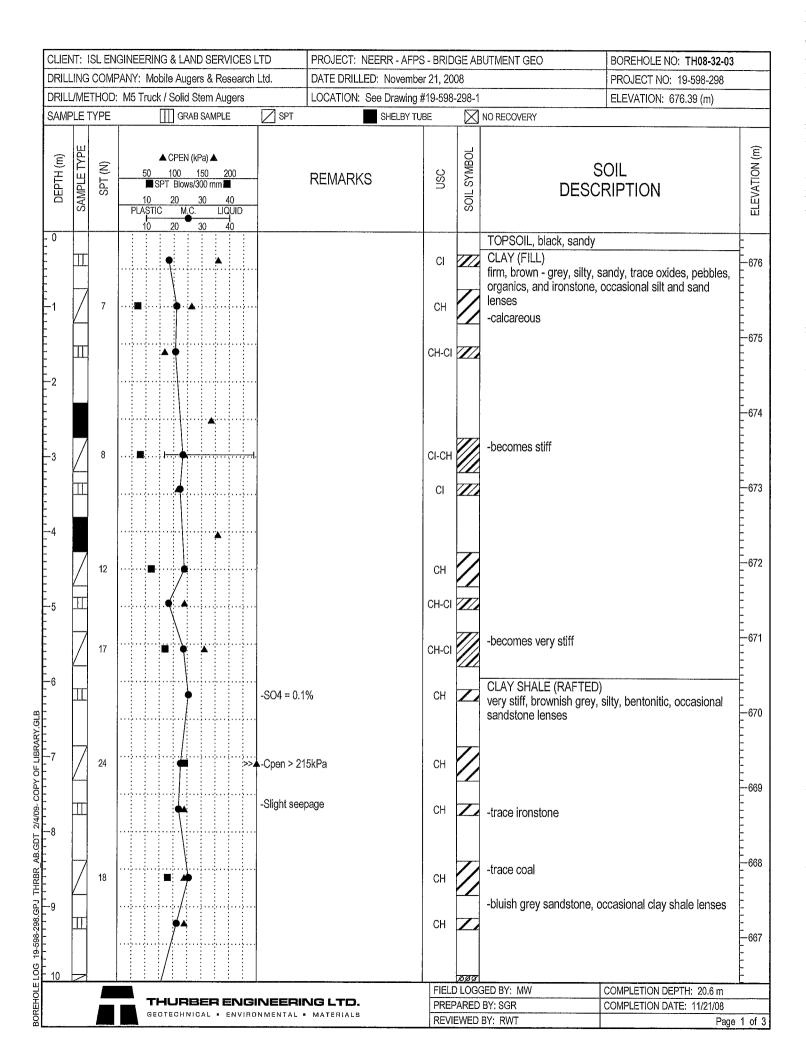


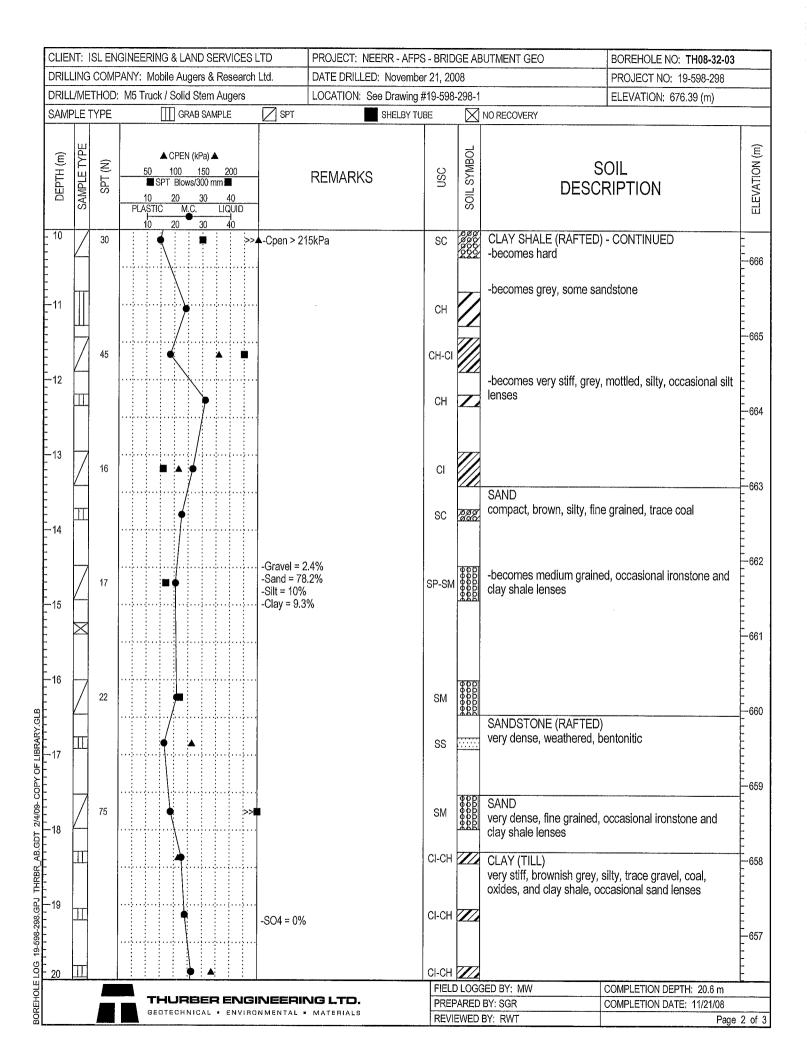


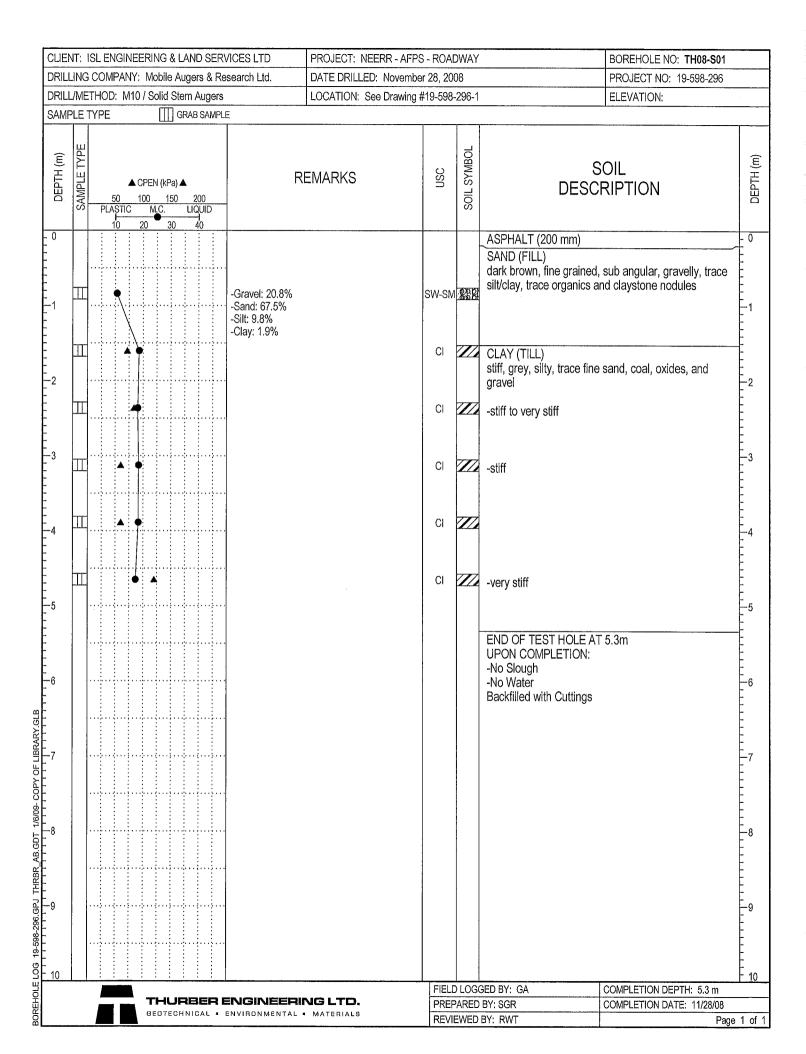
	1110										LTD	-			סויום - נ		BUTMENT	BOREHOLE NO: TH08-31-01	
		COMF									******	DATE DRI						PROJECT NO: 19-598-298	
			M5	Tru	_						n Augers	LOCATIO				-298-1		ELEVATION: 677.49 (m)	
SAMF						<u></u>			/PLE	••••••				LBY TU	BE	ודדת			
BACK	.⊢1∟∟ 	. TYPE	<u> </u>			В	ENT	ONIT	E 			CUTTINGS	SAN	1D T		<u>_ ШШ</u>	SLOUGH		
DEPTH (m)	SAMPLE TYPE	SPT (N)	P	50 10 LAS1 10	ISP1	<u>100</u> F Blo 20	M.C.		20 nm 4 LIQ) JID	- R	EMARK	6	SLOTTED PIEZOMETER	nsc	SOIL SYMBOL	DESC	SOIL RIPTION	ELEVATION (m)
20	Ζ	100/10	•							·····>	· · · ·				SM	0000 000000 000000	SAND - CONTINUED		
-22	Ζ	83								Ň					SM	900000 000000 000000	END OF TEST HOLE A UPON COMPLETION: (I		- - - - - - - - - - - - - - - - - - -
					•••••												-Slough at 21.0m -Water at 21.0m Standpipe piezometer in WATER LEVEL BELOW -July 25, 2008 = 22.4m -August 19, 2008 = Dry a -September 19, 2008 = I	GROUND SURFACE: at 22.6m	-
25																			-653
26								· · · · · · · · · · · · · · · · · · ·											-651
			•••••					· · · · · · · · · · · · · · · · · · ·											- -
28																			- 649
																			- 648
				т	Ъ	UF	78	EF	۶E	NG	INEERI	NG LTE).				GED BY: TDC	COMPLETION DEPTH: 22.6 m COMPLETION DATE: 7/25/08	
											ONMENTAL .						BY: DAP		3 of 3





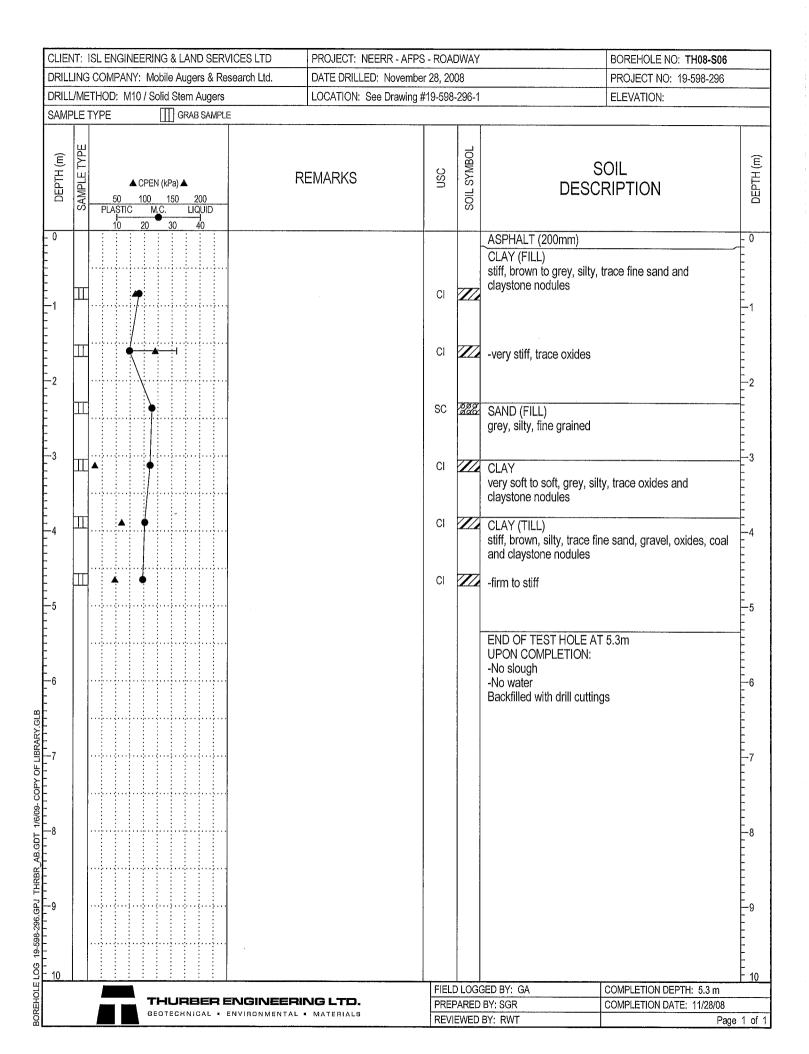


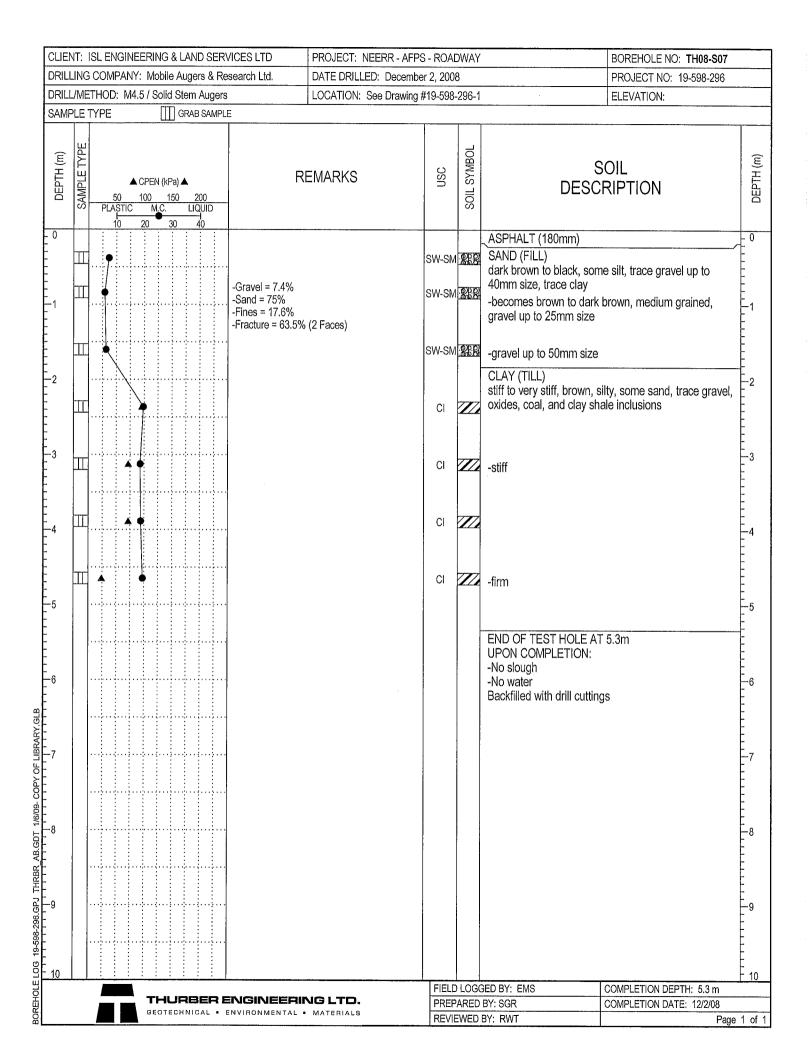

		ISL EN															BUTMENT GEO	BOREHOLE NO: TH08-32-01	
		COM				_					h L.td.	DATE DR						PROJECT NO: 19-598-298	
		THOD	CIVI	TUC					Aug PLE		SPT	LOCATIO		ELBY TU		-298-1		ELEVATION: 676.84 (m)	
		. TYPE	:) NITI				CUTTINGS	SII SLO		DC		·		
DEPTH (m)	SAMPLE TYPE	SPT (N)			▲ C 1(SPT 2 C	PEN	(kP 18 18/30	'a) ▲ 50 00 mi)		REMARK		SLOTTED	nsc	SOIL SYMBOL		SOIL RIPTION	
20				10	2	0	3	0	40)		u , m nkou , a					CLAY (TILL) - CONTINU	JED	
-21	Z	14		A I				,							CI		-becomes stiff END OF TEST HOLE A		
-22																	UPON COMPLETION: (-Slough at 18.0m -Water at 9.8m Standpipe piezometer in WATER LEVEL BELOW -December 9, 2008 = 7.1	stalled GROUND SURFACE:	6
-23										,.									
-24																			
25																			
26																			
27											×								
28				· · · · · · · · · · · · · · · · · · ·															
29																			
30				:		;	:	:	:	:					EIELA			COMPLETION DEDTIL 24.0	-
				т	HL	R	BB	ΞR	E	NG	INEERI	NG LTC	.				GED BY: EMS BY: SGR	COMPLETION DEPTH: 21.0 m COMPLETION DATE: 11/14/08	
												MATERIA					BY: RWT	Page	

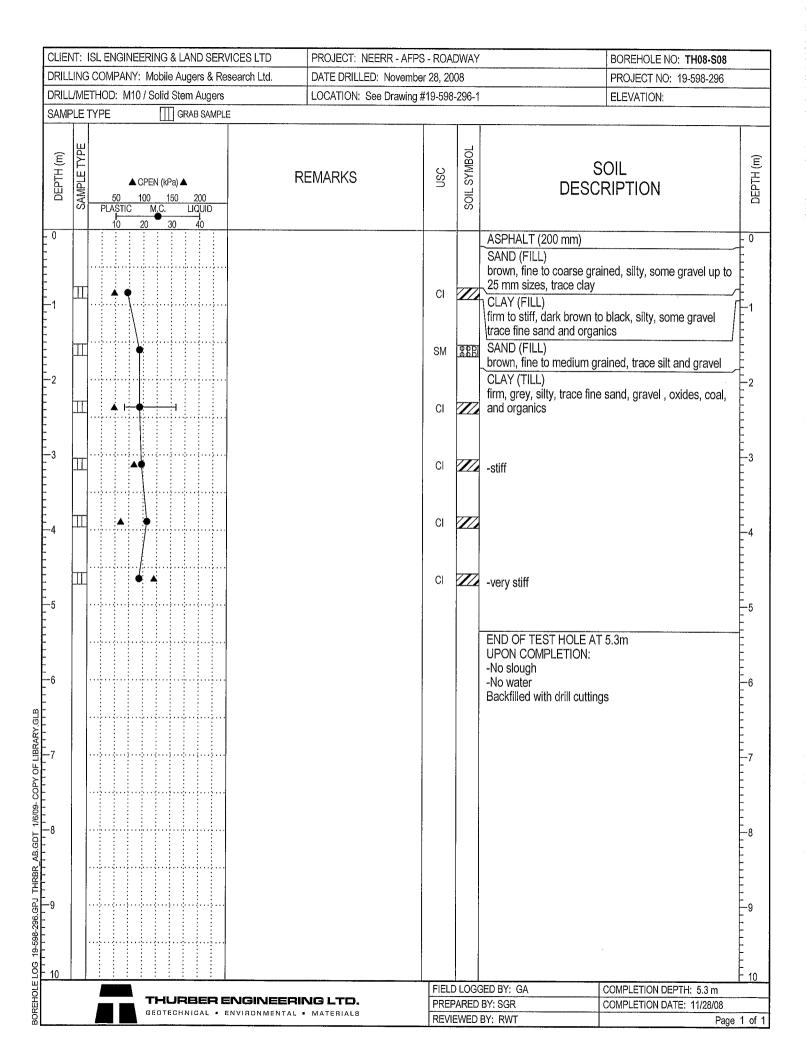


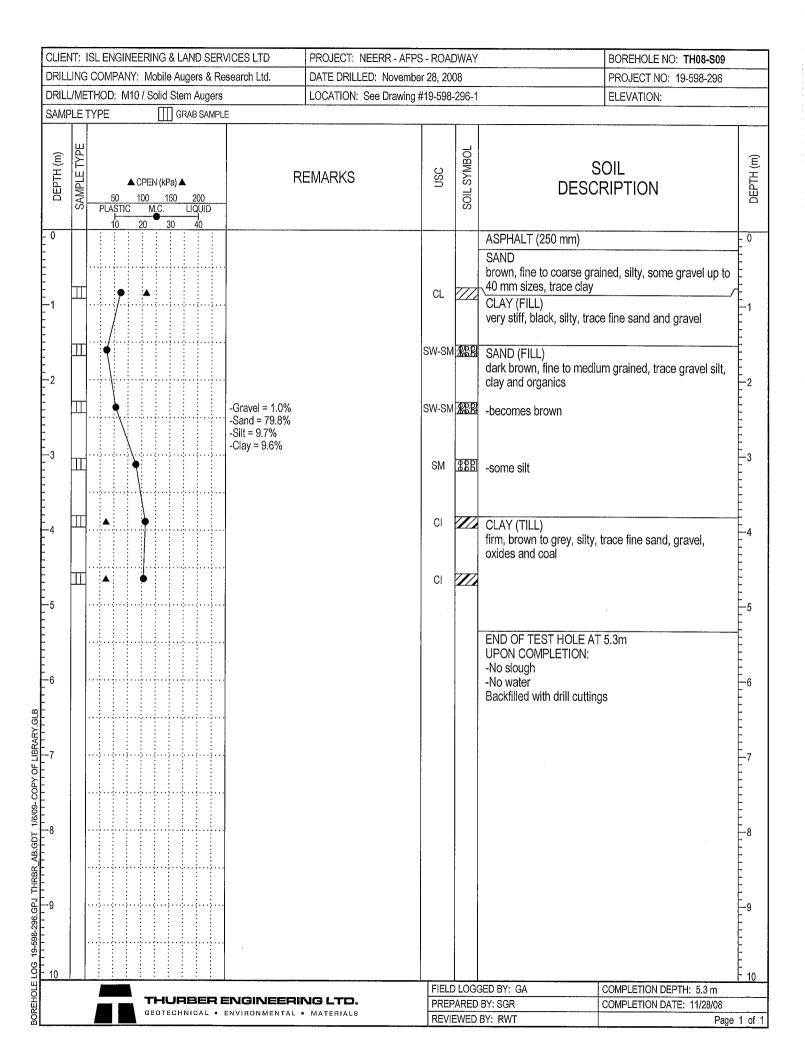
CLIE	NT:	ISL EN	GINEE	RING	3 & L	AN	ID S	BER	VIC	ES I	.TD	PROJECT:	NEERR	- AFPS	6 - BRID	GE AE	BUTMENT GEO	BOREHOLE NO: TH08-32-02	
			PANY:							arch	Ltd.	DATE DRII						PROJECT NO: 19-598-298	
			M10 /									LOCATION						ELEVATION: 676.58 (m)	
		TYPE							E				SH	Elby Tu	BE	\boxtimes	NORECOVERY		
BACł	<fill< th=""><th>. TYPE</th><th></th><th></th><th>8</th><th>BENT</th><th>ON</th><th>ITE</th><th></th><th></th><th></th><th>CUTTINGS</th><th></th><th></th><th>1</th><th>T</th><th></th><th></th><th>1</th></fill<>	. TYPE			8	BENT	ON	ITE				CUTTINGS			1	T			1
DEPTH (m)	SAMPLE TYPE	SPT (N)	PLA	0 SP 0 STIC 0	20	ows/	<u>150</u> 300 30	mm Ll	200 40 QUII 40)	R	EMARKS	3	SLOTTED PIEZOMETER	nsc	SOIL SYMBOL	DESC	OIL RIPTION	ELEVATION (m)
- 20								-						E			CLAY (TILL) - CONTINU	ED	E
- - - 	7	16				•									CI-CH		-becomes very stiff		-
-22																	END OF TEST HOLE AT UPON COMPLETION: (E -No slough -Water at 11.9m Standpipe piezometer ins WATER LEVEL BELOW -December 9, 2008 = 6.1	Below ground surface) Stalled GROUND SURFACE:	
-		,																	-654
-23 									· · · · · · · · · · · · · · · · · · ·										- - 653
																			-
- - - - - - 26														-					- 651
JF LIBRARY.GLB							,												-
от 2/4/09- СОРУ С 71-1-1-1-1- 85																			- 649
BOREHOLE LOG 19-598-298.GPJ THRBR AB.GDT 2/4/09- COPY OF LIBRARY.GLB 0 8 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7																			
E LOG 19-598-298 05 05																			-647
НОГ				т⊦	۰U	RE	3E	R	Er	٩C	INEERI	NG LTE).				GED BY: EMS	COMPLETION DEPTH: 21.0 m COMPLETION DATE: 11/14/08	
20RE												 MATERIAL 					BY: RWT		3 of 3
··· L		_																	

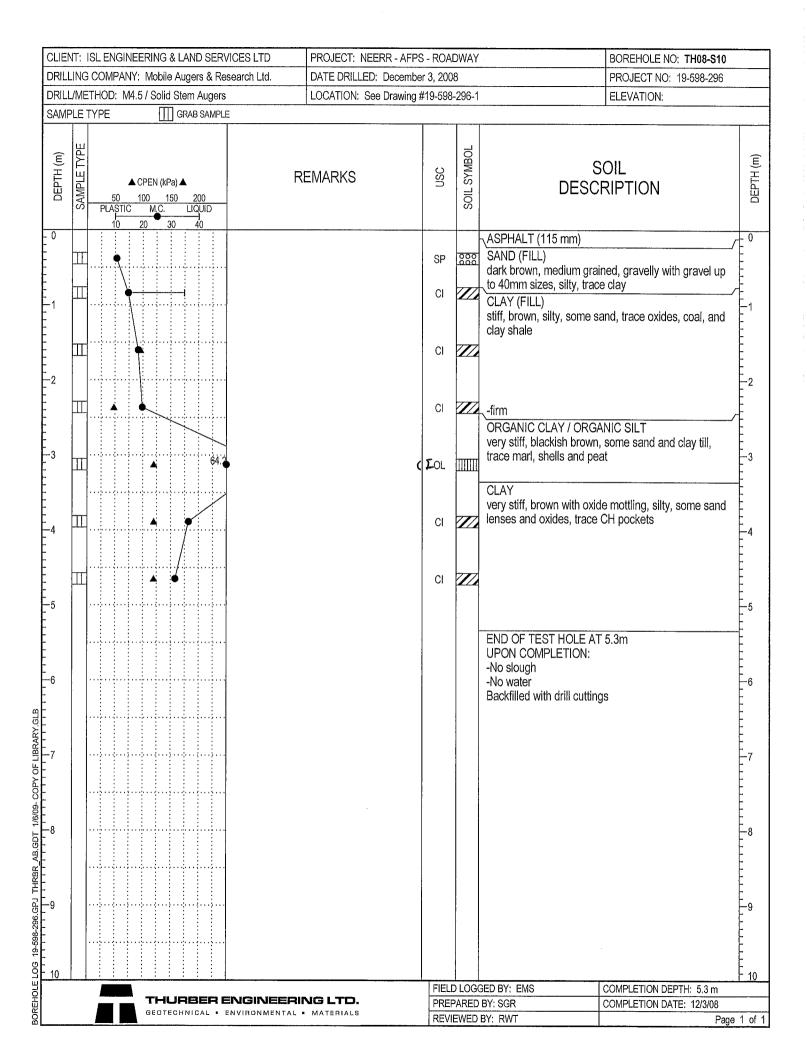
CLIE	NT: I	SL EN	GINEERING & LAND SERVICES L	TD	PROJECT: NEERR - AFPS	S - BRID	GE AE	BUTMENT GEO	BOREHOLE NO: TH08-32-03	
			PANY: Mobile Augers & Research L	Ltd.	DATE DRILLED: Novembe				PROJECT NO: 19-598-298	
·			M5 Truck / Solid Stem Augers		LOCATION: See Drawing				ELEVATION: 676.39 (m)	
SAMF	PLET	TYPE	GRAB SAMPLE	SPT SPT	SHELBY TU	BE		NO RECOVERY		
DEPTH (m)	SAMPLE TYPE	SPT (N)	▲ CPEN (kPa) ▲ 50 100 150 200 ■ SPT Blows/300 mm 10 20 30 40 PLASTIC M.C. LIQUID 10 20 30 40		REMARKS	nsc	SOIL SYMBOL		SOIL RIPTION	ELEVATION (m)
- 20								CLAY (TILL) - CONTINU	IED	
22						CI-CH		END OF TEST HOLE A UPON COMPLETION: (I -Slough at 10.8m -Water at 6.9m Backfilled with drill cuttin	Below ground surface)	-655 -655 -653 -652 -651
27										-
-27 -28 -29 - 30										648 647 647
				NIECO				GED BY: MW	COMPLETION DEPTH: 20.6 m	
			GEOTECHNICAL . ENVIRON					BY: SGR BY: RWT	COMPLETION DATE: 11/21/08 Page	3 of
_							_,,		1 446	

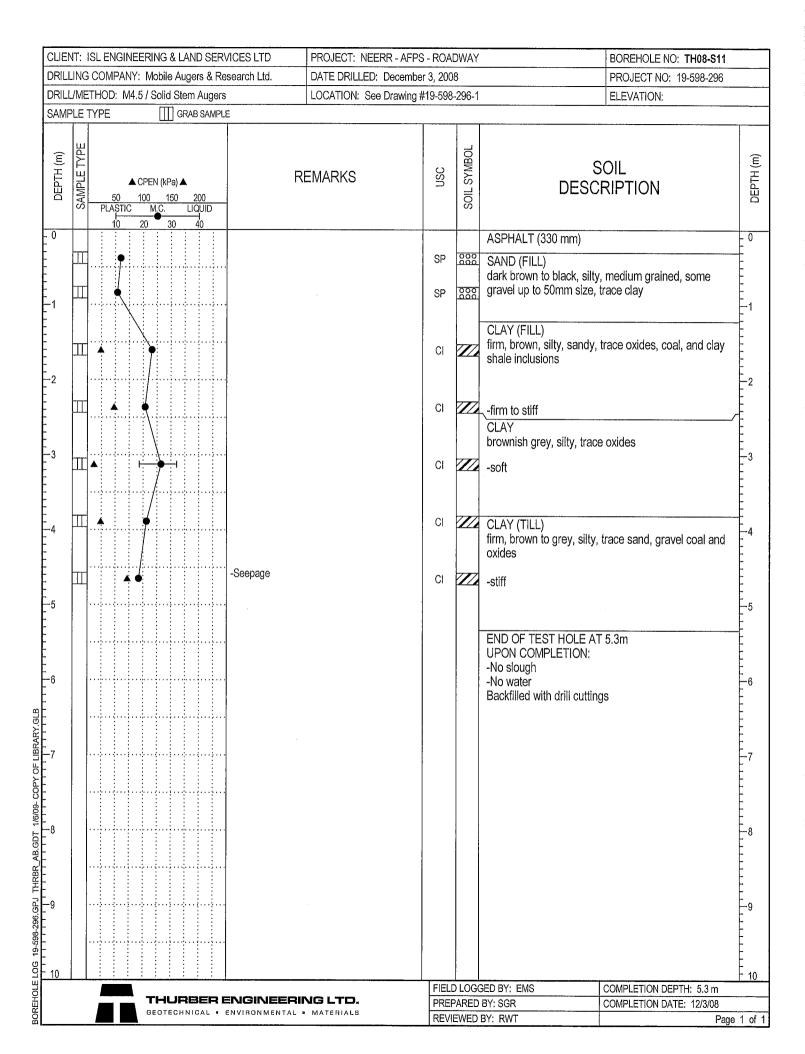



CLIE	NT:	ISL E	NG	INE	EF	RIN	G &	ιLΔ	ND) SEI	RVI	CES LTD	PROJE	ECT: NEERI	R - AFPS	- ROAE	WAY		BOREHOLE NO: TH08-S02	
DRIL	LING	G COI	viP/	١N	∕: N	Nob	oile	Auę	gers	s & F	Res	earch Ltd.	DATE	DRILLED: E	December	2, 2008	3		PROJECT NO: 19-598-296	
DRIL				M4	.57					· · ·			LOCA	TION: See D	Drawing #	19-598-	296-1		ELEVATION:	
SAM	PLE	TYPE	:			[\square	GR	AB	SAMF	PLE									
DEPTH (m)	SAMPLE TYPE	Pl	50 AST 10		100) M.C	150		_20 LIQI 4(UID		F	REMAR	RKS		NSC	SOIL SYMBOL		SOIL RIPTION	DEPTH (m)
- 0				:	-	-			-									_ASPHALT (165 mm)		<u>م</u>
	Ш																000	SAND (FILL) brown, fine to coarse gra \40mm size, trace clay an	ained, silty, some gravel up to ad coal	[
-1					\setminus											CI		CLAY (FILL) stiff, brown, silty, trace gr organics	· · · · · · · · · · · · · · · · · · ·	
	Ш															CI			wn, trace coal	:
2					4						•••					CI		-possible weathered bed	rock layer, trace marl	-2
3	II			T	•											Cl		CLAY (TILL) firm, brown, silty, some s coal, and clay shale inclu	and, trace oxides, gravel, isions	3
ļ	ĪĪ			A (•••					CI		-stiff		4
i	TT			A							•••					CI		-becomes greyish brown	, sandy	
6																		END OF TEST HOLE AT UPON COMPLETION: -No slough -No water Backfilled with drill cutting		6
7				·····		·····		,												- - - - - - -
8				· · · · · · · · · · · · · · · · · · ·																
9																				9
10						••••														- - - - 10
										EP	F	NGINEED	ING I .	то				GED BY: EMS	COMPLETION DEPTH: 5.3 m	
												VVIRONMENTAL						BY: SGR BY: RWT	COMPLETION DATE: 12/2/08	e 1 of
		_	_		•														LFay	

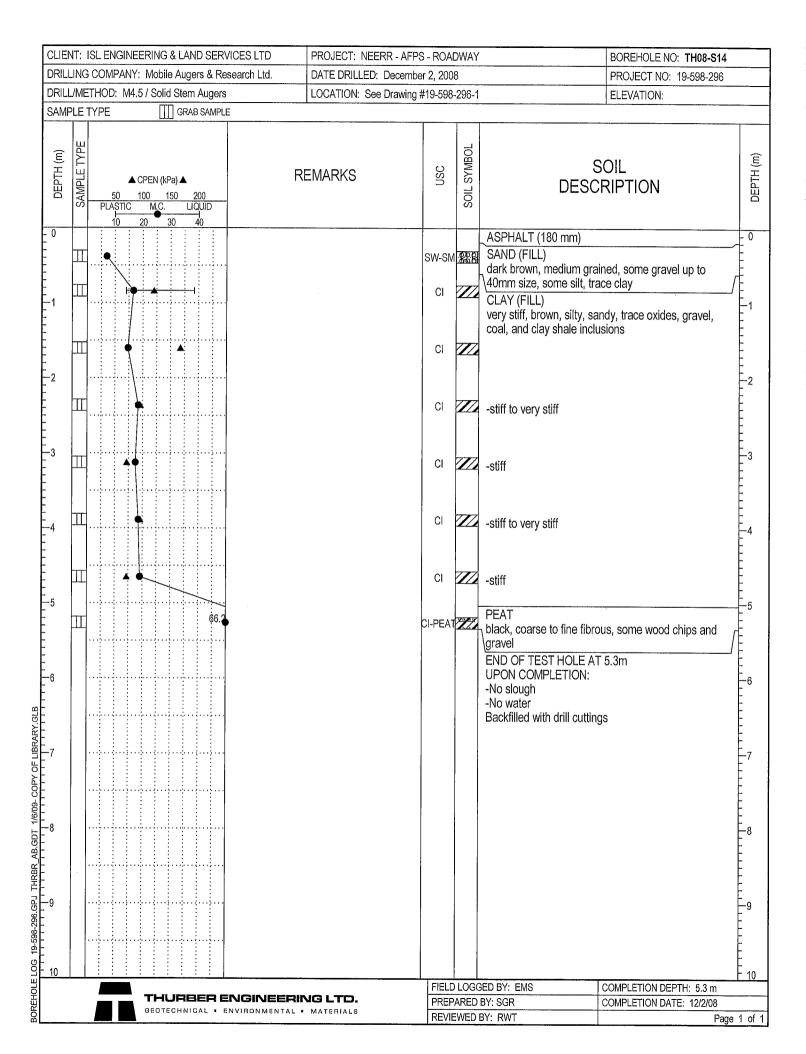

	- 0
SAMPLE TYPE SAMPLE TYPE CPEN (KPa) A SOIL DESCRIPT CPEN (KPa) A SOIL DESCRIPT CPEN (KPa) A SOIL DESCRIPT CPEN (KPa) A SOIL DESCRIPT CPEN (KPa) A CPEN (KPa) A SOIL DESCRIPT CPEN (KPa) A SOIL DESCRIPT	
Image: Solution of the server stiff grave silty trace	- 0
Image: Construction of the second	- 0
TOPSOIL (300 mm) black, organic, silty, trace rootlet CLAY (FILL) stiff to very stiff, grey, silty, trace	
L stiff to very stiff grey silty trace	
	oxides and gravel
CLAY (TILL) firm to stiff, brown, silty, trace gra oxides	
CI ZZ -stiff, trace bentonitic shale	-2
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	3
	- - 4 4
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	
END OF TEST HOLE AT 5.3m UPON COMPLETION: -No slough -No water Backfilled with drill cuttings	
	ETION DEPTH: 5.3 m ETION DATE: 11/26/08
GEOTECHNICAL • ENVIRONMENTAL • MATERIALS REVIEWED BY: RWT	Page 1 o

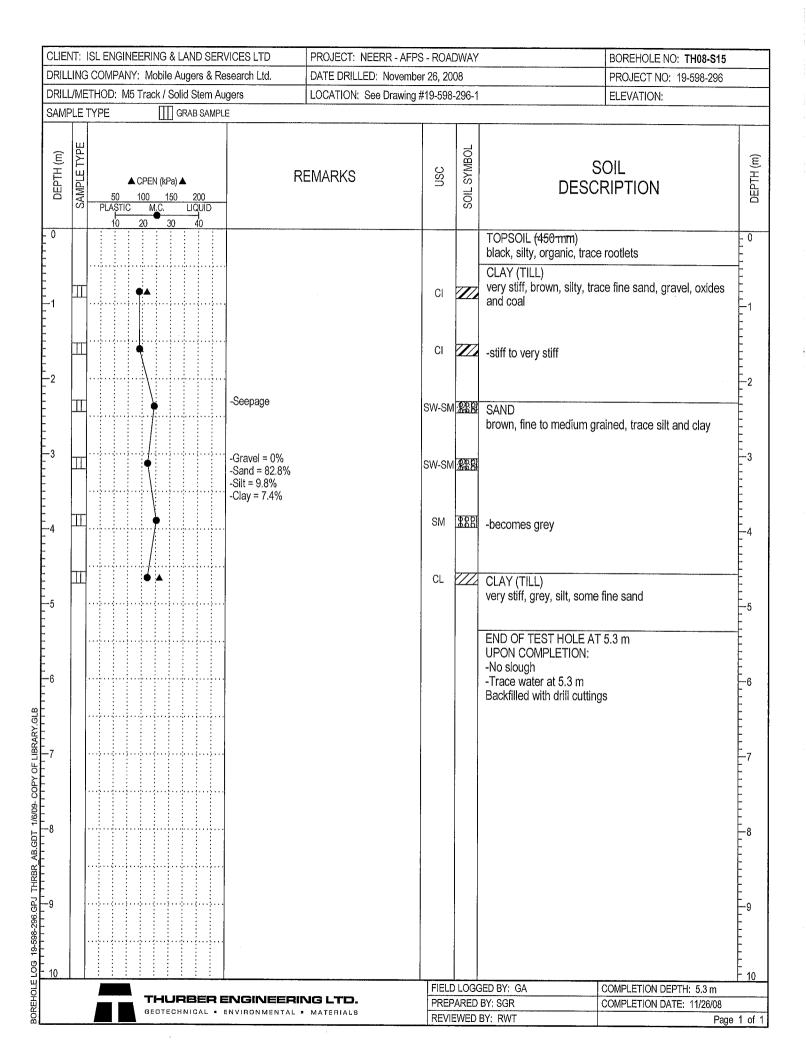

	NT: ISL ENGINEERING & LAND SERVICES LTD	PROJECT: NEERR - AFPS				BOREHOLE NO: TH08-S04	
	LING COMPANY: Mobile Augers & Research Ltd.	DATE DRILLED: Decembe				PROJECT NO: 19-598-296	
	L/METHOD: M4.5 / Solid Stem Augers	LOCATION: See Drawing	#19-598-	296-1		ELEVATION:	
SAMF	PLE TYPE III GRAB SAMPLE		1				
DEPTH (m)	H H H H H H H H H H H H H H H H H H H	REMARKS	nsc	SOIL SYMBOL		SOIL RIPTION	DEPTH (m)
			SW-SM		dark brown, silty, mediun	n grained, some gravel up to	
- - 			SW-SM	<u></u>	25 mm sizes, trace clay -becomes medium to coa 40mm size, trace clay	arse grained, gravel up to	- - 1 -
-2			CI		CLAY (TILL LIKE) very stiff, brown, silty, so oxides and coal	me sand, trace gravel,	2
			СІ		-Stiff		-
3 			СІ			and and coal, trace oxides,	
- -4 -			CI				-4
BOREHOLE LOG 19-588-296.GPJ THRBR, AB.GDT 1/6/09- COPY OF LIBRARY.GLB 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			CI		END OF TEST HOLE AT UPON COMPLETION: -No slough -No water Backfilled with drill cutting		
					GED BY: EMS	COMPLETION DEPTH: 4.6 m	
	GEOTECHNICAL • ENVIRONMENTAL				BY: SGR	COMPLETION DATE: 12/2/08	
<u>ش ا</u>				WED	BY: RWT	Page	e 1 of 1

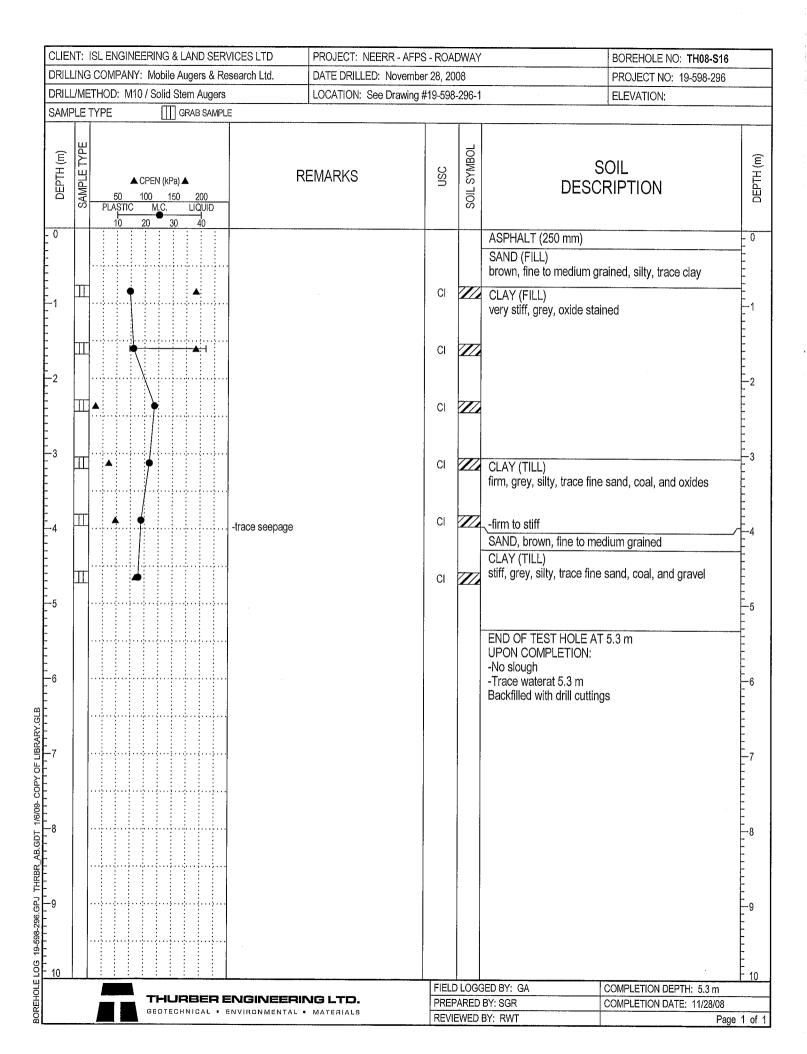

CLIE	NT:	IS	. E	NG	IN	EE	RI	NG	3 &	LA	١N) S	ER۱	VICES LTD		PRO	JECT: NEE	RR - AFPS	6 - ROAE	DWAY	·	BOREHOLE NO: TH08-SO	5
								_	_	_				esearch Ltd.			DRILLED:					PROJECT NO: 19-598-296	;
DRIL					M	5 T	rac							-		LOCA	ATION: See	Drawing #	¥19-598-	296-1		ELEVATION:	
SAM	эГЕ 	E TY	ΡE							GR	AB	SAM	MPL	Е т									
DEPTH (m)	CAMPIE TVDE		PL	50 AST 10		_1	00		150		2(LIQ	00 101D		-	R	EMAI	RKS		nsc	SOIL SYMBOL		SOIL CRIPTION	DEPTH (m)
0		 										· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·							אשא	TOPSOIL (300 mm) _black, silty, organic, trace CLAY (FILL) _brown - black, silty, trace		
1 1													,								Clacareous depositis	lack, clayey, some rootlets	
	Ι								•										CI		soft, light grey, silty, som	ne fine sand	
		Ц.,					/												СІ			and. gravel, oxides and cac	-2 -2
-3	I	Е		A	······································	· · · ·	(•••				•					CI		-firm to stiff		-3
-4	I	Е	4																CI		-firm		
-5	I	E 	A				•							•					CI				
-6				· · · · · · · · · · · · · · · · · · ·						······											END OF TEST HOLE A UPON COMPLETION: -No slough -No water Backfilled with drill cuttin		
7				· · · · · · · · · · · · · · · · · · ·																			- - - - - -
-8									·····														
9										······································	•••												
10																							- - - - 10
_	-	_					-	Ē		P	P	ĒF		ENGINEE			 'TC)				GED BY: GA	COMPLETION DEPTH: 5.3 m	
														ENVIRONMENT							BY: SGR BY: RWT	COMPLETION DATE: 11/26/08	age 1 of
																						L Pa	age i OT

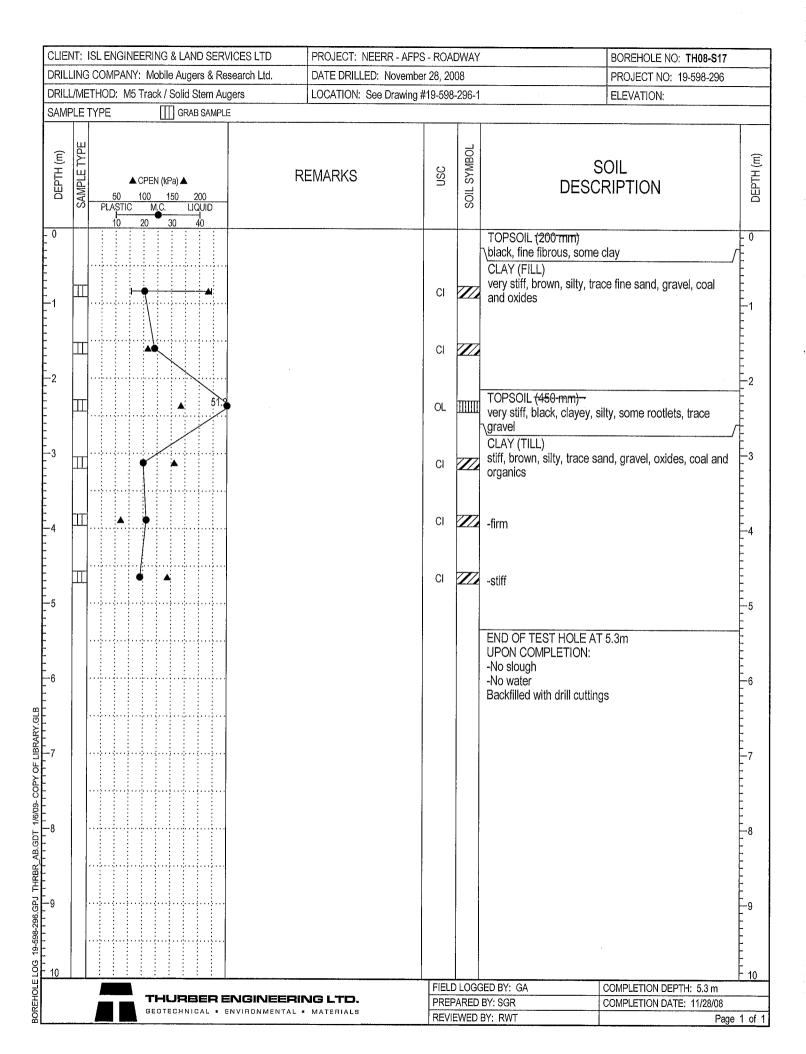


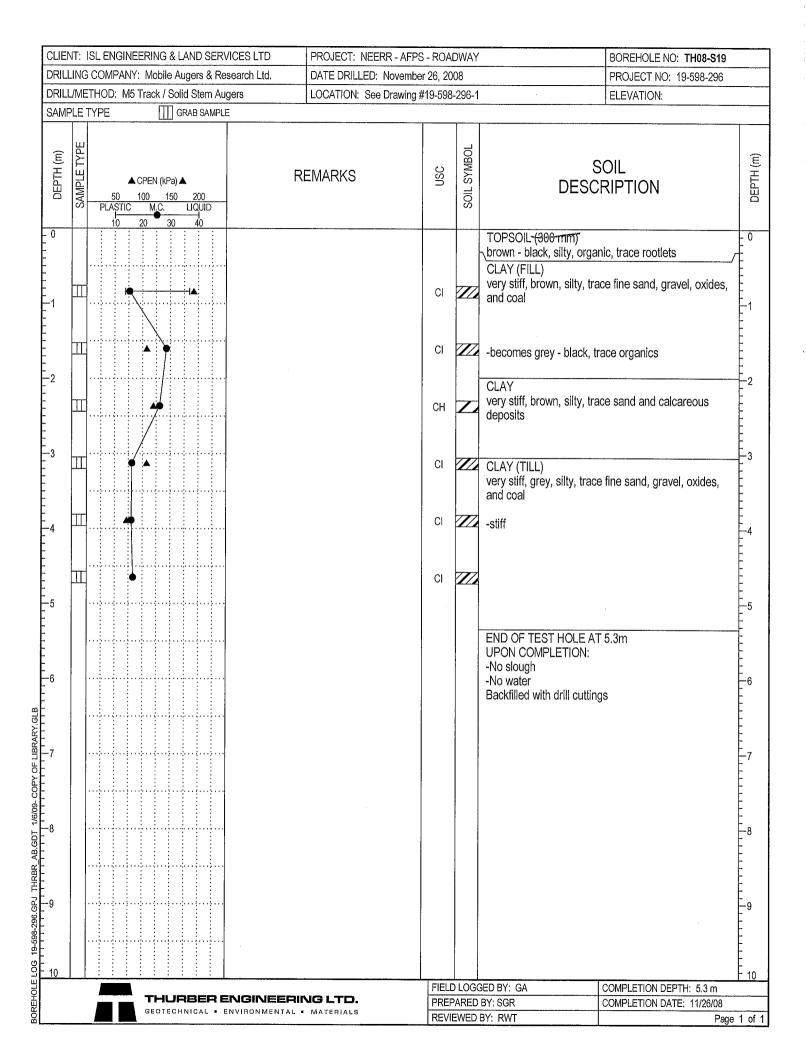


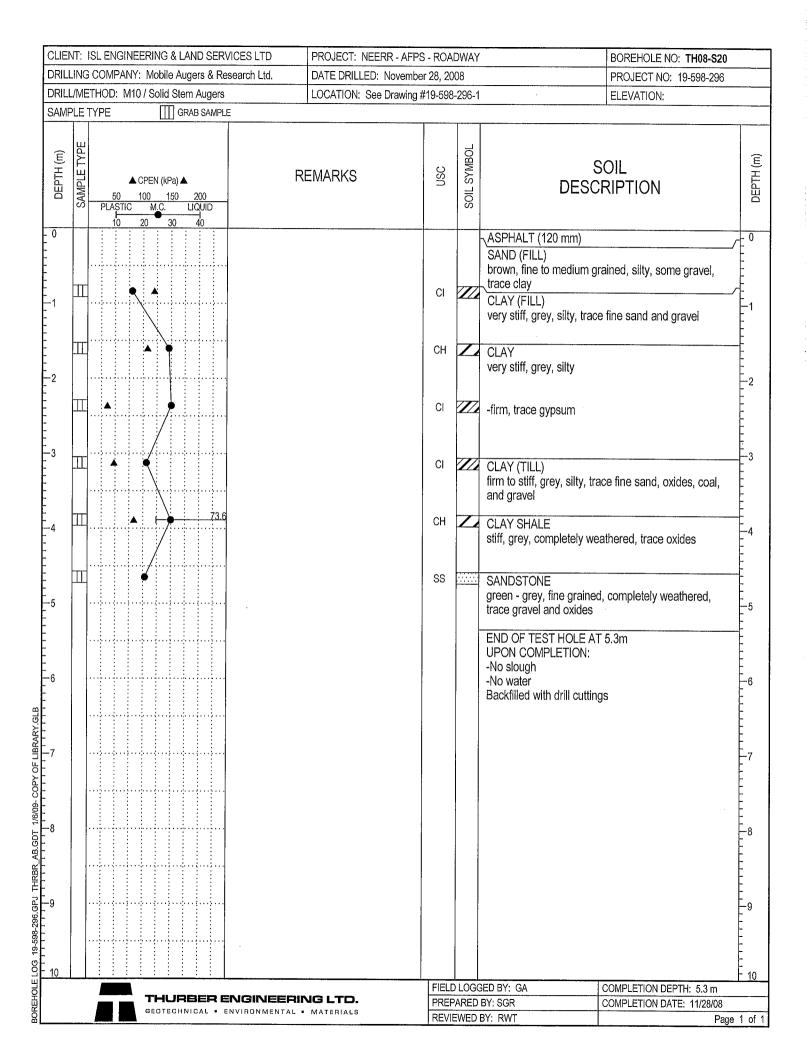




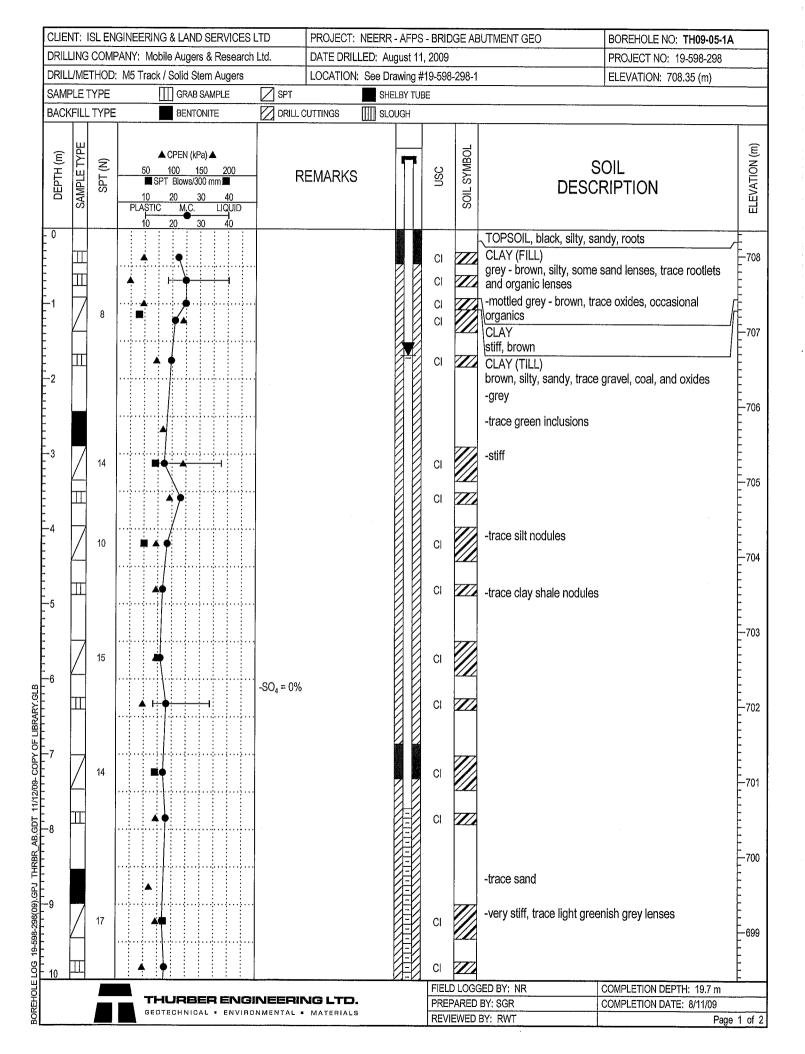


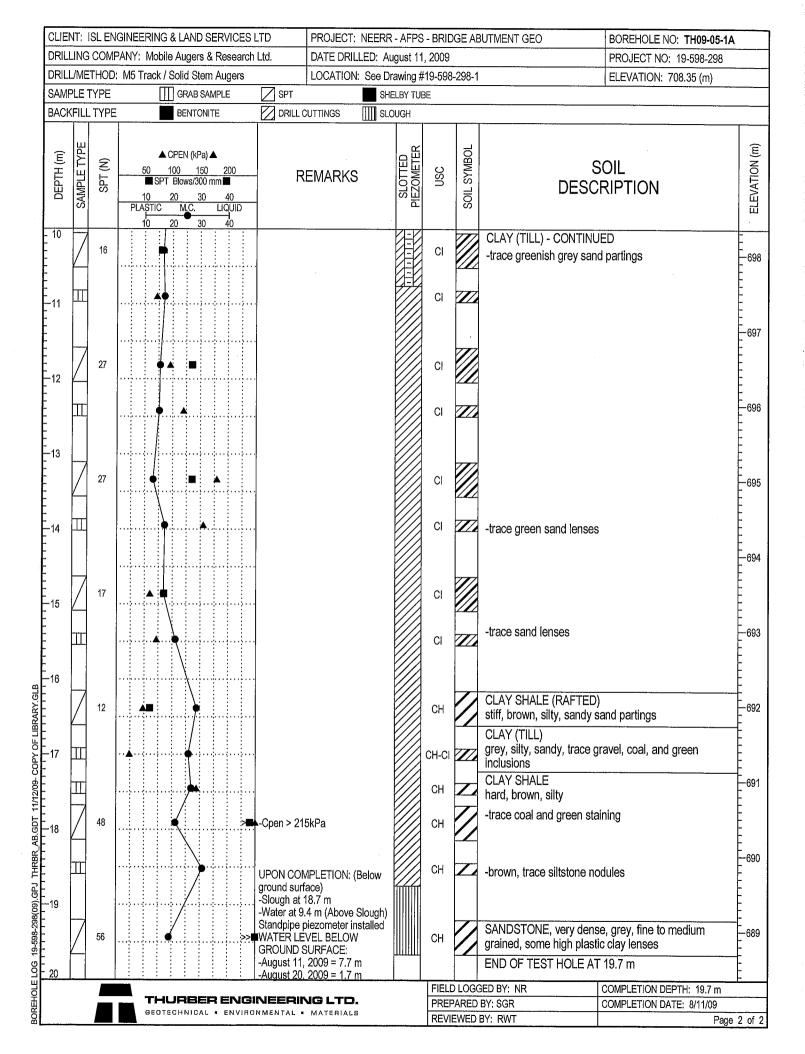


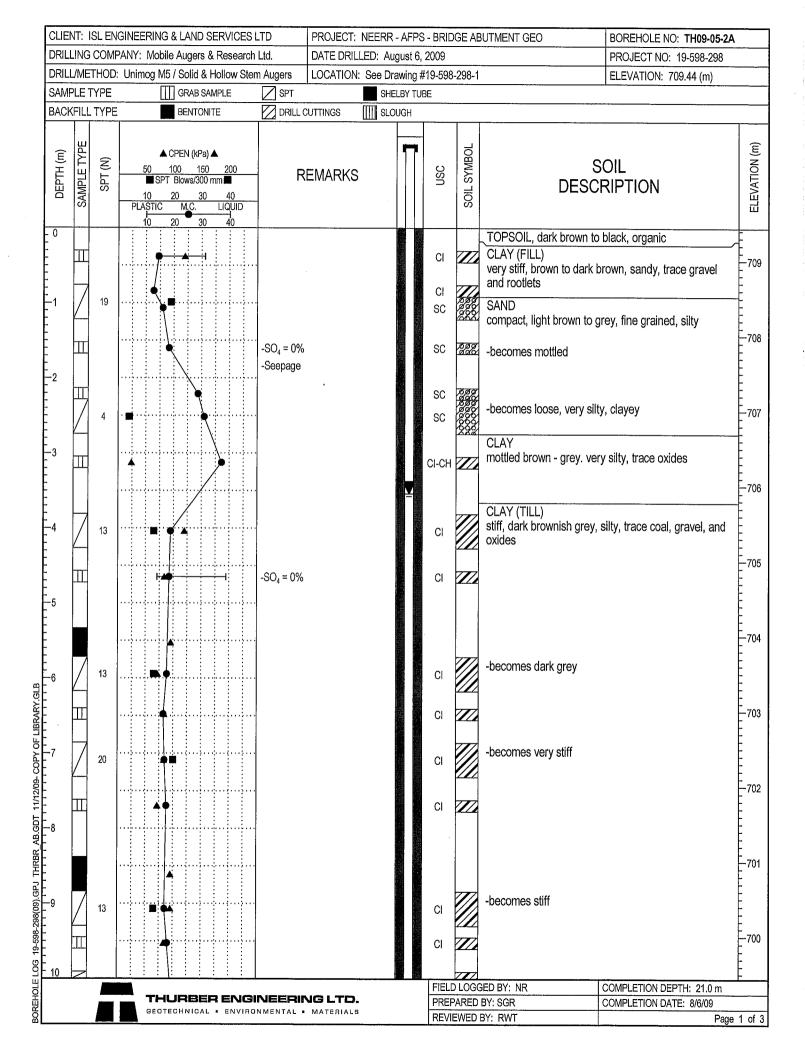


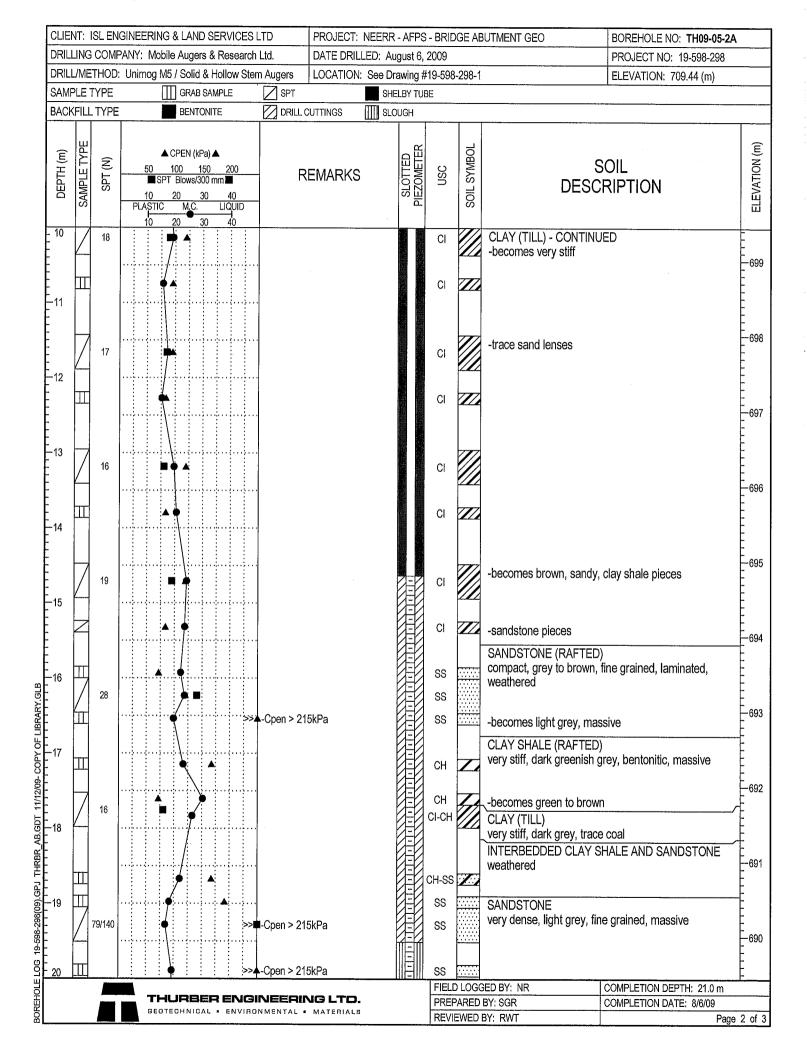


CLIE	NT:	ISL ENGINEERING & I	LAND SER\	/ICES LTD	PROJECT: NEER	R - AFPS - ROAL	WAY		BOREHOLE NO: TH08-S18	
		GCOMPANY: Mobile A			DATE DRILLED: D				PROJECT NO: 19-598-296	
	_	ETHOD: M4.5 / Solid S			LOCATION: See D	Drawing #19-598-	296-1		ELEVATION:	
SAM	PLE	TYPE 🛄 (GRAB SAMPLE	-			r	· · · · · · · · · · · · · · · · · · ·		
DEPTH (m)	CAMPIE TVDE	▲ CPEN (kPa) 50 100 150 PLASTIC M.C. 10 20 30		R	EMARKS	nsc	SOIL SYMBOL		SOIL RIPTION	DEPTH (m)
- 0								ASPHALT (300 mm)	·······	- 0
-	Π	•				SP		SAND (FILL)	· · · · · ·	-+-
-						SP	000	25 mm sizes, trace silt/cl	e grained, some gravel up to av	
							.000	\-becomes light brown, m CLAY (TILL)	•	/1-1 E
2	Π	•				CI		firm to stiff, brown, silty, s	sandy, trace gravel, oxides, s and marl	
-	I					CI				-2
-3	Π	•				CI		-stiff to very stiff		3
- - - - - - - - - - - - - - - - - - -	I		T			CI		-stiff		- - - - - 4
	I	•				CI		-stiff to very stiff		
1 1 1 1 1 1 6 6								END OF TEST HOLE AT UPON COMPLETION: -No slough -No water Backfilled with drill cutting		
		·····								- 7 7
										1 1 1 1 1
	1		<u>· · ·</u>	·····	····		LOG	GED BY: EMS	COMPLETION DEPTH: 5.3 m	<u> </u>
				ENGINEERIF		PREF	ARED	BY: SGR	COMPLETION DATE: 12/2/08	
2				LINVINUNMENTAL .	MATCHIALS	REVI	WED	BY: RWT	Page	e 1 of 1

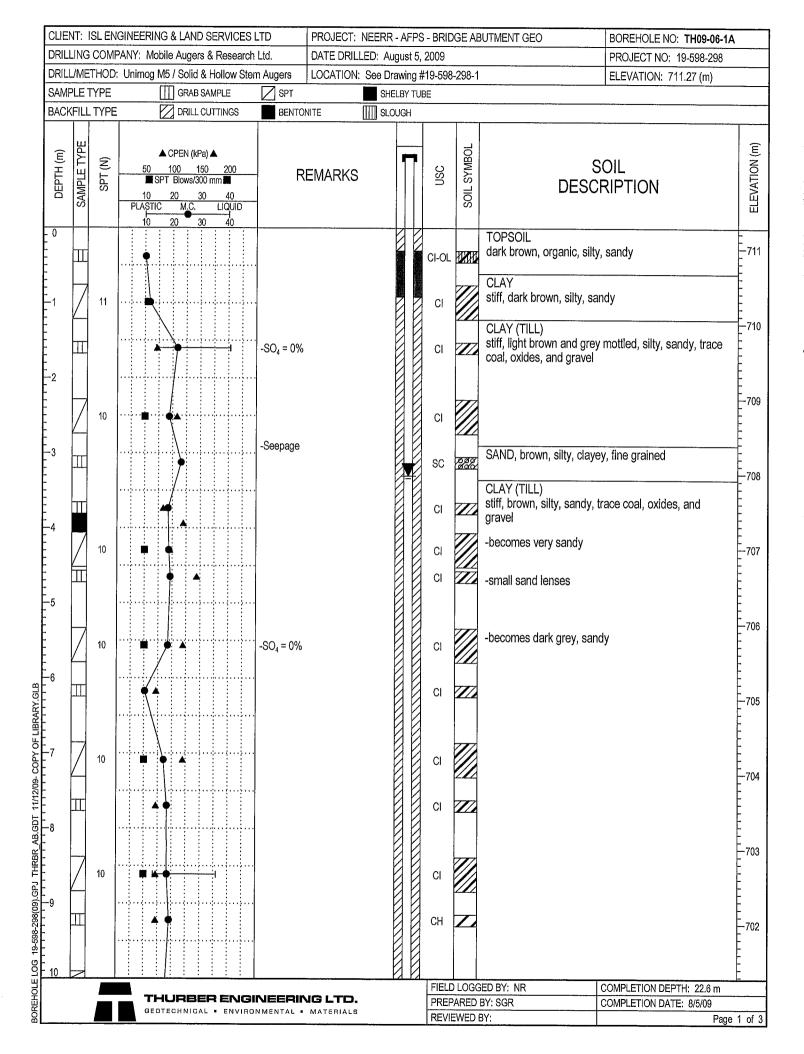


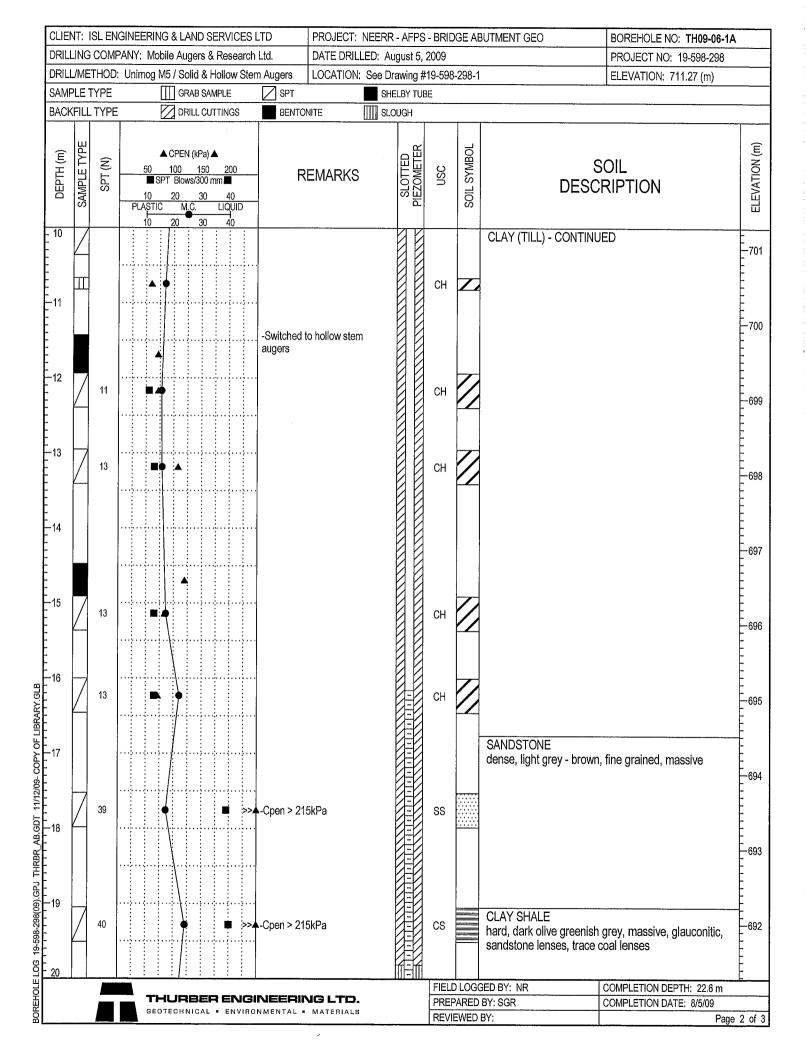

CLIE	ENT: ISL ENGINEERING & LAND SERVICES LTD	PROJECT: NEERR - AFPS	- ROAD	WAY	· · · · · · · · · · · · · · · · · · ·	BOREHOLE NO: TH08-S21	
DRIL	LLING COMPANY: Mobile Augers & Research Ltd.	DATE DRILLED: Decembe	r 2, 2008			PROJECT NO: 19-598-296	
DRIL	LL/METHOD: M4.5 / Solid Stem Augers	LOCATION: See Drawing #	¥19-598-2	296-1		ELEVATION:	
SAM	IPLE TYPE III GRAB SAMPLE						
DEPTH (m)	H H H H H H H H H H H H H H H H H H H	REMARKS	USC	SOIL SYMBOL		SOIL RIPTION	DFPTH (m)
0					ASPHALT (140 mm)		750
			SP	000	SAND (FILL) light brown, well graded, \25mm size, trace clay	silty, some gravel up to	
			CI		CLAY (FILL)	silty, sandy, trace gravel and	' -1
			CI			ome sand, trace oxides, marl, s	E
			CI				
			CI		CLAY (TILL) stiff to very stiff, brown, s oxides, coal, and sand p	silty, some sand, trace ockets	-3
			CI		-whitish brown mottling, s sandstone	silty, some weathered	-4 -4 -
			CI		-stiff		5
					END OF TEST HOLE AT UPON COMPLETION: -No slough -No water Backfilled with drill cutting		
							7
							1.1.1.1.1
							-8
							9
							1.1.1.1.1.1
0					GED BY: EMS	COMPLETION DEPTH: 5.3 m	<u> </u>
	THURBER ENGINEERI				BY: SGR	COMPLETION DATE: 12/2/08	
	GEOTECHNIGAL • ENVIRONMENTAL	MATERIALS			BY: RWT		1 of
_							


,

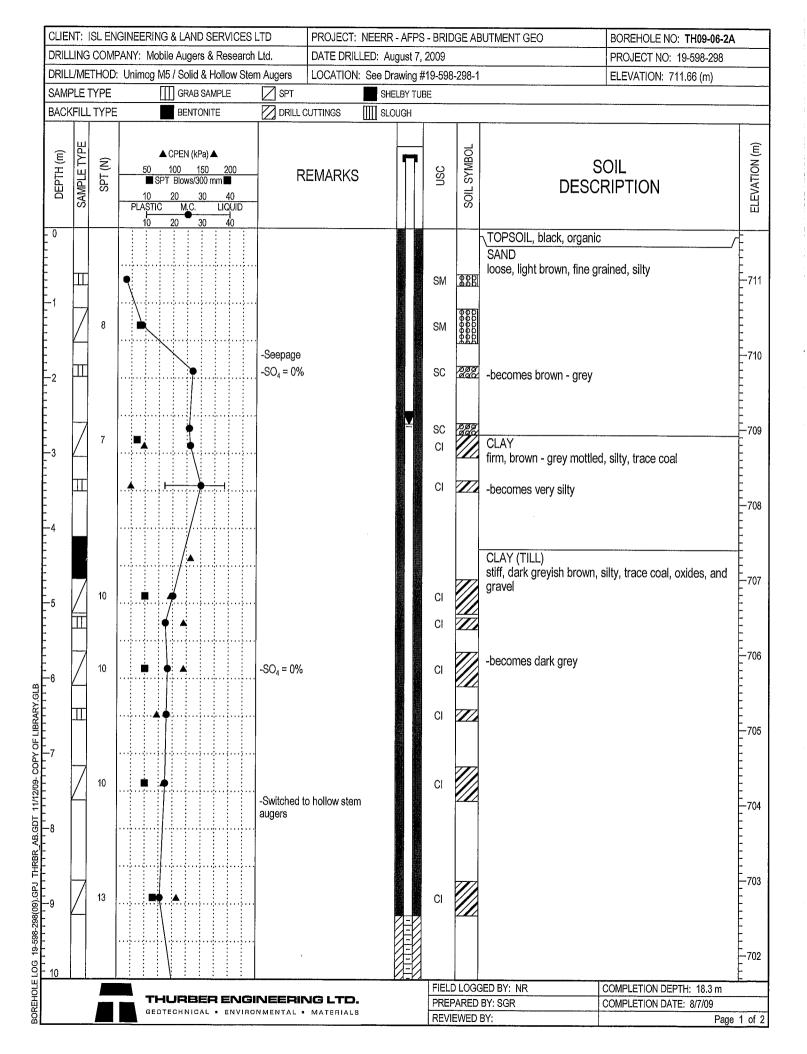

DATE DRILLED: December LOCATION: See Drawing				PROJECT NO: 19-598-296 ELEVATION:	
LOCATION: See Drawing	#19-598-	296-1		ELEVATION:	
					·
REMARKS	nsc	SOIL SYMBOL			DEPTH (m)
	-		ASPHALT (200 mm)		- 0
	SP	888	light brown, medium grai	ined, silty, some gravel up to	
	CI		CLAY (FILL) firm, dark brown, some s	and and gravel, trace oxides	
	CI			ace gravel and pebbles	
					-2
	CI		CLAY (TILL) stiff, brown, silty, sandy,	trace oxides, gravel, coal,	
	СІ		and clay shale inclusions	3	-3
	СІ		-some rafted coal		-4
	СІ		-very stiff		
			UPON COMPLETION: -No slough -No water		
	PREP/	ARED	BY: SGR	COMPLETION DEPTH: 5.3 m COMPLETION DATE: 12/2/08	<u>F 10</u>
	NG LTD.	SP CI CI CI CI CI CI FIELD FIELD FIELD	SP 3333 CI ZZZ CI ZZZ <t< td=""><td>SP ASPHALT (200 mm) SP SAND (FILL) light brown, medium grai 25mm size, trace clay CLAY (FILL) firm, dark brown, some s and coal CI ZZ CLAY (FILL) firm, dark brown, silty, tr CI ZZ CLAY (TILL) stiff, brown, silty, sandy, and clay shale inclusions CI ZZ CI ZZ CI ZZ CLAY (TILL) stiff, brown, silty, sandy, and clay shale inclusions CI ZZ CI ZZ CI ZZ CI ZZ Some rafted coal CI ZZ -very stiff END OF TEST HOLE AT UPON COMPLETION: -No slough -No water Backfilled with drill cutting HELD LOGGED BY: EMS NG LTD.</td><td>SP 255 SAND (FLL) light brown, medium grained, silty, some gravel up to 25mm size, trace clay CI 222 CLAY (FILL) firm, dark brown, some sand and gravel, trace oxides and coal CI 222 CLAY (FILL) stiff, brown, silty, trace gravel and pebbles CI 222 CLAY (TILL) stiff, brown, silty, sandy, trace oxides, gravel, coal, and clay shale inclusions CI 222 CLAY (TILL) stiff, brown, silty, sandy, trace oxides, gravel, coal, and clay shale inclusions CI 222 -very stiff CI 222 -some rafted coal CI 222 -very stiff END OF TEST HOLE AT 5.3m UPON COMPLETION: -No slough -No water Backfilled with drill outtings Backfilled with drill outtings PREPARED BY: SGR COMPLETION DEPTH: 5.3 m COMPLETION DEPTH: 5.3 m</td></t<>	SP ASPHALT (200 mm) SP SAND (FILL) light brown, medium grai 25mm size, trace clay CLAY (FILL) firm, dark brown, some s and coal CI ZZ CLAY (FILL) firm, dark brown, silty, tr CI ZZ CLAY (TILL) stiff, brown, silty, sandy, and clay shale inclusions CI ZZ CI ZZ CI ZZ CLAY (TILL) stiff, brown, silty, sandy, and clay shale inclusions CI ZZ CI ZZ CI ZZ CI ZZ Some rafted coal CI ZZ -very stiff END OF TEST HOLE AT UPON COMPLETION: -No slough -No water Backfilled with drill cutting HELD LOGGED BY: EMS NG LTD.	SP 255 SAND (FLL) light brown, medium grained, silty, some gravel up to 25mm size, trace clay CI 222 CLAY (FILL) firm, dark brown, some sand and gravel, trace oxides and coal CI 222 CLAY (FILL) stiff, brown, silty, trace gravel and pebbles CI 222 CLAY (TILL) stiff, brown, silty, sandy, trace oxides, gravel, coal, and clay shale inclusions CI 222 CLAY (TILL) stiff, brown, silty, sandy, trace oxides, gravel, coal, and clay shale inclusions CI 222 -very stiff CI 222 -some rafted coal CI 222 -very stiff END OF TEST HOLE AT 5.3m UPON COMPLETION: -No slough -No water Backfilled with drill outtings Backfilled with drill outtings PREPARED BY: SGR COMPLETION DEPTH: 5.3 m COMPLETION DEPTH: 5.3 m

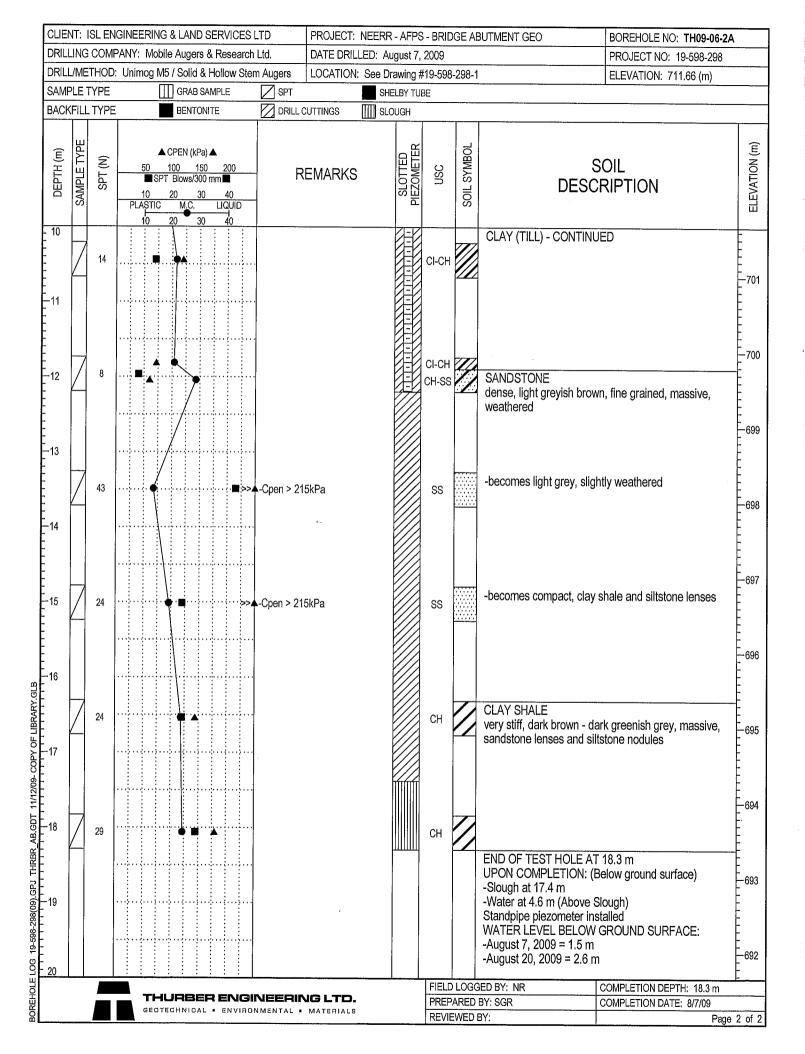
•

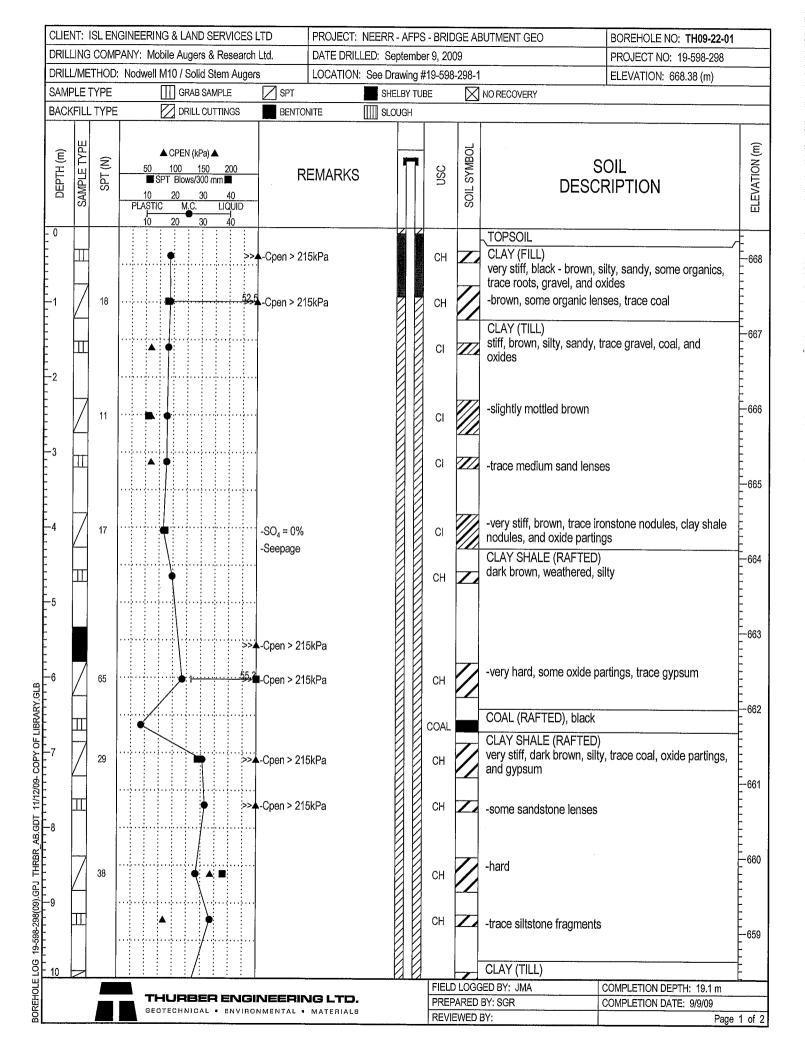


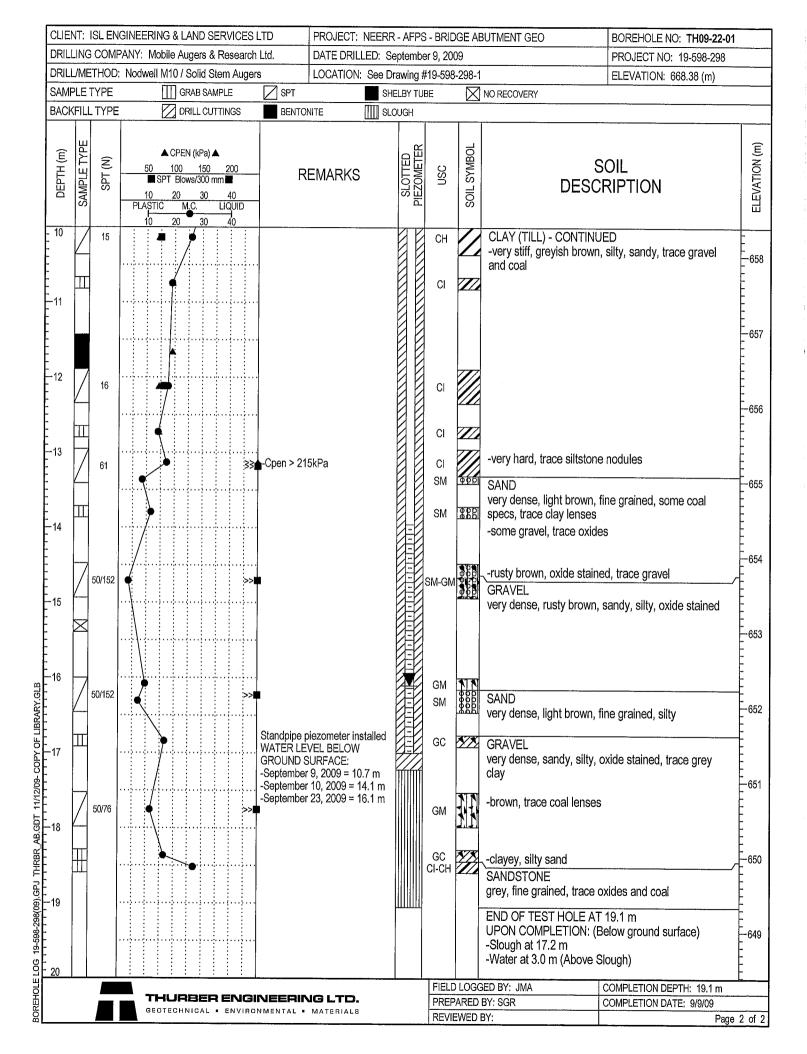


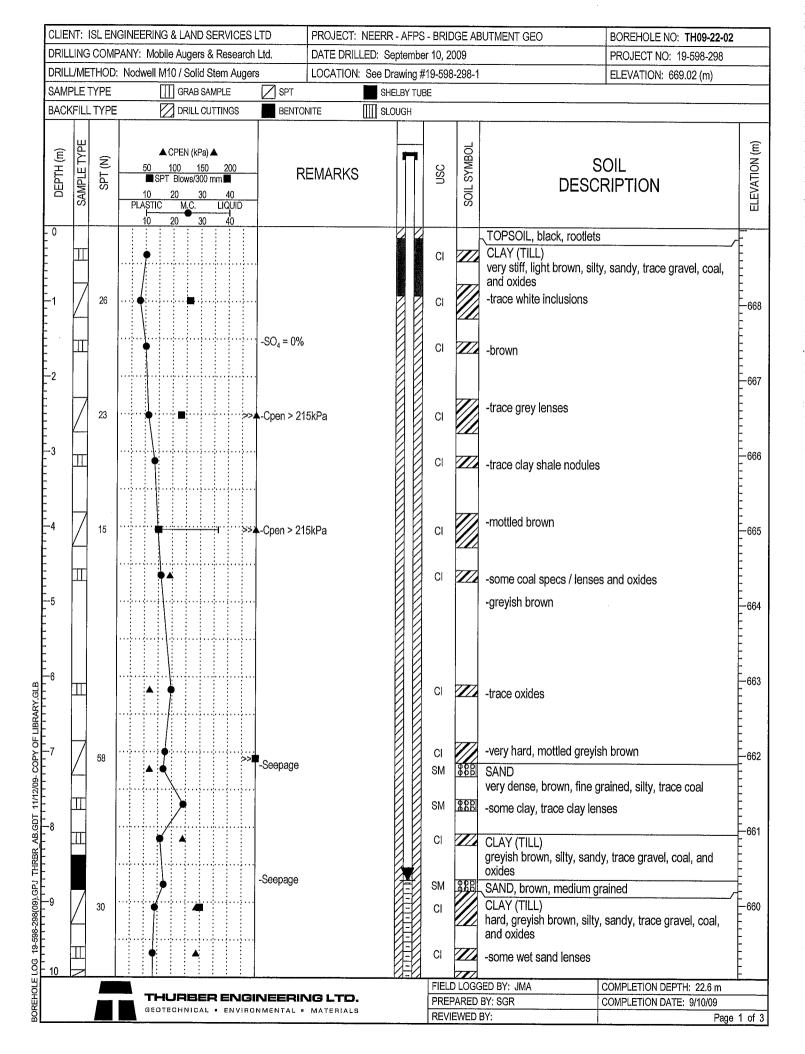
		SL EN																					GE AI	BUTMENT GEO	BOREHOLE NO: TH09	-05-2A	
		COM						-												gust 6					PROJECT NO: 19-598-		
SAMP			: Ur	limo	og P	//5					llov LE	v Ste		Auger SP		LOC	CATI	ON:	 	awing			298-1		ELEVATION: 709.44 (n	ר)	
		TYPE					_	ENT								CUTTIN				LBY TU	JBF						
	SAMPLE TYPE	SPT (N)		5 1 1 2LAS) ∎Si)	1 PT	PE 00 Blo	N (k	(Pa) <u>150</u> 300 30	mm	200 1 40 1QL					EM/				SLOTTED SLOTTED		USC	SOIL SYMBOL		SOIL RIPTION		
20				1)		20		30		40								 					SANDSTONE - CONTIN	IUED		
21 22 23		75						· · · · · · · · · · · · · · · · · · ·				×	>]	Cpen	> 21	15kPa	I				T St	S-CH		END OF TEST HOLE A UPON COMPLETION: (-Slough at 19.5 m -Water at 8.2 m (Above Standpipe piezometer in WATER LEVEL BELOW -August 6, 2009 = 14.6 r -August 20, 2009 = 3.5 r	Below ground surface) Slough) stalled / GROUND SURFACE: n		
24 25													•••														
26							• • •																				
7							• • • •						· ·														
9 0										·····		······	•														
0																NG								GED BY: NR BY: SGR	COMPLETION DEPTH: 21. COMPLETION DATE: 8/6/0		-
				G	160	TE	СНІ	110	AL	•	ΕN	VIR	ONM	IENTA	↓ ∟ ∎	ΜΑΤ	i e ri i	ALS			- H-	-		BY: RWT		Page	3

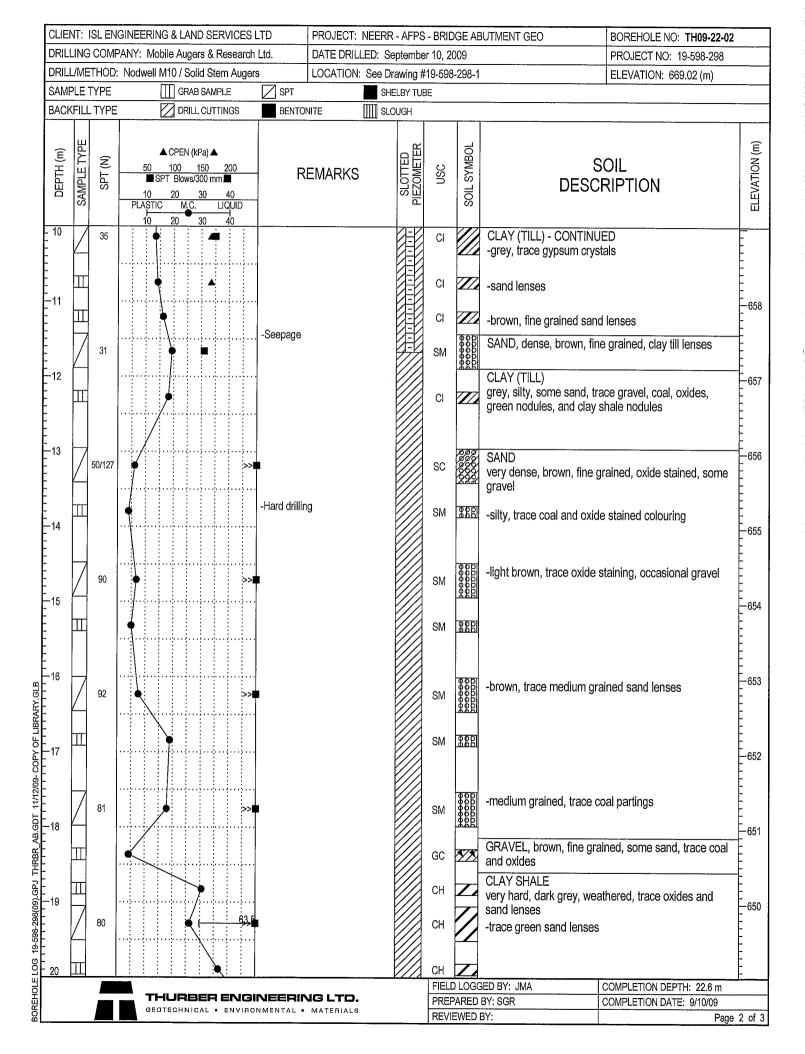

,






			*****					-											GE AI	BUTMENT GEO	BOREHOLE NO: TH09-06-1	A
		COM						-					_ta. Augers			LED: Au : See Dr			208-1		PROJECT NO: 19-598-298 ELEVATION: 711.27 (m)	
	-	TYPE								APLE		1	SPT				ELBY TU		200-1			••••••
ACKI	FILL	. TYPE	:			Z		RILL	.CU	TTIN	GS		BENTO	ONITE		SLC						
	SAMPLE TYPE	SPT (N)		1 PLA	50 🔳 S	1 PT	1 <u>00</u> Blov 20	1.C.		2 nm II LIC	00 0 0 0		F	REMA	.RKS		SLOTTED PIEZOMETER	nsc	SOIL SYMBOL	DESC	SOIL CRIPTION	
0																				CLAY SHALE - CONTIN	VUED	
	2	35			• • • •		•	····			^	»> .	-Cpen > 2	:15kPa				SS		SANDSTONE dense, dark grey, fine g	rained, massive	
					••••			*														
ļ	Ζ	39						r			>	·	-Cpen > 2	15kPa				CS		CLAY SHALE, hard, dar missive, trace coal spec END OF TEST HOLE A		
									•											UPON COMPLETION: (-Slough at 19.8 m -Water at 17.7 m (Above Standpipe piezometer in WATER LEVEL BELOW	(Below ground surface) e Slough) nstalled V GROUND SURFACE:	
									· · · · ·											-August 5, 2009 = 10.5 -August 20, 2009 = 3.3	m	
					••••			• • •														
					,	••••																
			,									• •										
					• • • •																	
										• • •												
3																		-				<u> </u>
					┲┢		JR	B	EF	E	NC	JIF	JEERII	NGL	тο.					BED BY: NR	COMPLETION DEPTH: 22.6 m	
													MENTAL					REVIE		BY: SGR	COMPLETION DATE: 8/5/09	e 3


ł



		ISL EN																					BUTMENT GEO	BO	REHOLE NO: THO	9-22-02	
		COM				_	_									TE DR			·						OJECT NO: 19-59		
		THOD TYPE	NC	dw					d S SAM			iger	******	PT	LOC	CATIO	N: Se				98-	298-1		EL	EVATION: 669.02	(m)	
<u> </u>									CU					ENTO				SHE SLO	LBY TU	JBE							
DEPTH (m)	SAMPLE TYPE	SPT (N)		11 PLAS		▲ C 1(PT 2	PEN 00 Blow 0 M	V (kF 1 vs/30 .C.	Pa) 4 50 00 m 30	≥ nm∎ LIC	200 40 201E					ARK			SLOTTED SLOTTED	nsc		SOIL SYMBOL	DESC	301L RIP			EI EVATION (m)
20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -29 -29 -30		61)							50.								С+ С+	1		CLAY SHALE - CONTIN -bentonitic light greenish -dark brown - brown, sou -dark grey, occasional be -silty, trace light brown s END OF TEST HOLE A UPON COMPLETION: (-Slough at 21.0 m -Water at 20.7 m Standpipe piezometer in WATER LEVEL BELOW -September 10, 2009 = 1 -September 23, 2009 = 8	grey me co entoni ilt incl T 22.6 Below stallec GRC Dry	lenses pal partings itic inclusions usions m ground surface)		641
30													NEE							PR	ΞPA	RED	SED BY: JMA BY: SGR		PLETION DEPTH: 2: PLETION DATE: 9/1	0/09	
				L G	-0	. 24	- 1 IN	ιüβ		- E	IN V	nul	VIVIE IN F	AL .	IVI A T	CHIAL	. 0			RE	VIE	WED	BY:			Page	3 of

,

APPENDIX C

Laboratory Test Results

TEST HOLE	DEPTH (m)	LIQUID LIMIT	PLASTIC LIMIT	PLASTIC INDEX	FIELD MOISTURE	M.C. ABOVE OPT.	LIQUID INDEX	EST. OPT. MOISTURE	EST. MAX DENSITY	SOIL CLASS	POTENTIAL FROST ACTION	EST. EROSION RESISTANCE
TH08-01-1	0.8	35.3	13.8	21.5	15.8	1.8	0.1	14.0	1845	CI Till	low to medium	fair to poor
TH08-01-1	29.7	84.2	22.4	61.8	30.3	6.6	0.1	23.7	1562	CH Shale	very low	fair
TH08-01-2	3.8	32.6	13.8	18.8	14.9	1.4	0.1	13.5	1859	CI Till	low to medium	fair to poor
TH08-01-2	16.0	33.0	12.3	20.7	16.1	3.6	0.2	12.5	1910	CI Till	low to medium	fair to poor
TH08-02-1	0.8	38.3	15.9	22.4	16.3	0.2	0.0	16.1	1768	CI (FILL)	low to medium	fair to poor
TH08-02-2	0.8	38.7	15.0	23.7	15.6	0.1	0.0	15.5	1794	CI (FILL)	low to medium	fair to poor
TH08-02-2	6.1	36.3	13.4	22.9	17.1	3.2	0.2	13.9	1853	CI Till	low to medium	fair to poor
TH08-02-2	25.1	73.7	19.6	54.1	23.1	1.7	0.1	21.4	1626	CH Shale	very low	fair
TH08-03-1	2.7	34.6	14.2	20.4	19.3	5.1	0.3	14.2	1835	CI Till	low to medium	fair to poor
TH08-03-1	5.8	32.2	12.4	19.8	16.5	4.1	0.2	12.4	1912	CI Till	low to medium	fair to poor
TH08-03-2	3.8	39.0	13.8	25.2	22.0	7.4	0.3	14.6	1829	CI Till	low to medium	fair to poor
TH08-03-2	17.5	37.5	13.6	23.9	30.4	16.2	0.7	14.2	1841	CH Shale	very low	fair

TABLE C-1 SUMMARY OF THE ATTERBERG LIMIT TESTS ALONG THE HWY 216 & HWY 16 CORRIDORS OF THE NEERR

TEST HOLE	DEPTH (m)	Liquid Limit	PLASTIC LIMIT	PLASTIC INDEX	FIELD MOISTURE	M.C. ABOVE OPT.	LIQUID INDEX	EST. OPT. MOISTURE	EST. MAX DENSITY	SOIL CLASS	POTENTIAL FROST ACTION	EST. EROSION RESISTANCE
TH08-04-1	2.6	37.8	15.2	22.6	18.7	3.2	0.2	15.5	1790	CI Till	low to medium	fair to poor
TH08-04-1	11.4	35.7	13.9	21.8	19.0	4.8	0.2	14.2	1840	CI Till	low to medium	fair to poor
TH08-04-2	1.5	36.8	17.5	19.3	19.7	2.4	0.1	17.3	1723	CI (FILL)	low to medium	fair to poor
TH08-04-2	4.6	38.9	13.4	25.5	19.3	5.0	0.2	14.3	1841	CI Till	low to medium	fair to poor
TH08-05-01	8.7	35.6	14.3	21.3	18.5	4.1	0.2	14.4	1827	CI Till	low to medium	fair to poor
TH08-05-01	19.1	76.1	26.1	50.0	25.8	-1.0	0.0	26.8	1486	CH Shale	very low	fair
TH08-05-02	0.8	34.7	13.1	21.6	17.0	3.6	0.2	13.4	1871	CI Till	low to medium	fair to poor
TH08-05-02	3.8	32.4	12.7	19.7	18.7	6.0	0.3	12.7	1900	CI Till	low to medium	fair to poor
TH08-06-01	0.8	40.0	13.7	26.3	19.2	4.5	0.2	14.7	1828	CI (FILL)	low to medium	fair to poor
TH08-06-01	5.3	26.0	12.7	13.3	16.3	5.1	0.3	11.2	1958	CL Till	medium to very high	poor
TH08-07-01	0.8	36.1	13.7	22.4	17.9	3.8	0.2	14.1	1844	CI (FILL)	low to medium	fair to poor
TH08-07-01	8.4	36.6	12.7	23.9	20.4	7.0	0.3	13.4	1874	CI Till	low to medium	fair to poor
TH08-07-02	0.8	35.1	14.2	20.9	21.7	7.4	0.4	14.3	1833	CI Till	low to medium	fair to poor
TH08-07-02	16.0	84.7	29.0	55.7	34.7	5.1	0.1	29.6	1424	CH Shale	very low	fair

TABLE C-1 (Continued) SUMMARY OF THE ATTERBERG LIMIT TESTS ALONG THE HWY 216 & HWY 16 CORRIDORS OF THE NEERR

TEST HOLE	DEPTH (m)	Liquid Limit	PLASTIC LIMIT	PLASTIC INDEX	FIELD MOISTURE	M.C. ABOVE OPT.	LIQUID INDEX	EST. OPT. MOISTURE	EST. MAX DENSITY	SOIL CLASS	POTENTIAL FROST ACTION	EST. EROSION RESISTANCE
TH08-08-01	19.1	64.8	20.2	44.6	23.9	2.4	0.1	21.5	1619	CH Shale	very low	fair
TH08-08-02	2.3	31.0	12.9	18.1	18.5	6.0	0.3	12.5	1902	CI Till	low to medium	fair to poor
TH08-08-02	8.4	37.5	12.8	24.7	18.2	4.5	0.2	13.7	1866	CI Till	low to medium	fair to poor
TH08-12-01	3.8	46.7	16.8	29.9	14.5	-3.3	-0.1	17.8	1723	CI (FILL)	low to medium	fair to poor
TH08-12-01	11.4	61.9	21.3	40.6	21.8	-0.5	0.0	22.3	1596	CH Shale	very low	fair
TH08-12-01	14.5	51.5	16.0	35.5	18.3	0.7	0.1	17.6	1734	CI Till	low to medium	fair to poor
TH08-12-02	2.7	51.6	17.6	34.0	22.8	4.0	0.2	18.8	1694	CH (FILL)	very low	fair
TH08-12-02	16.0	32.0	12.4	19.6	17.8	5.4	0.3	12.4	1914	CI Till	low to medium	fair to poor
TH08-14-01	13.0	49.0	16.4	32.6	20.6	2.9	0.1	17.7	1729	CH Till	very low	fair
TH08-14-02	2.3	37.5	14.1	23.4	18.2	3.6	0.2	14.6	1826	CI (FILL)	low to medium	fair to poor
TH08-14-02	11.9	44.0	15.6	28.4	17.9	1.3	0.1	16.6	1761	CI Till	low to medium	fair to poor
TH08-15-01	11.4	53.5	21.8	31.7	16.6	-5.9	-0.2	22.5	1589	CH Shale	very low	fair
TH08-16-01	8.9	43.2	15.8	27.4	16.3	-0.3	0.0	16.6	1757	CI (FILL)	low to medium	fair to poor
TH08-16-01	10.2	67.5	24.1	43.4	29.7	4.8	0.1	24.9	1530	CH (FILL)	very low	fair
TH08-16-01	14.5	103.1	30.4	72.7	35.7	5.2	0.1	30.5	1397	CH Shale	very low	fair
TH08-16-02	7.3	35.6	14.0	21.6	13.4	-0.8	0.0	14.2	1837	CI (FILL)	low to medium	fair to poor

TABLE C-1 (Continued) SUMMARY OF THE ATTERBERG LIMIT TESTS ALONG THE HWY 216 & HWY 16 CORRIDORS OF THE NEERR (CONT'D)

TEST HOLE	DEPTH (m)	LIQUID LIMIT	PLASTIC LIMIT	PLASTIC INDEX	FIELD MOISTURE	M.C. ABOVE OPT.	LIQUID INDEX	EST. OPT. MOISTURE	EST. MAX DENSITY	SOIL CLASS	POTENTIAL FROST ACTION	EST. EROSION RESISTANCE
TH08-17-01	9.9	43.6	15.0	28.6	19.9	3.8	0.2	16.1	1779	CI Till	low to medium	fair to poor
TH08-18-01	2.7	33.8	14.1	19.7	16.2	2.2	0.1	14.0	1842	CI Till	low to medium	fair to poor
TH08-18-01	13.0	50.6	16.0	34.6	17.9	0.4	0.1	17.5	1736	CH Till	very low	fair
TH08-18-02	13.0	49.0	14.5	34.5	21.0	4.7	0.2	16.3	1777	CI Till	low to medium	fair to poor
TH08-18-02	16.0	81.5	22.6	58.9	24.0	0.2	0.0	23.8	1559	CH Shale	very low	fair
TH08-19-02	5.7	43.3	14.1	29.2	19.3	3.9	0.2	15.4	1804	CI Till	low to medium	fair to poor
TH08-20-01	5.9	44.0	20.4	23.6	20.1	-0.6	0.0	20.7	1631	CI Till	low to medium	fair to poor
TH08-20-01	13.0	89.1	28.9	60.2	29.4	0.0	0.0	29.4	1426	CH Shale	very low	fair
TH08-20-02	5.9	44.0	20.4	23.6	20.1	-0.6	0.0	20.7	1631	CI Till	low to medium	fair to poor
TH08-20-02	9.9	46.1	15.3	30.8	20.7	4.1	0.2	16.6	1764	CI Till	low to medium	fair to poor
TH08-21-02	3.0	46.8	17.5	29.3	22.0	3.7	0.2	18.3	1704	CI (FILL)	low to medium	fair to poor
TH08-21-02	11.8	32.4	13.4	19.0	16.3	3.1	0.2	13.2	1874	CI Till	low to medium	fair to poor
TH08-22-01	0.8	54.4	19.5	34.9	11.9	-8.6	-0.2	20.5	1644	CH Clay	very low	fair
TH08-22-02	7.1	58.8	24.4	34.4	23.4	-1.7	0.0	25.1	1525	CH Shale	very low	fair

TABLE C-1 (Continued) SUMMARY OF THE ATTERBERG LIMIT TESTS ALONG THE HWY 216 & HWY 16 CORRIDORS OF THE NEERR

		SUMMA	RY OF THE	ATTERBER	G LIMIT TEST	S ALONG	THE HWY	216 & HWY 16	CORRIDOR	S OF THE N	EERR	
TEST HOLE	DEPTH (m)	liquid Limit	PLASTIC LIMIT	PLASTIC INDEX	FIELD MOISTURE	M.C. ABOVE OPT.	LIQUID INDEX	EST. OPT. MOISTURE	EST. MAX DENSITY	SOIL CLASS	POTENTIAL FROST ACTION	EST. EROSION RESISTANCE
TH08-23-01	2.7	59.1	21.2	37.9	21.9	-0.2	0.0	22.1	1600	CH Clay Shale	very low	fair
TH08-23-01	8.4	51.0	15.8	35.2	16.5	-0.9	0.0	17.4	1740	CH Till	very low	fair
TH08-23-02	0.8	48.3	14.7	33.6	22.3	5.9	0.2	16.4	1774	CI Fill	low to medium	fair to poor
TH08-24-01	2.7	34.2	13.6	20.6	16.7	3.0	0.2	13.7	1857	CI Till	low to medium	fair to poor
TH08-24-02	0.8	47.6	18.3	29.3	19.5	0.5	0.0	19.0	1682	CI Clay	low to medium	fair to poor

0.0

0.1

-0.1

0.6

0.0

0.1

-0.1

0.2

0.2

15.3

12.8

26.3

21.1

16.2

13.9

26.3

13.2

14.9

1797

1888

1497

1630

1770

1849

1500

1877

1818

CI Till

CI Till

CH Shale

CH Clay

CI Till

CI Till

CH Shale

CI Till

CI Till

0.7

3.0

-5.8

25.7

-0.5

3.0

-4.1

4.4

4.5

low to

medium low to

medium

very low

very low

low to

medium low to

medium

very low

low to

medium low to

medium

fair to poor

fair to poor

fair

fair

fair to poor

fair to poor

fair

fair to poor

fair to poor

TABLE C-1 (Continued) SUMMARY OF THE ATTERBERG LIMIT TESTS ALONG THE HWY 216 & HWY 16 CORRIDORS OF THE NEERR

TH08-24-02

TH08-25-01

TH08-25-01

TH08-25-02

TH08-25-02

TH08-26-01

TH08-26-01

TH08-26-02

TH08-26-02

5.9

2.3

16.0

1.5

5.3

1.0

14.5

2.7

5.7

37.8

31.4

69.6

62.0

41.6

34.5

63.7

32.6

40.2

15.0

13.2

25.6

19.8

15.5

13.8

25.5

13.3

14.0

22.8

18.2

44.0

42.2

26.1

20.7

38.2

19.3

26.2

16.0

15.8

20.5

46.8

15.7

16.9

22.2

17.6

19.4

		SUMMAF	RY OF THE	ATTERBER	G LIMIT TEST	S ALONG	THE HWY	216 & HWY 16	CORRIDOR	S OF THE N	EERR		
						M.C.			EST.		POTENTIAL		ſ
TEST HOLE	DEPTH (m)	LIQUID LIMIT	PLASTIC LIMIT	PLASTIC INDEX	FIELD MOISTURE	ABOVE OPT.	LIQUID INDEX	EST. OPT. MOISTURE	MAX	SOIL CLASS	FROST	EST. EROSION RESISTANCE	
TH08-27-01	2.3	49.5	19.8	29.7	14.8	-5.7	-0.2	20.5	1641	CI Clay	low to medium	fair to poor	

TABLE C-11 (Continued)

	()					OPT.			DENSITY		ACTION	
TH08-27-01	2.3	49.5	19.8	29.7	14.8	-5.7	-0.2	20.5	1641	CI Clay	low to medium	fair to poor
TH08-27-02	2.3	29.4	12.1	17.3	8.0	-3.6	-0.2	11.6	1948	CL Till	medium to very high	poor
TH08-32-01	0.8	36.1	13.8	22.3	15.7	1.6	0.1	14.1	1841	CI (FILL)	low to medium	fair to poor
TH08-32-01	8.4	57.7	27.7	30.0	27.1	-1.9	0.0	29.0	1450	CH Shale	very low	fair
TH08-32-02	8.8	42.3	18.5	23.8	26.3	7.5	0.3	18.8	1684	CI Clay	low to medium	fair to poor
TH08-32-02	14.5	43.0	13.9	29.1	19.7	4.5	0.2	15.2	1811	CI Till	low to medium	fair to poor
TH08-32-03	2.7	48.8	16.7	32.1	23.3	5.4	0.2	17.9	1721	CI (FILL)	low to medium	fair to poor
TH06-D41	12.2	74.4	22.3	52.1	22.1	-1.3	0.0	23.4	1568	CH Shale	very low	fair
TH06-D42	0.8	75.2	25.8	49.4	29.9	3.4	0.1	26.5	1492	CH Clay	very low	fair
TH06-D42	1.0	75.2	25.8	49.4	30.0	3.5	0.09	26.5	1492	CH Clay	very low	fair
TH06-D43	8.5	46.4	16.0	30.4	16.5	-0.6	0.02	17.1	1744	CI Shale	low to medium	fair to poor
TH06-D43	16.4	75.6	26.0	49.6	25.0	-1.7	-0.02	26.7	1488	CH Shale	very low	fair
TH06-D44	3.1	39.9	13.1	26.8	17.0	2.8	0.15	14.2	1846	CI Till	low to medium	fair to poor

TEST HOLE	DEPTH (m)	SO ₄ CONTENT (%)
TH08-01-01	2.3	0
TH08-01-02	9.9	0.02
TH08-02-01	2.3	0
TH08-03-02	2.5	0
TH08-04-02	6.9	0
TH08-05-02	6.1	0.04
TH08-07-01	3.8	0
TH08-07-02	5.3	0
TH08-12-01	0.8	0
TH08-12-02	0.8	0.15
TH08-14-01	3.8	0
TH08-15-01	8.4	0.0007
TH08-16-01	5.0	0
TH08-16-02	0.3	0
TH08-18-01	0.8	0.004
TH08-20-01	3.8	0.019
TH08-20-02	7.9	0.077
TH08-21-02	2.3	0.04
TH08-22-01	3.8	0.71
TH08-23-01	0.8	0
TH08-24-01	4.6	0
TH08-25-01	0.8	0
TH08-26-01	3.1	0
TH08-27-01	1.5	0
TH08-27-01	13.0	0
TH08-31-01	1.5	0
TH08-31-01	2.4	0.23
TH08-32-01	4.0	0
TH08-32-02	2.7	0
TH08-32-03	6.1	0.1
TH08-32-03	19.1	0
TH06-D41	13.8	0.02
TH06-D44	4.5	0.04
TH06-D44	16.8	0.06

TABLE C-2 SUMMARY OF WATER SOLUBLE SULPHATE CONTENT TESTS

APPENDIX D

Slope Stability Analyses

GENERAL

Slope stability analyses have been carried out to assess the stability of the approach fills and cuts. The analyses have been carried out using Slope/W limit equilibrium stability analysis. Effective stress analyses were carried out using estimated effective strength and pore pressures. For assessing the safety factor for global stability Bishop's method was used.

For each bridge the worst case was checked considering the local geometry and respective height of fill provided in the latest drawings provided by ISL.

Stability analyses were carried out for 2H:1V head slopes. Global stability analyses considering retaining walls were performed in a case by case basis as requested by ISL. It is worth mentioning, however, that in this project phase, internal stability, bearing capacity, sliding and settlement analysis were not performed.

The critical stability condition for loading condition, yielding the lowest estimated factor of safety, is at the end of fill construction when pore pressures generated by fill placement are greatest. Thereafter, the pore pressures dissipate with time with a corresponding increase in factor of safety.

EFFECTIVE STRENGTH PARAMETERS

Effective strength and pore pressures parameters used in the analyses represent reasonable strength values of soils based on local experience on similar materials.

The soil parameters used in the stability analysis are summarized in Table D-1 and are considered reasonable lower bound strength for the native soils and fills.

					PRESSURE
MATERIAL DESCRIPTION	γ	с'	Φ'	Р	в
	(kN/m³)	(kPa)	(°)	Ru	B _{bar}
Clay fill (new)	20	5	28	0.2	-
Clay fill (old)	20	5	28	-	0.3
Clay Till	20	10	28	-	0.3
Clay (lacustrine)	18	5	23	-	0.3
Topsoil	17	5	20	-	0.3
Loose sand (native or fill)	18	0	30	-	-
Compact sand (native or fill)	19	0	32	-	-
Dense sand (native or fill)	20	0	35	-	-
Compact gravel	19	0	38	-	-

TABLE D-1 STRENGTH PARAMETERS USED IN THE STABILITY ANALYSES

 R_u = ratio of pore pressure to total overburden on pressure.

 B_{bar} = ratio of change in pore pressure to change in applied vertical stress.

 $B_{bar} = 0.3$ is considered to represent the end of construction pore pressure based on construction in one season without foundation drainage.

RESULTS OF STABILITY ANALYSIS

The results of slope stability analyses showing the slope geometry and slip circles are presented in the end of this appendix.

In these analyses, the end of construction pore pressures were estimated as the combination of initial piezometric surface and the excess pore pressure generated by fill construction.

Excess pore pressures due to fill placement were estimated as the product of B_{bar} and the increase in vertical stress. A B_{bar} value of 0.3 is considered appropriate for estimating excess pore pressure in existing (old) clay fill, clay and clay till due to new fill placement for a relative slow rate of construction over a three month period.

Following are the main observations and conclusions of the stability analyses.

- Estimated short term factors of safety of approach fill head slopes range from 1.26 to 1.49 for 2H:1V slopes with varying fill heights.
- Long term factors of safety after excess pore pressure dissipation are calculated at greater than 1.45 for 2H:1V head slopes.
- 2H:1V slopes are feasible for the majority of the head slopes without any special recommendation.
- For 2H:1V head slopes, with slope heights greater than 10 m, gravel wedges or soil reinforcement are recommended. Alternatively, the new fill construction may be staged over two construction seasons to allow for pore pressure dissipation with pore pressure monitoring.
- Fill side slopes may be constructed at 3H:1V or flatter.

Safety factors for head slopes of the bridges analyzed for the Highway 216 corridor and Hwy 16 corridors are summarized in Tables D-2 and D-3 below.

TABLE D-2
SAFETY FACTORS FOR BRIDGE STRUCTURES ALONG HWY 216/AHD

		GEOMETRY				SAFETY FACTOR	
Bridge	Slope Type	Slope H:V	Height (m)	Height of Fill (m)	Water Below Ground (m)	Long Term	Short Term
27	fill with Wedge	2:1	10	10.5	7.4	1.58	1.37
15	fill	2:1	8.5	1	0.7	1.52	1.49
14	fill	2:1	8.5	1	0.7	1.52	1.49
16	cut	2:1	10	Variable, 1.5m - 12m	no water	1.49	1.46
17	fill	5:1 + 14m wall	18	14	8.9	1.69	1.50
17	fill with Wedge	2:1	18	18	8.9	1.54	1.29
18	fill	2:1	9	14	3.5	1.57	1.27
11, 12 & 13	fill	2:1	9.5	4	9.1	1.58	1.26
32	cut	2:1	7	7	11.9	1.59	1.27
5 W, 7 & 8	fill	2:1	8.5	8.5	1.3	1.52	1.36
5 E & 6	fill with Wedge	2:1	12	12	0.7	1.53	1.29
4	fill	2:1	8.5	8.5	3	1.58	1.27
2&3	cut	2:1	8.5	0	3.5	1.45	-
1	fill	2:1	9	10.5	1.8	1.55	1.26

	GEOMETRY] [SAFETY FACTOR	
Bridge	Slope Type	Slope H:V	Height (m)	Height of Fill (m)	Water Below Ground (m)	Long Term	Short Term
31	fill	2:1	8.5	8.5	no water	1.57	1.27
31	fill	wall	8.5	8.5	no water	2.07	1.71
24	fill/cut	2:1	9	6	4.3	1.51	1.26
24	fill/cut	wall	9	6	4.3	1.56	1.29
23	fill/cut	2:1	8.5	4.5	10.6	1.74	1.42
22	fill/cut	2:1	8.5	4.5	6.8	1.59	1.29
20 & 21	fill	2:1	8.5	4.25	2.5	1.47	1.3
19/33	fill	3:1 + 10.5 m wall	10	7.5	15.5	1.8	1.44
19/33	fill	2:1	10	10	15.5	1.51	1.26
26	fill/cut	2:1	10	4	1.9	1.47	1.32
25	fill/cut	2:1	8.5	7	2	1.57	1.27

TABLE D-3SAFETY FACTORS FOR BRIDGE STRUCTURES ALONG HWY 16/YHT

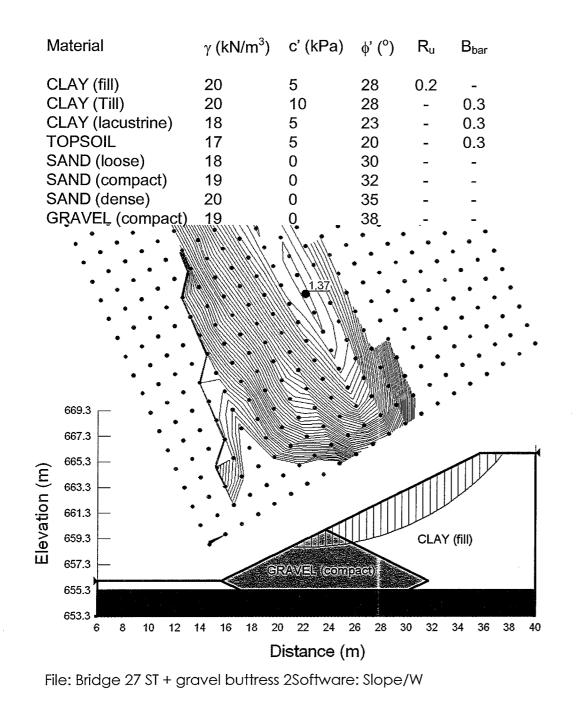


FIGURE 8.1

Thurber Engineering Ltd – Edmonton NEERR – AFPS Bridge Abutment Geo Inv. 19-598-298 Structure 27 (Northern Abutment) Dec 22, 2008 Abutment stability (short term) Head slope 2H:1V

Version: 7.12

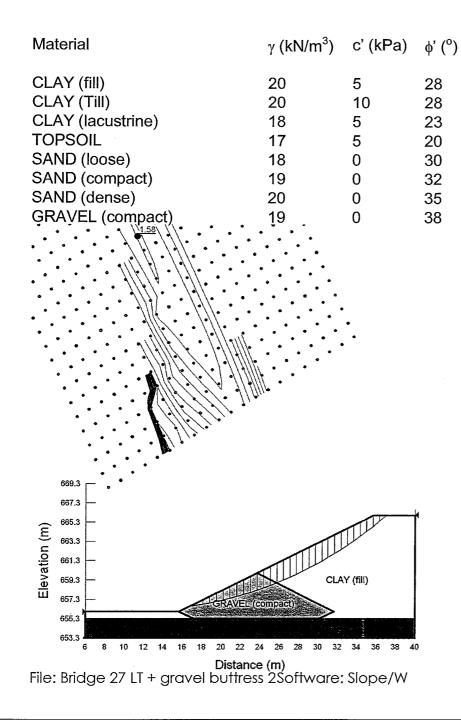
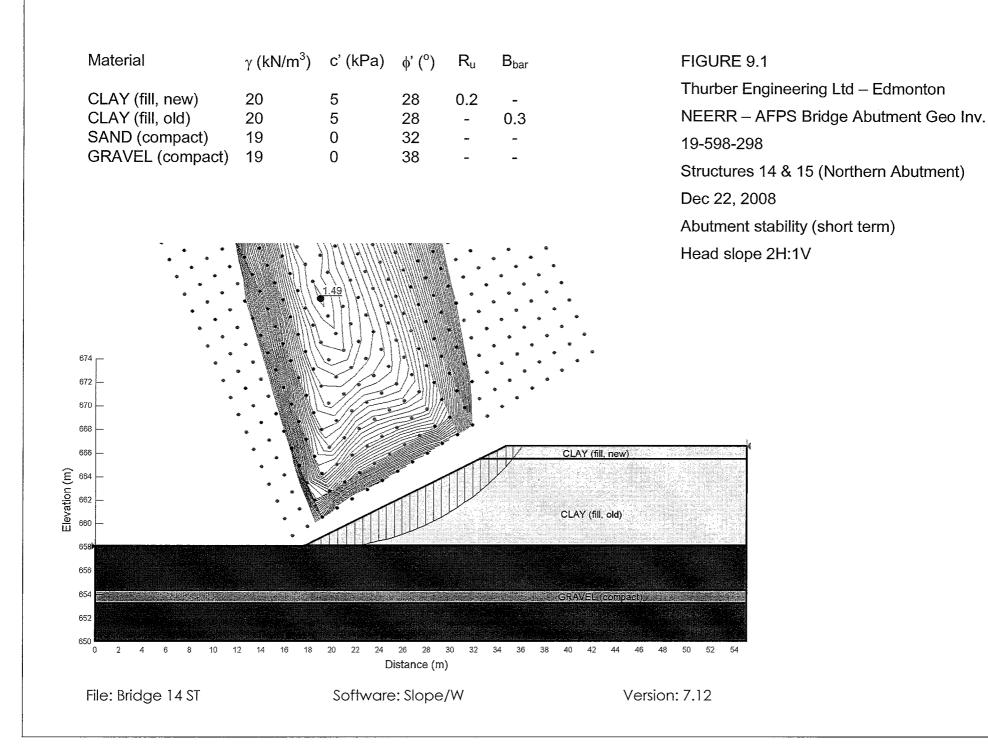
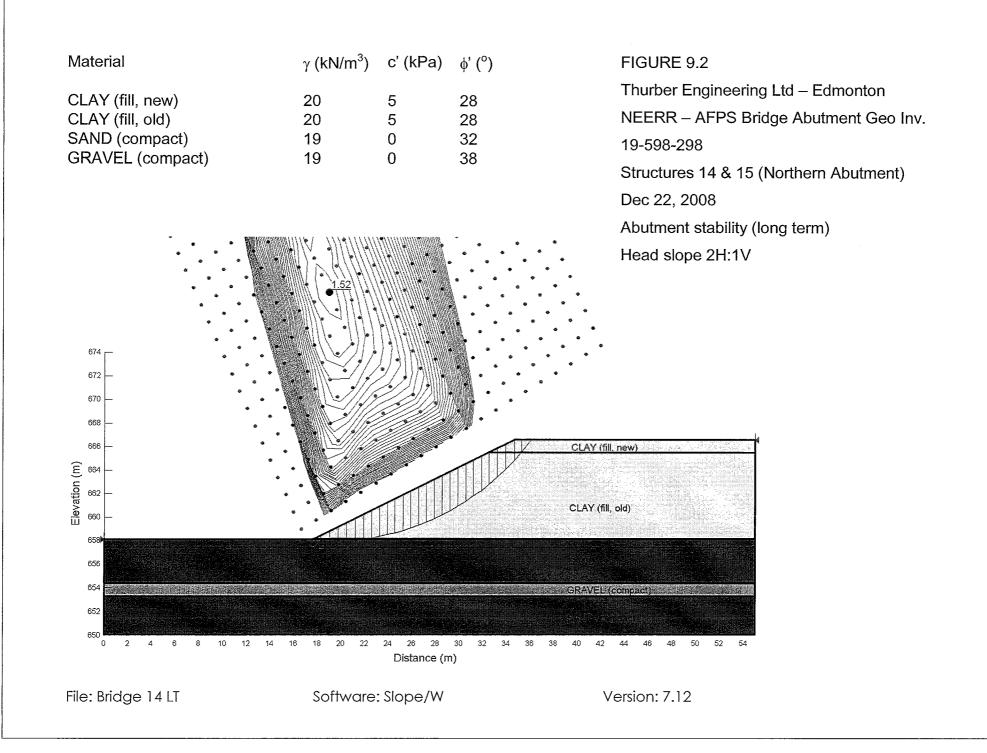
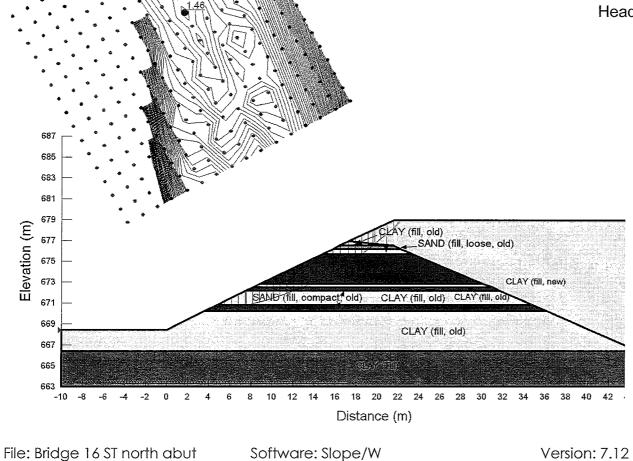




FIGURE 8.2

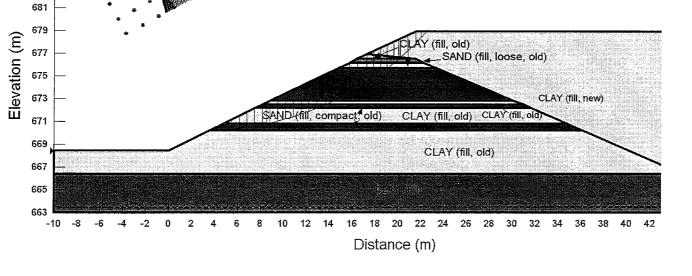
Thurber Engineering Ltd – Edmonton NEERR – AFPS Bridge Abutment Geo Inv. 19-598-298 Structure 27 (Northern Abutment) Dec 22, 2008 Abutment stability (long term) Head slope 2H:1V

Version: 7.12



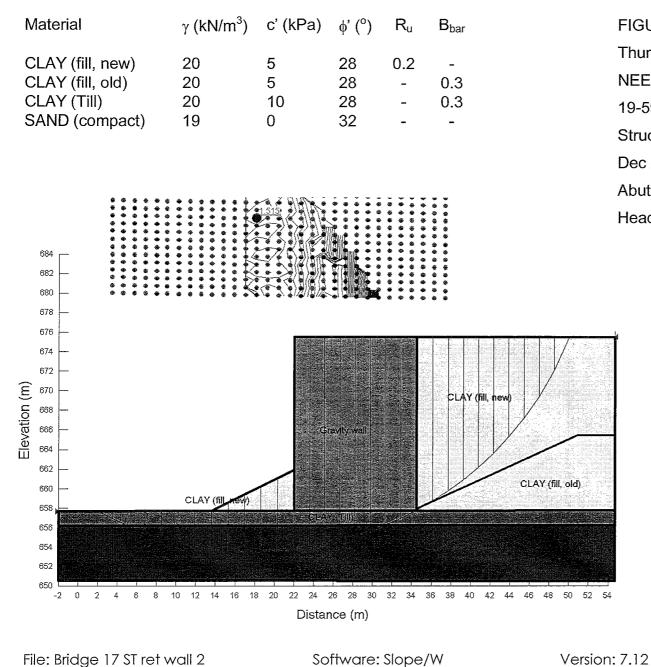
Material	γ (kN/m ³)	c' (kPa)	φ' (°)	R_{u}	B _{bar}
CLAY (fill, new) CLAY (fill, old) SAND (fill, loose) SAND (compact) CLAY (Till)	20 20 18 19 20	5 5 0 0 10	28 28 30 32 28	0.2 - - -	- 0.3 - - 0.3

FIGURE 9.3


Thurber Engineering Ltd – Edmonton NEERR – AFPS Bridge Abutment Geo Inv. 19-598-298 Structure 16 (Northern Abutment) Dec 22, 2008 Abutment stability (short term) Head slope 2H:1V

Material	γ (kN/m ³)	c' (kPa)	φ' (°)				
CLAY (fill, new) CLAY (fill, old) SAND (fill, loose) SAND (fill, compact) CLAY (Till)	20 20 18 19 20	5 5 0 0 10	28 28 30 32 28				

FIGURE 9.4


Thurber Engineering Ltd – Edmonton NEERR – AFPS Bridge Abutment Geo Inv. 19-598-298 Structure 16 (Northern Abutment) Dec 22, 2008 Abutment stability (long term) Head slope 2H:1V

File: Bridge 16 LT north abut

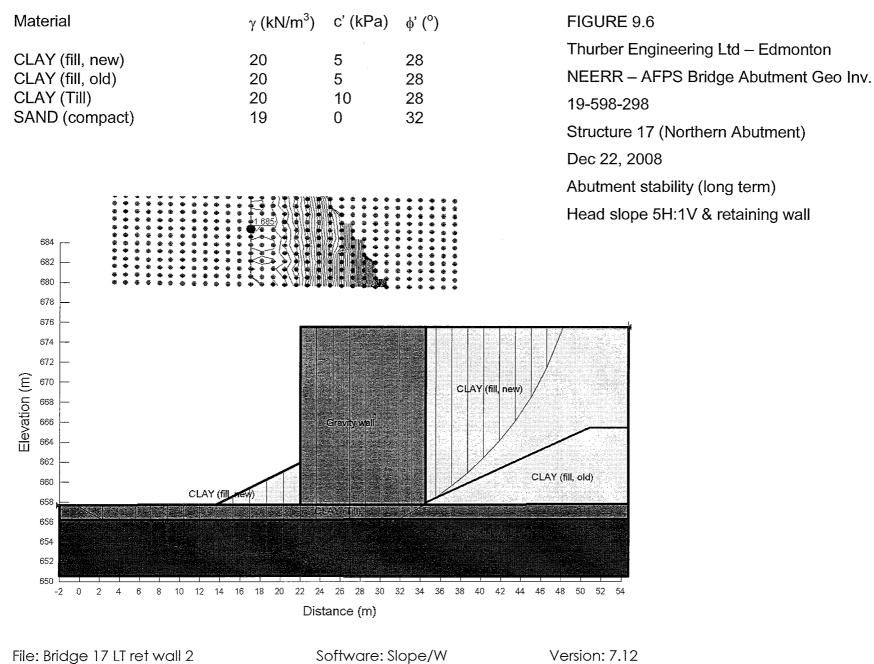
687 685 683

Software: Slope/W

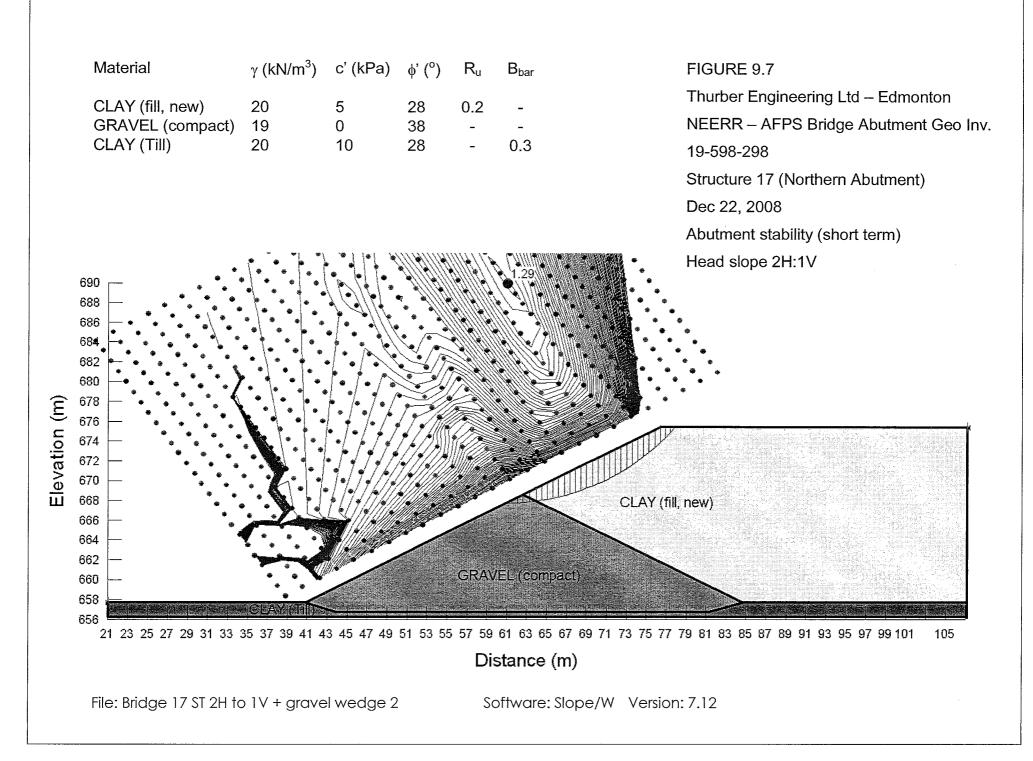
FIGURE 9.5

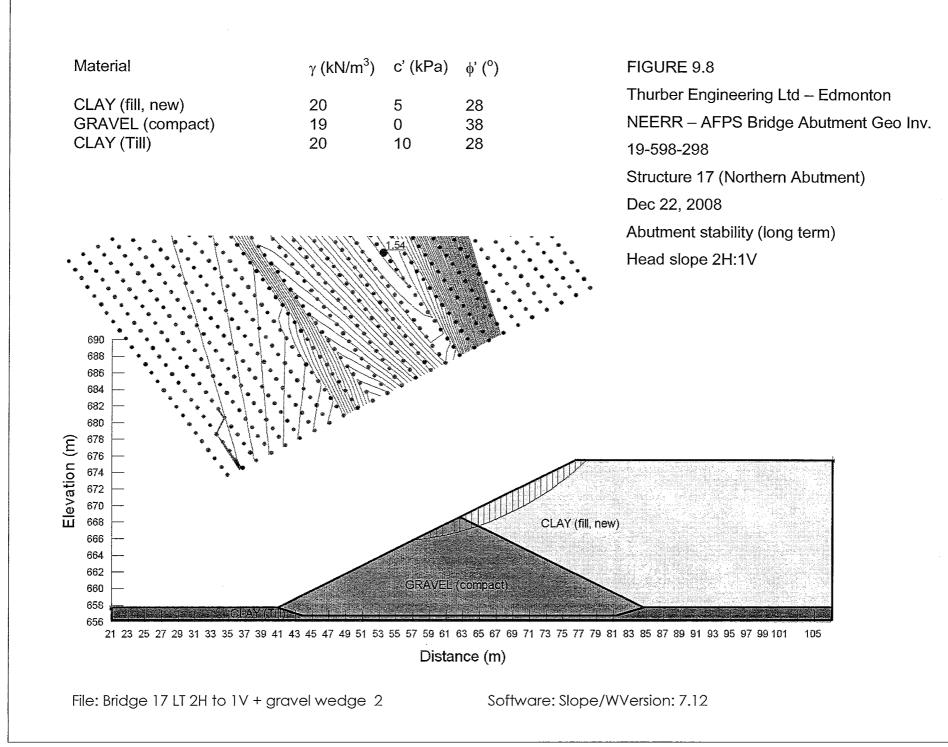
Thurber Engineering Ltd – Edmonton

NEERR - AFPS Bridge Abutment Geo Inv.

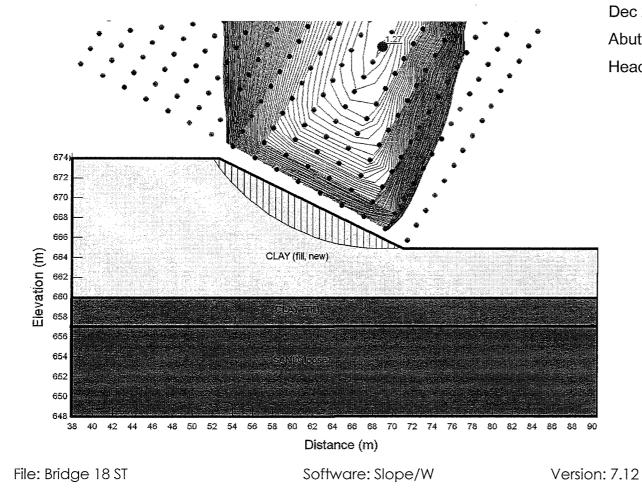

19-598-298

Structure 17 (Northern Abutment)


Dec 22, 2008


Abutment stability (short term)

Head slope 2H:1V & retaining wall



on: 7.12

Material	γ (kN/m ³)	c' (kPa)	φ' (°)	R_{u}	B_{bar}
CLAY (fill, new)	20	5	28	0.2	-
CLAY (Till)	20	10	28	-	0.3
SAND (loose)	18	0	30	-	-

FIGURE 9.9

Thurber Engineering Ltd – Edmonton NEERR – AFPS Bridge Abutment Geo Inv. 19-598-298 Structure 18 (Northern Abutment) Dec 22, 2008 Abutment stability (short term) Head slope 2H:1V

Material	γ (kN/m³)	c' (kPa)	φ' (°)
CLAY (fill, new)	20	5	28
CLAY (Till)	20	10	28
SAND (loose)	18	0	30

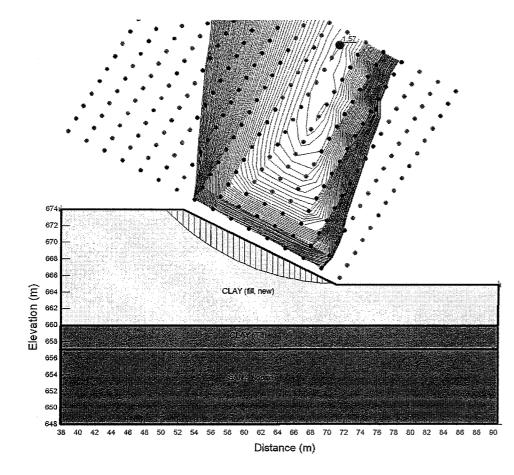
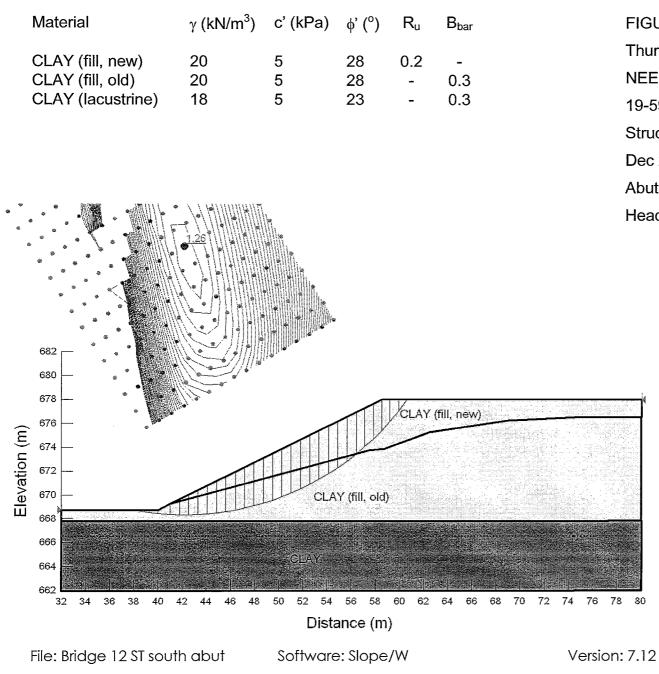


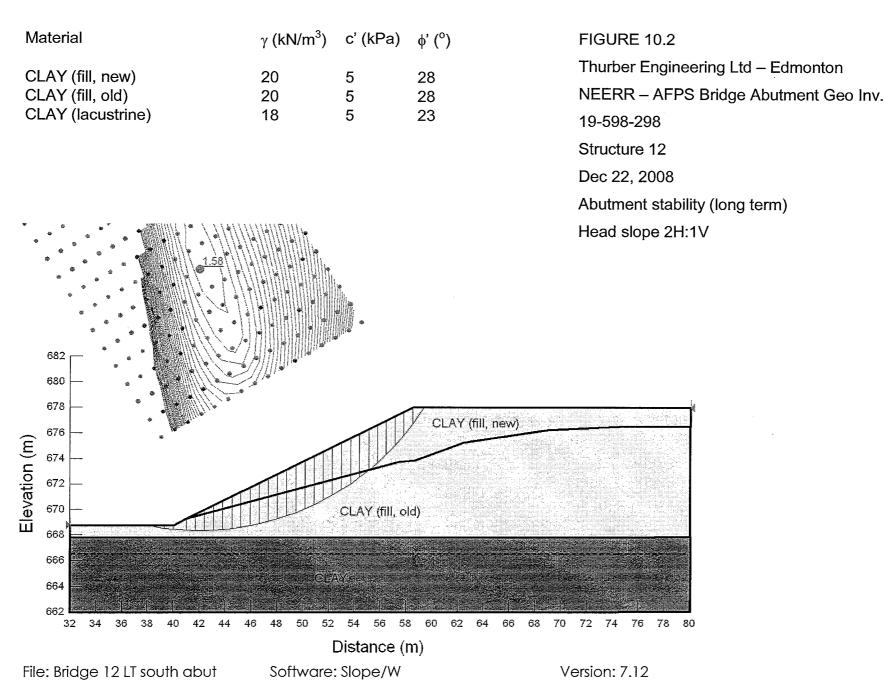
FIGURE 9.10

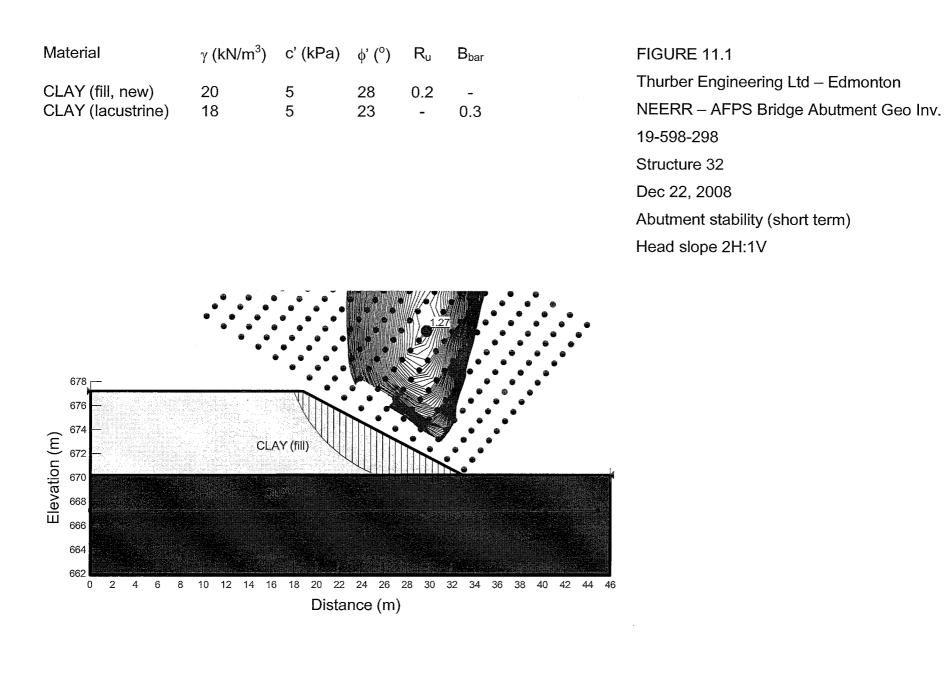
Thurber Engineering Ltd – Edmonton NEERR – AFPS Bridge Abutment Geo Inv. 19-598-298 Structure 18 (Northern Abutment)


Dec 22, 2008

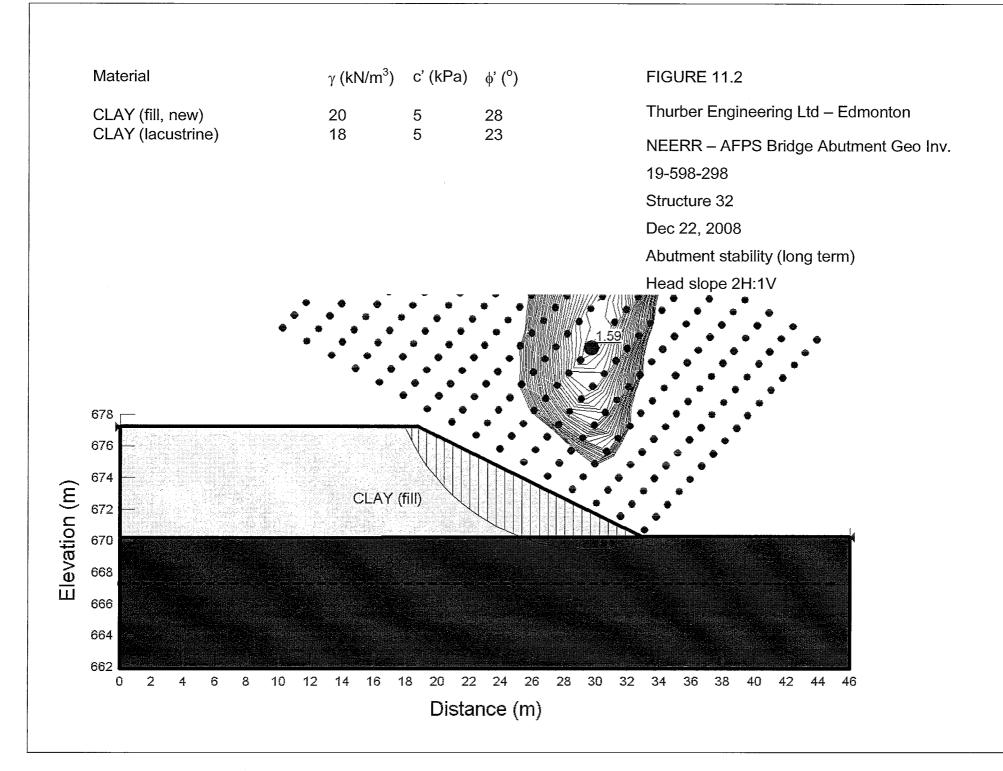
Abutment stability (long term)

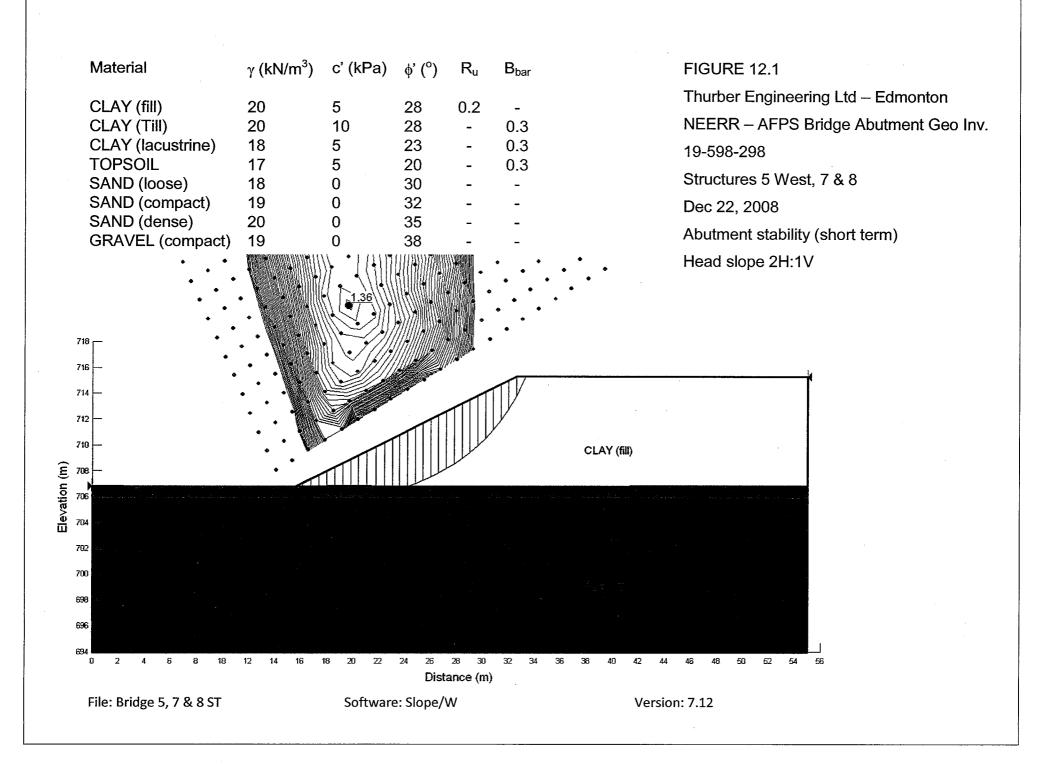
Head slope 2H:1V

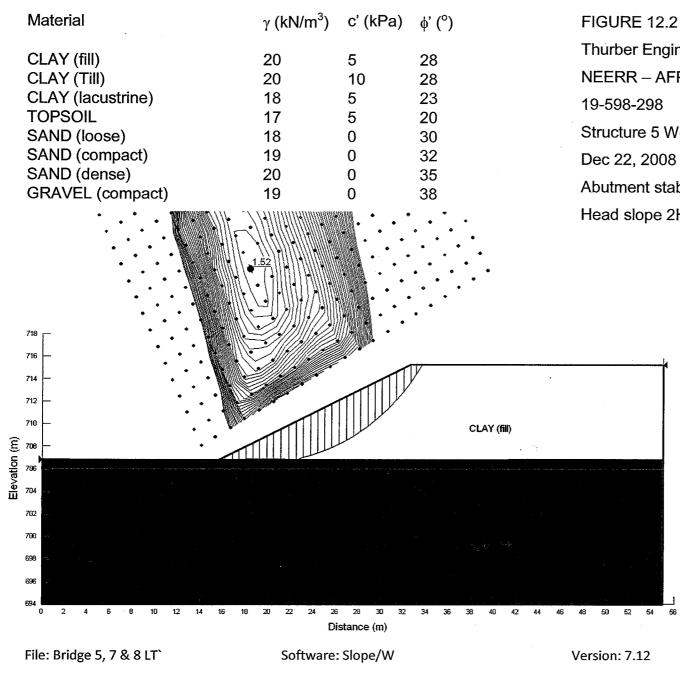

File:Bridge 18 LT


Software: Slope/W

Thurber Engineering Ltd – Edmonton NEERR – AFPS Bridge Abutment Geo Inv. 19-598-298 Structure 12 Dec 22, 2008 Abutment stability (short term) Head slope 2H:1V

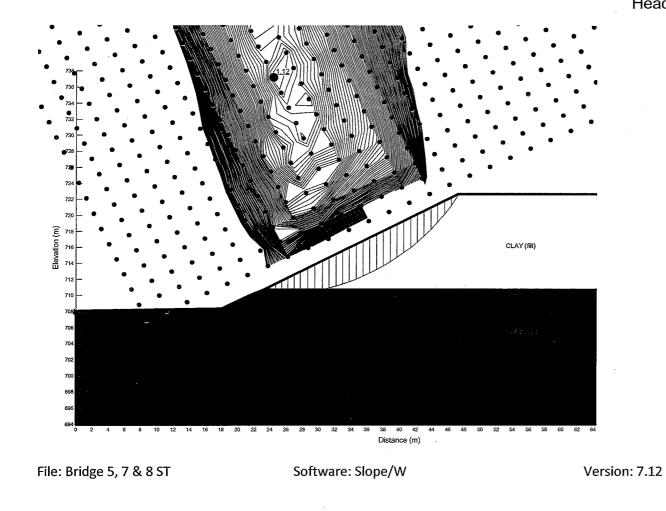

FIGURE 10.1





File: Bridge 14 ST

Software: Slope/W


Thurber Engineering Ltd – Edmonton NEERR - AFPS Bridge Abutment Geo Inv. Structure 5 West, 7 & 8

Abutment stability (long term)

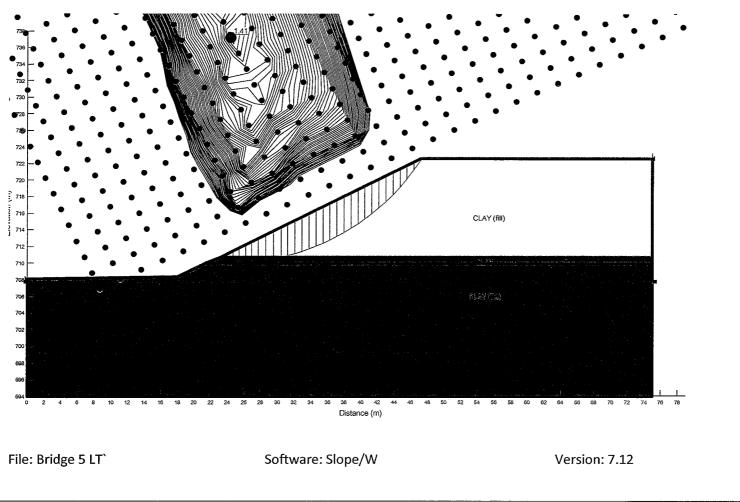
γ (kN/m ³)	c' (kPa)	φ' (°)	R_{u}	B_{bar}
20	5	28	0.2	-
20	10	28	-	0.3
18	5	23	-	0.3
	20 20	20 5 20 10	20 10 28	20 5 28 0.2 20 10 28 -

FIGURE 12.3

Thurber Engineering Ltd – Edmonton NEERR – AFPS Bridge Abutment Geo Inv. 19-598-298 Structures 5 East & 6, Dec 15, 2009 Abutment stability (short term) Head slope 2H:1V

Material	γ (kN/m ³)	c' (kPa)	φ' (°)
CLAY (fill)	20	5	28
CLAY (Till)	20	10	28
CLAY (lacustrine)	18	5	23

FIGURE 12.4


Thurber Engineering Ltd – Edmonton

NEERR – AFPS Bridge Abutment Geo Inv.

19-598-298

Structures 5 East, 6, September, 2009

Abutment stability (long term)

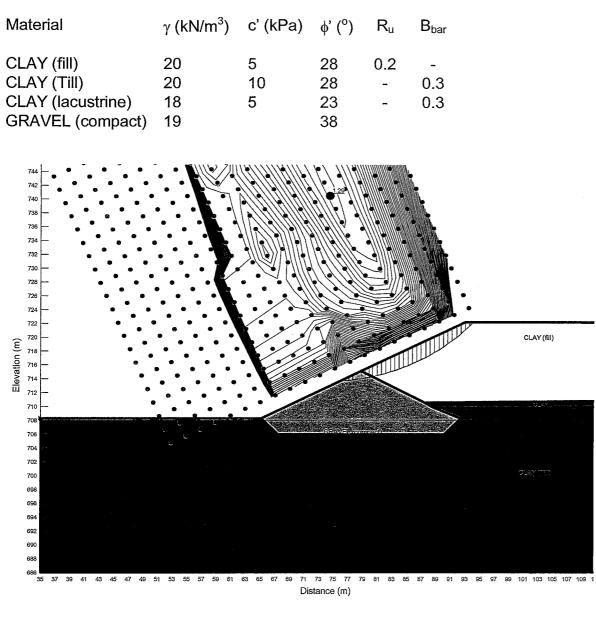
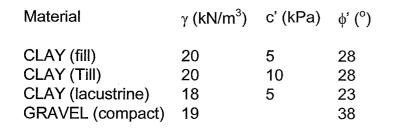


FIGURE 12.5

Thurber Engineering Ltd – Edmonton NEERR – AFPS Bridge Abutment Geo Inv. 19-598-298

Structures 5 East & 6, Dec 15, 2009

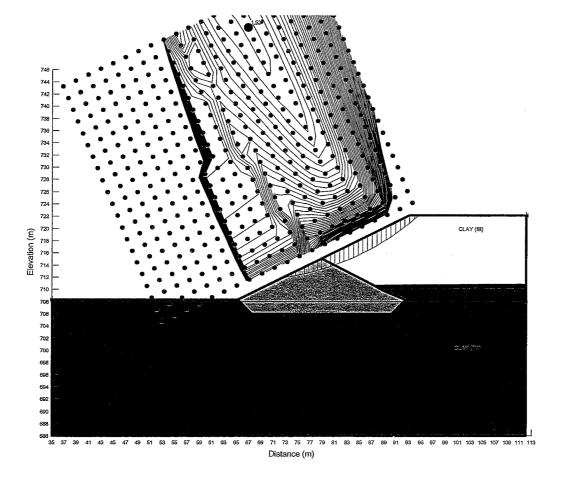
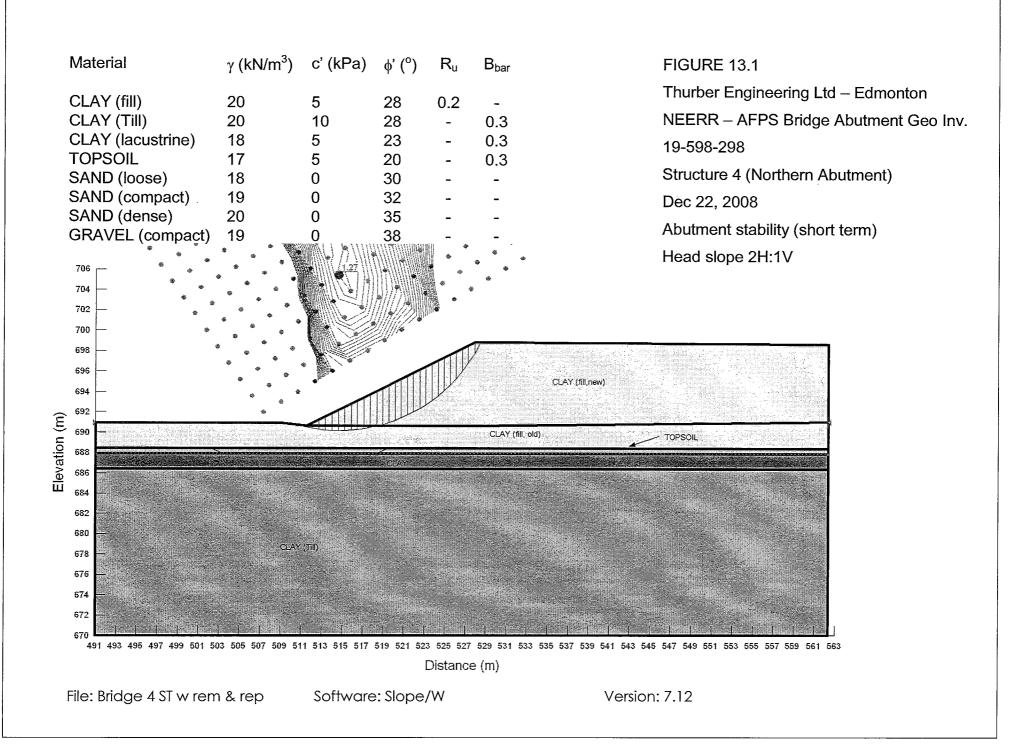
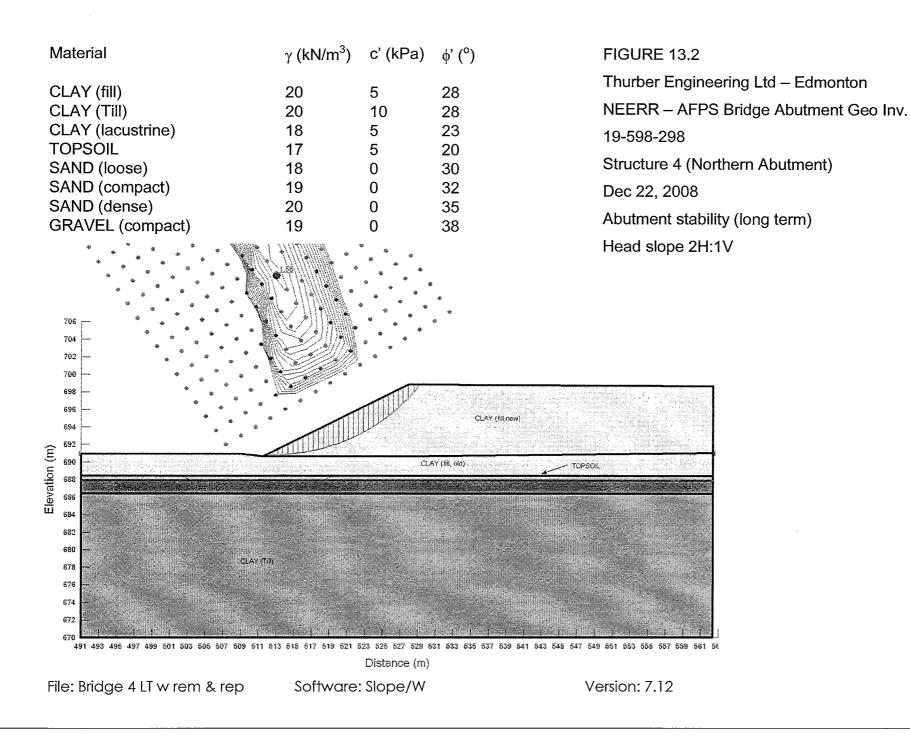

Abutment stability (short term) with

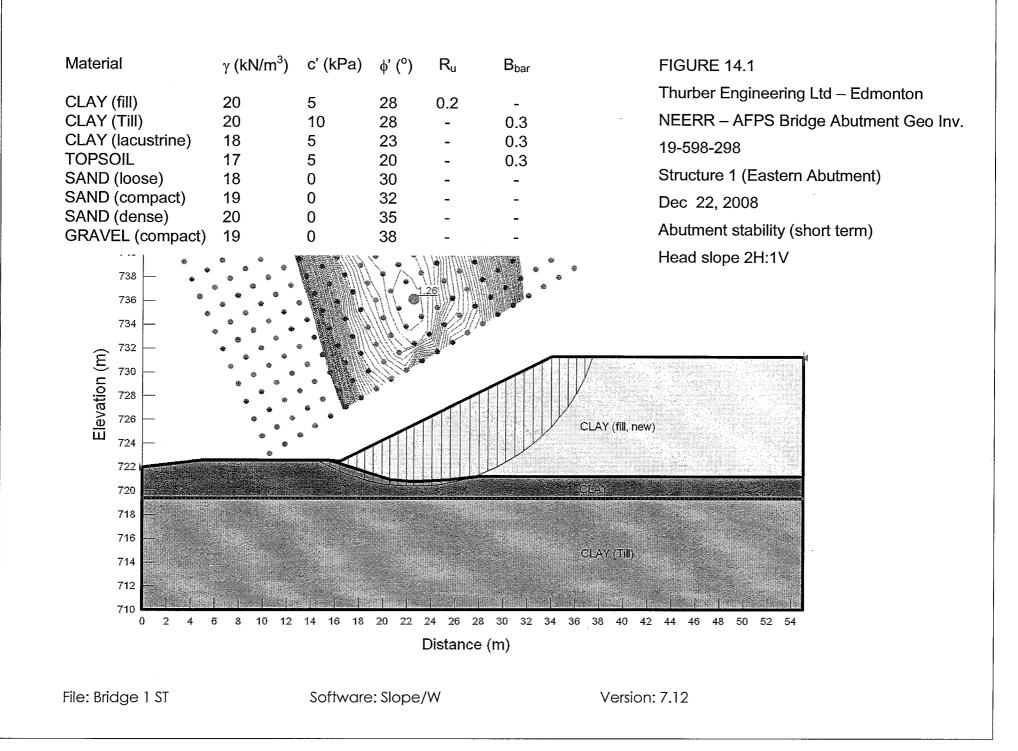
Gravel Wedge

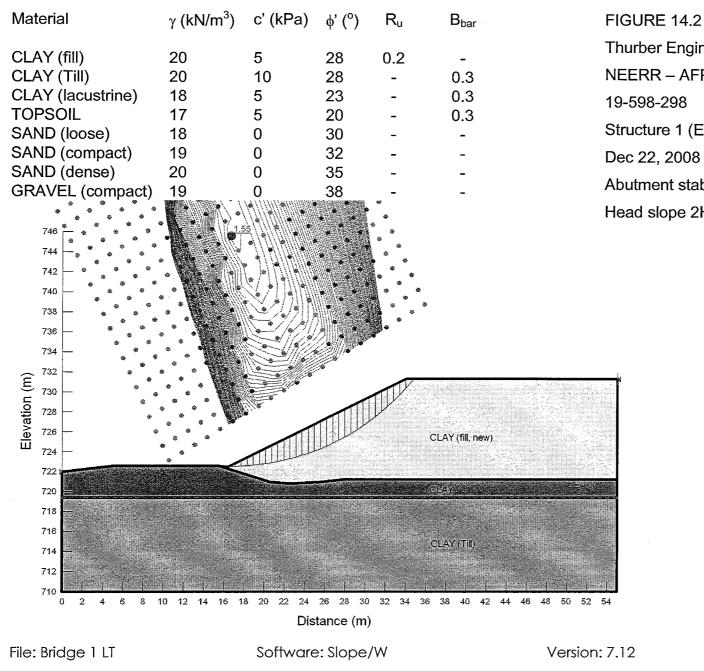
Head slope 2H:1V

File: Bridge 5, 7 & 8 ST

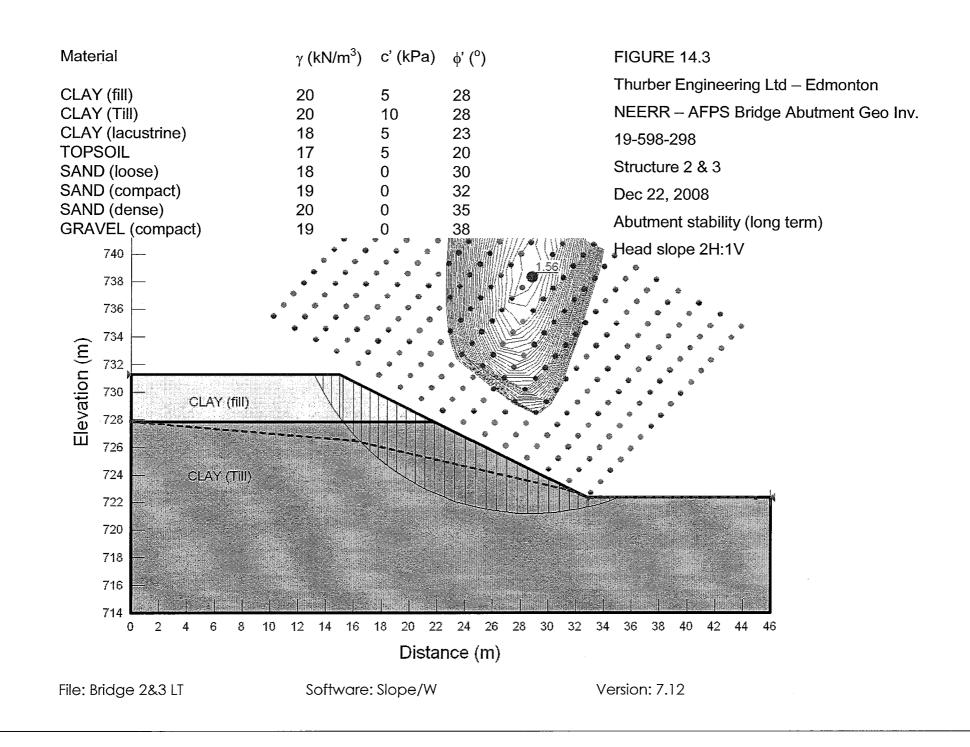
Software: Slope/W


FIGURE 12.6 Thurber Engineering Ltd – Edmonton NEERR – AFPS Bridge Abutment Geo Inv. 19-598-298 Structures 5 East & 6, Dec 15, 2009 Abutment stability (long term) with Gravel Wedge Head slope 2H:1V


File: Bridge 5 East, 6 Long Term

Software: Slope/W



Thurber Engineering Ltd – Edmonton NEERR - AFPS Bridge Abutment Geo Inv. 19-598-298 Structure 1 (Eastern Abutment) Dec 22, 2008 Abutment stability (long term)

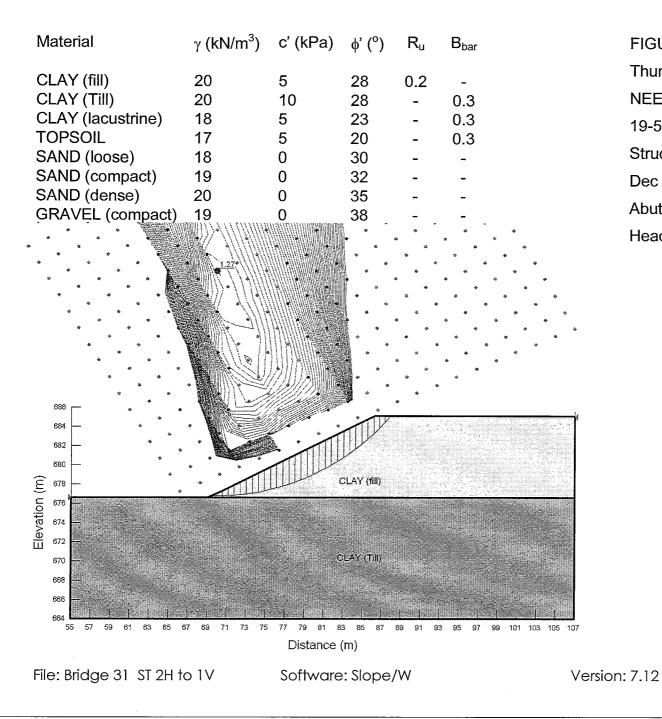
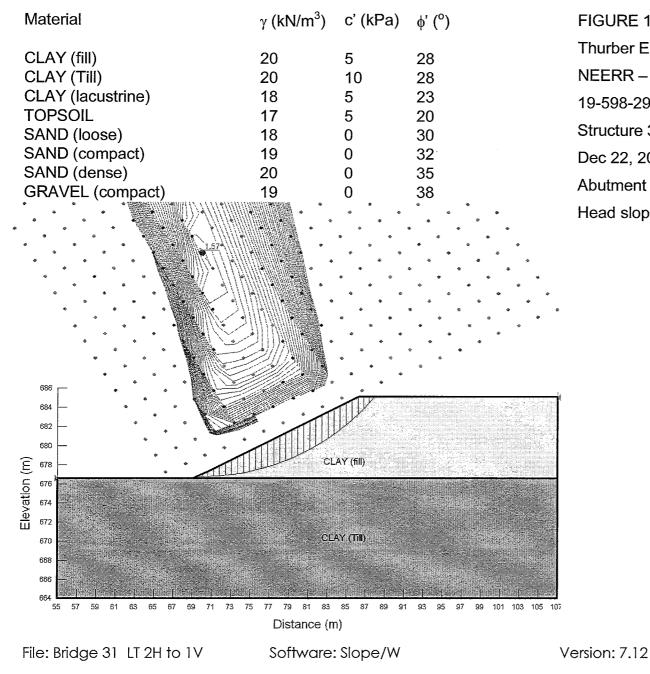



FIGURE 15.1

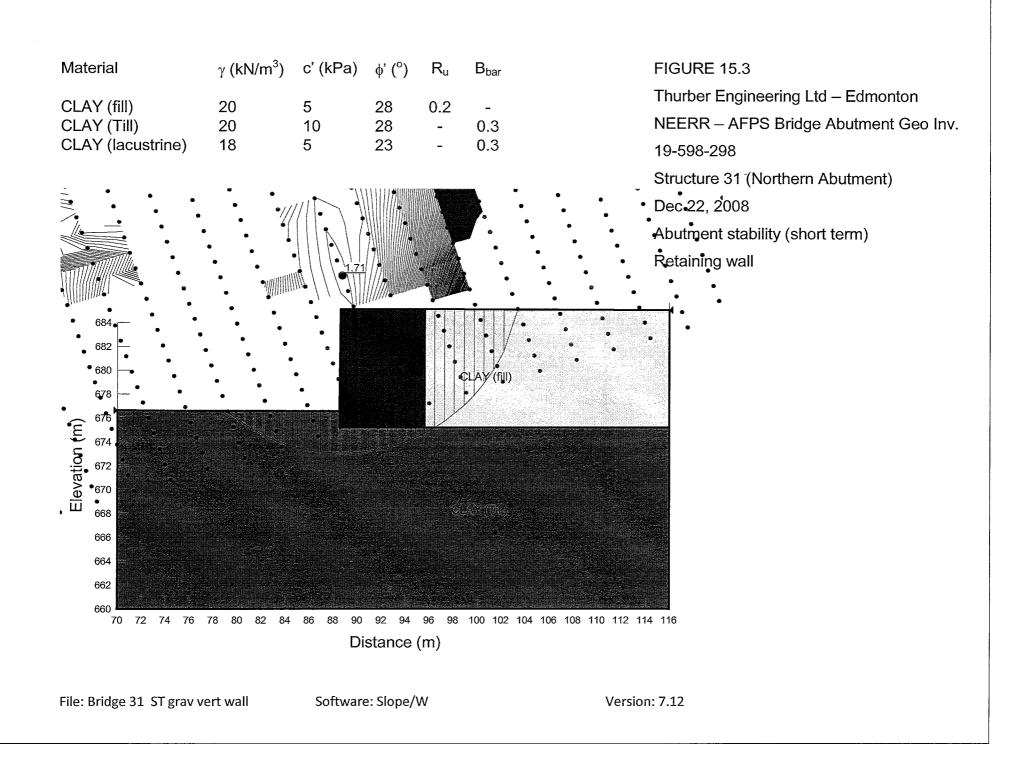
Thurber Engineering Ltd – Edmonton NEERR – AFPS Bridge Abutment Geo Inv. 19-598-298 Structure 31 (Northern Abutment)

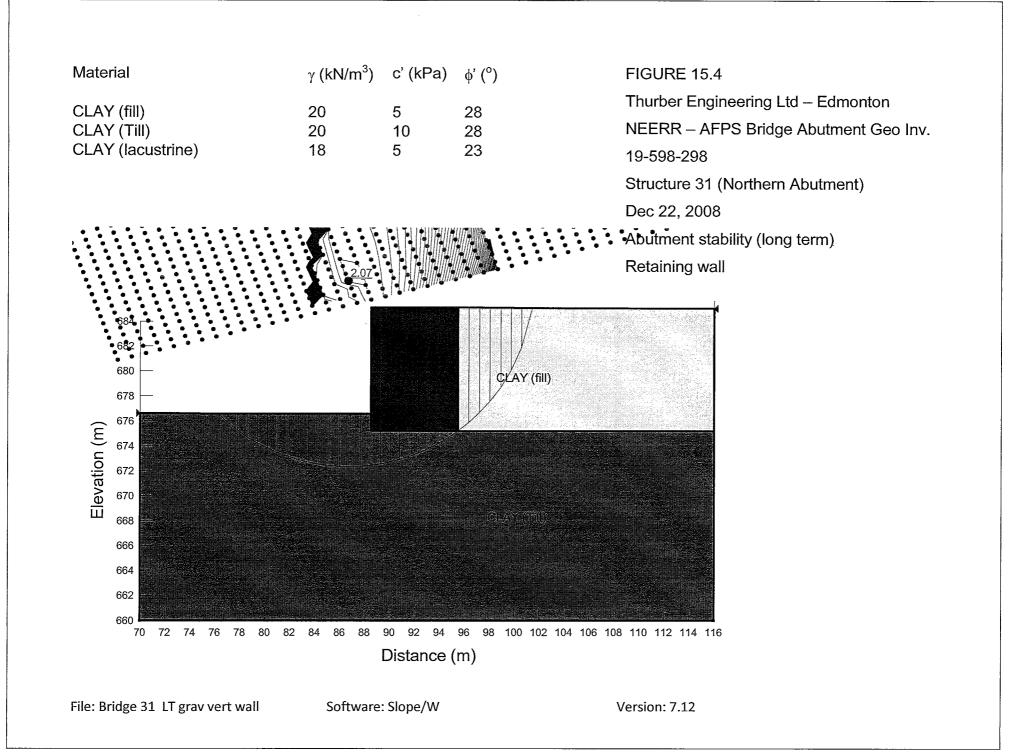
Dec 22, 2008

Abutment stability (short term)

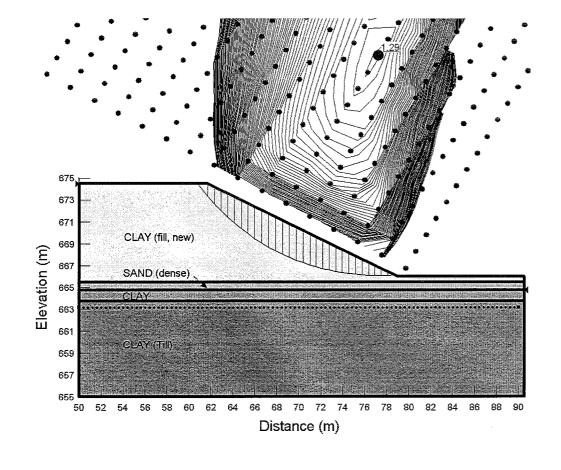
FIGURE 15.2

Thurber Engineering Ltd – Edmonton

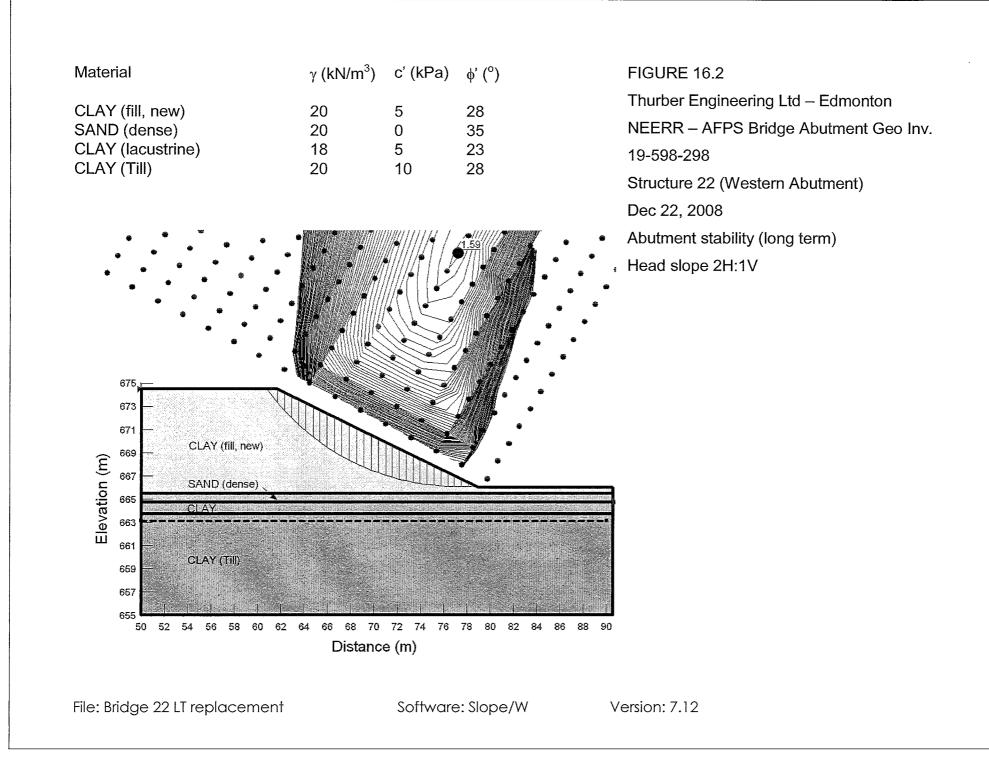

NEERR – AFPS Bridge Abutment Geo Inv.

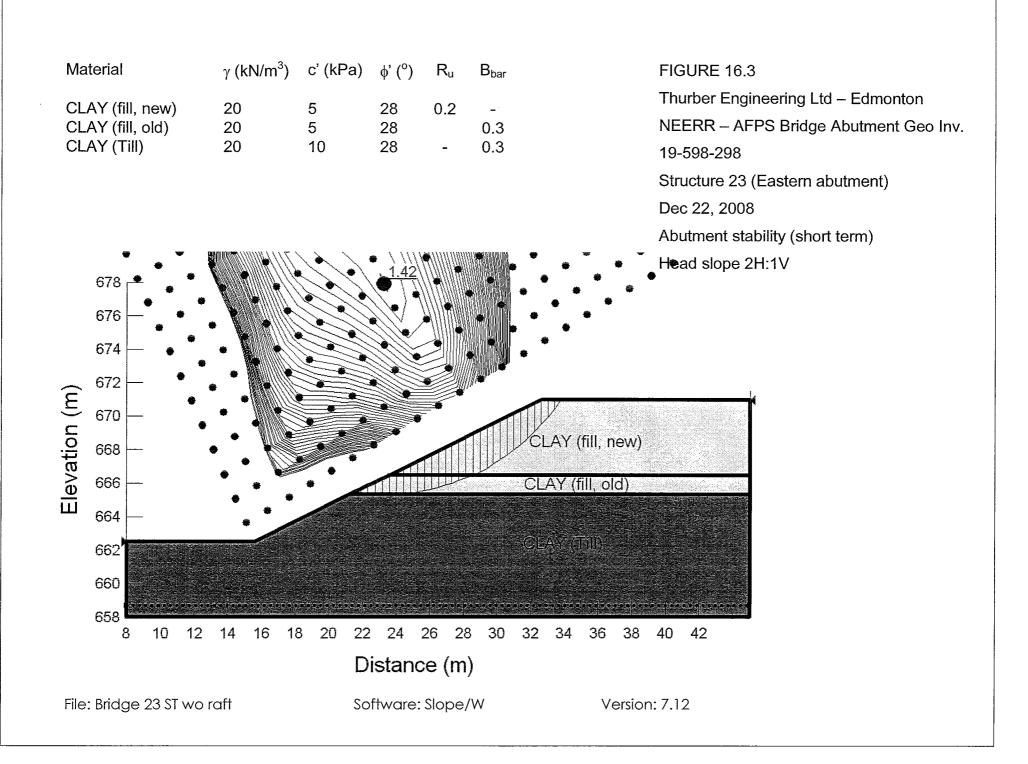

19-598-298

Structure 31 (Northern Abutment)


Dec 22, 2008

Abutment stability (long term)


Material	γ (kN/m ³)	c' (kPa)	φ' (°)	Ru	B_{bar}
CLAY (fill, new) SAND (dense) CLAY (lacustrine) CLAY (Till)	20 20 18 20	5 0 5 10	28 35 23 28	0.2 - - -	- 0.3 0.3



Thurber Engineering Ltd – Edmonton NEERR – AFPS Bridge Abutment Geo Inv. 19-598-298 Structure 22 (Western Abutment) Dec 22, 2008 Abutment stability (short term) Head slope 2H:1V

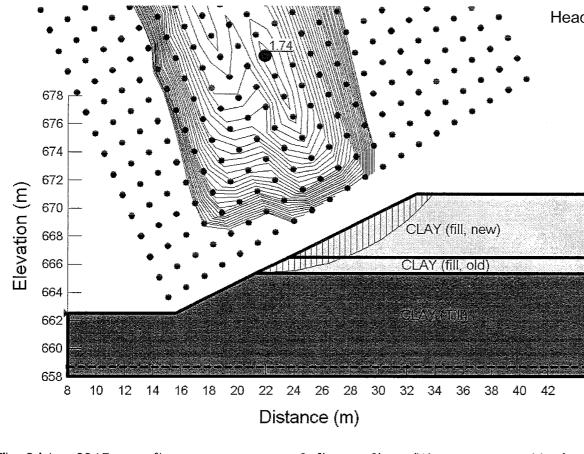
File: Bridge 22 ST replacement

Software: Slope/W

Material	γ (kN/m ³)	c' (kPa)	φ' (°)
CLAY (fill, new)	20	5	28
CLAY (fill, old)	20	5	28
CLAY (Till)	20	10	28

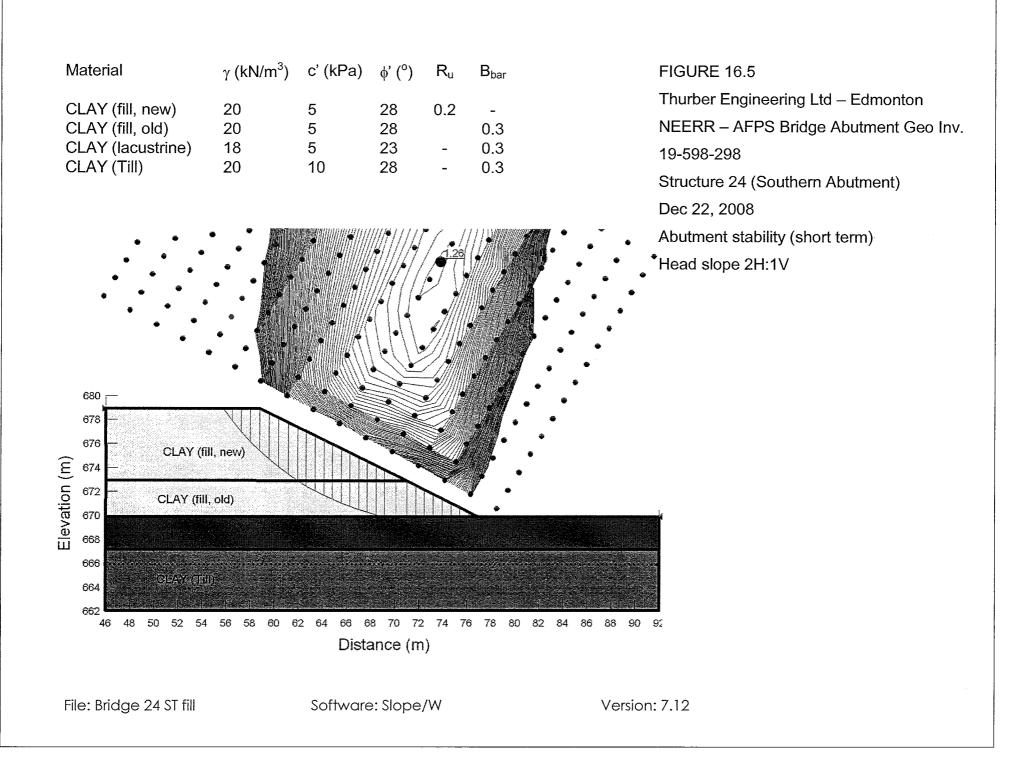
Thurber Engineering Ltd – Edmonton

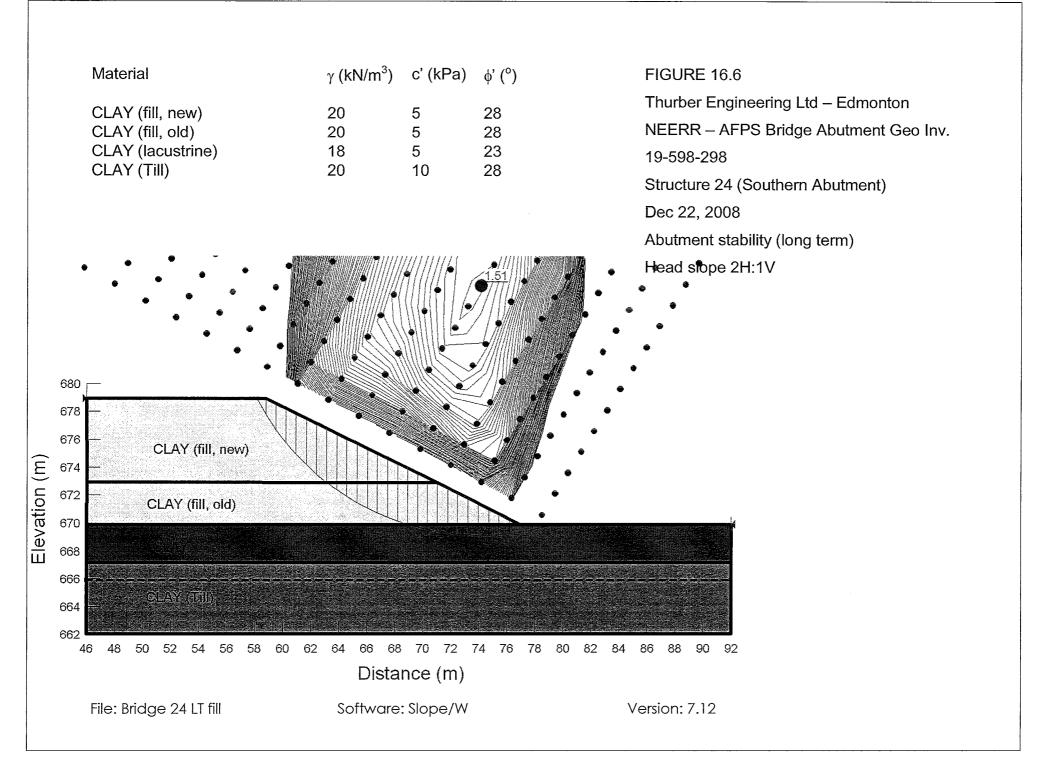
NEERR – AFPS Bridge Abutment Geo Inv.


19-598-298

Structure 23 (Eastern Abutment)

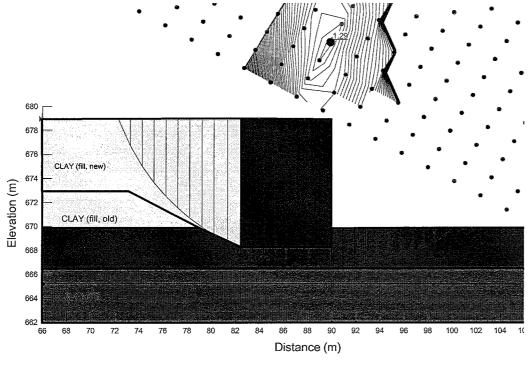
Dec 22, 2008


Abutment stability (long term)


Head slope 2H:1V

File: Bridge 23 LT wo raft

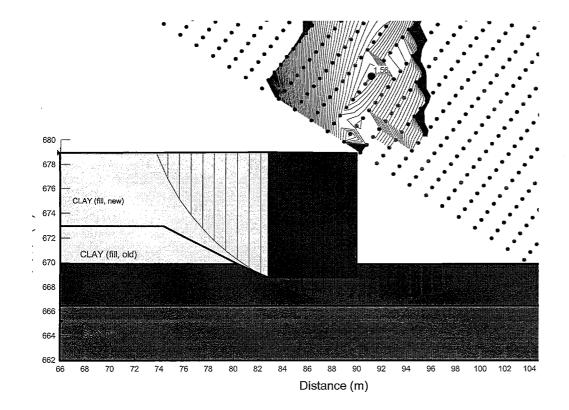
Software: Slope/W


Material	γ (kN/m ³)	c' (kPa)	φ' (°)	R_{u}	B_{bar}
CLAY (fill)	20	5	28	0.2	-
CLAY (Till)	20	10	28	-	0.3
CLAY (lacustrine)	18	5	23	-	0.3
TOPSOIL	17	5	20	-	0.3
SAND (loose)	18	0	30	-	-
SAND (compact)	19	0	32	-	-
SAND (dense)	20	0	35	-	-
GRAVEL (compact)	19	0	38	-	-

Thurber Engineering Ltd – Edmonton NEERR – AFPS Bridge Abutment Geo Inv. 19-598-298 Structure 24 (Southern Abutment)

Dec 22, 2008

Abutment stability (short term)


Retaining wall

File: Bridge 24 ST wall

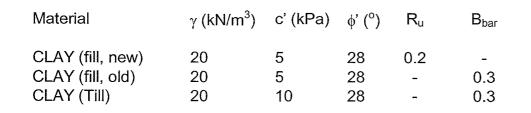
Software: Slope/W

Material	γ (kN/m ³)	c' (kPa)	φ' (°)
CLAY (fill)	20	5	28
CLAY (Till)	20	10	28
CLAY (lacustrine)	18	5	23

Thurber Engineering Ltd – Edmonton

NEERR – AFPS Bridge Abutment Geo Inv.

19-598-298


Structure 24 (Southern Abutment)

Dec 22, 2008

Abutment stability (long term)

Retaining wall

File: Bridge 24 LT wall

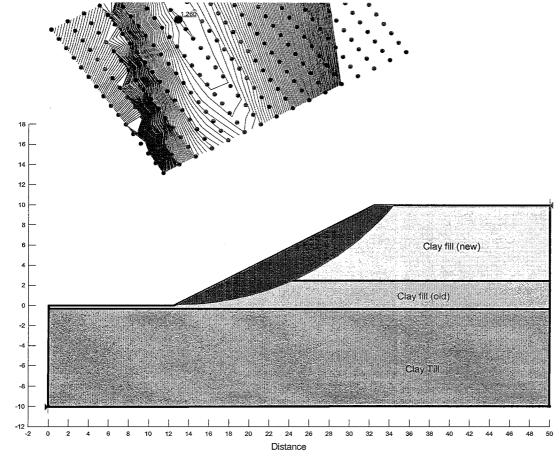


FIGURE 17.1 Thurber Engineering Ltd – Edmonton NEERR – AFPS Bridge Abutment Geo Inv. 19-598-298 Structure 19 (Western Abutment) Dec 22, 2008 Abutment stability (short term) Head slope 2H:1V

File: Bridge 19 ST gravel wedge

Software: Slope/W

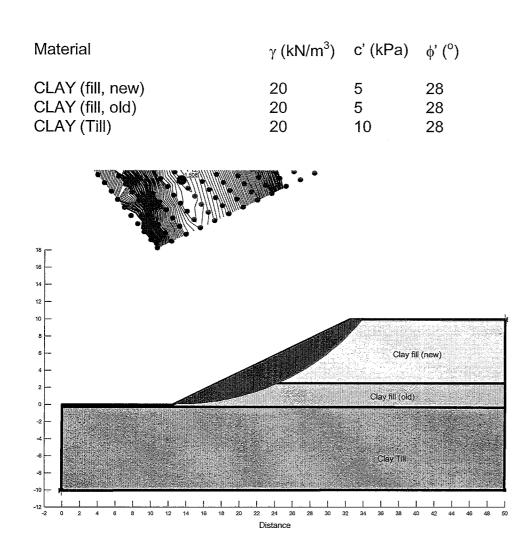
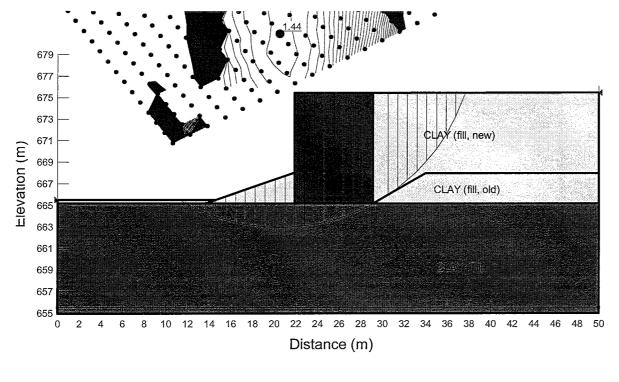


FIGURE 17.2


Thurber Engineering Ltd – Edmonton NEERR – AFPS Bridge Abutment Geo Inv. 19-598-298 Structure 19 (Western Abutment) Dec 22, 2008 Abutment stability (long term) Head slope 2H:1V

File: Bridge 19 LT gravel wedge

Software: Slope/W

Material	γ (kN/m ³)	c' (kPa)	φ' (°)	Ru	B_{bar}
CLAY (fill, new)	20	5	28	0.2	-
CLAY (fill, old)	20	5	28		0.3
CLAY (Till)	20	10	28		0.3

FIGURE 17.3 Thurber Engineering Ltd – Edmonton NEERR – AFPS Bridge Abutment Geo Inv. 19-598-298 Structure 19 (Western Abutment) Dec 22, 2008 Abutment stability (short term) Head slope 3H:1V & retaining wall

File: Bridge 19 ST wall

Software: Slope/W

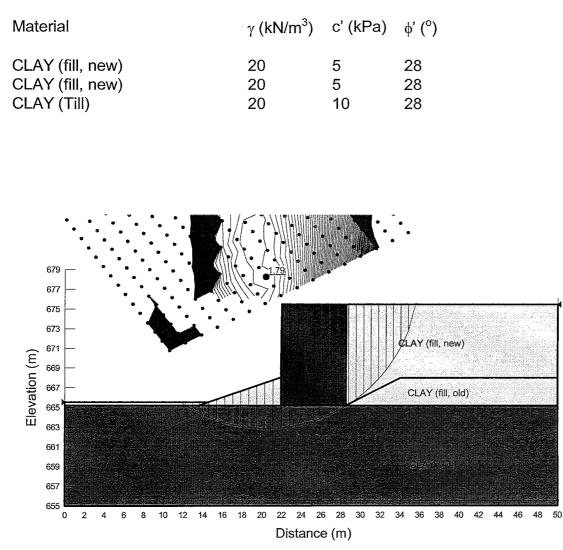
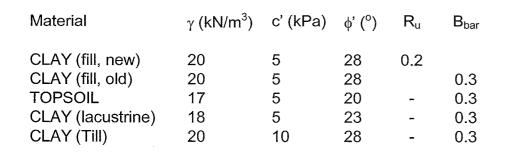


FIGURE 17.4 Thurber Engineering Ltd – Edmonton

NEERR – AFPS Bridge Abutment Geo Inv.

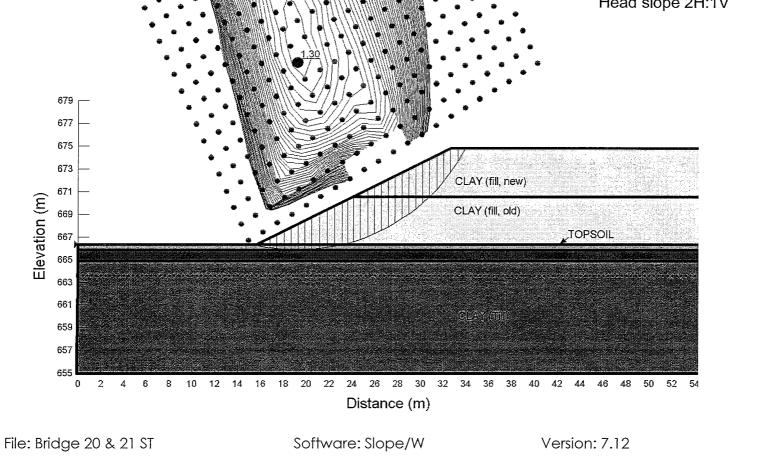
19-598-298

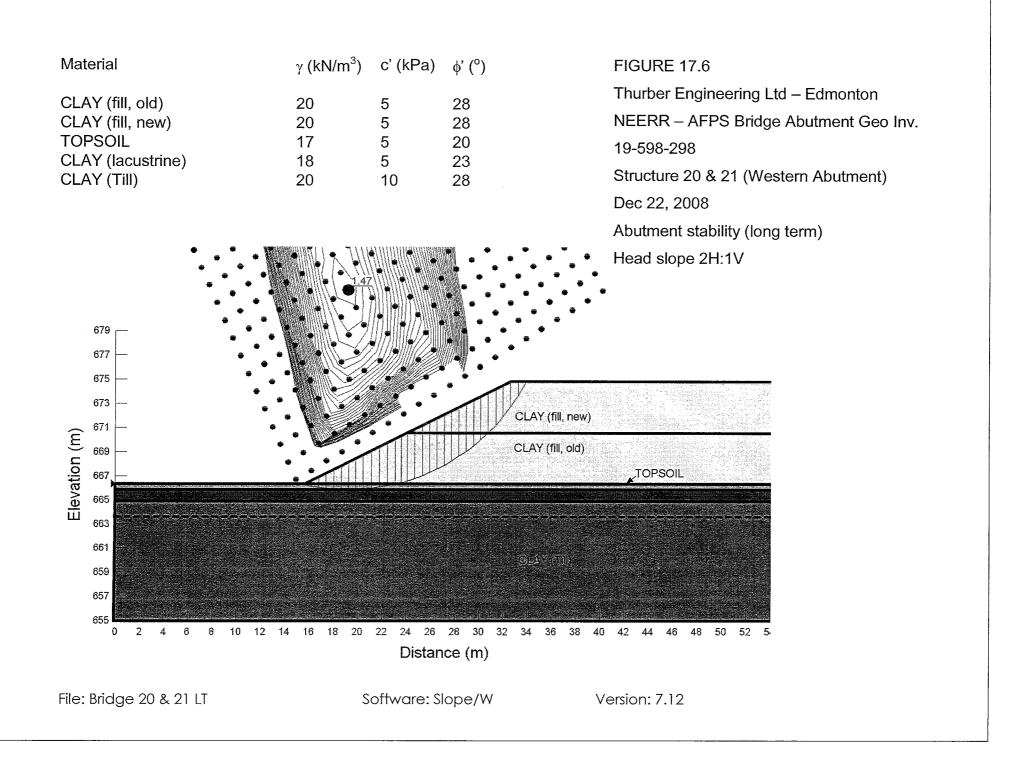
Structure 19 (Western Abutment)

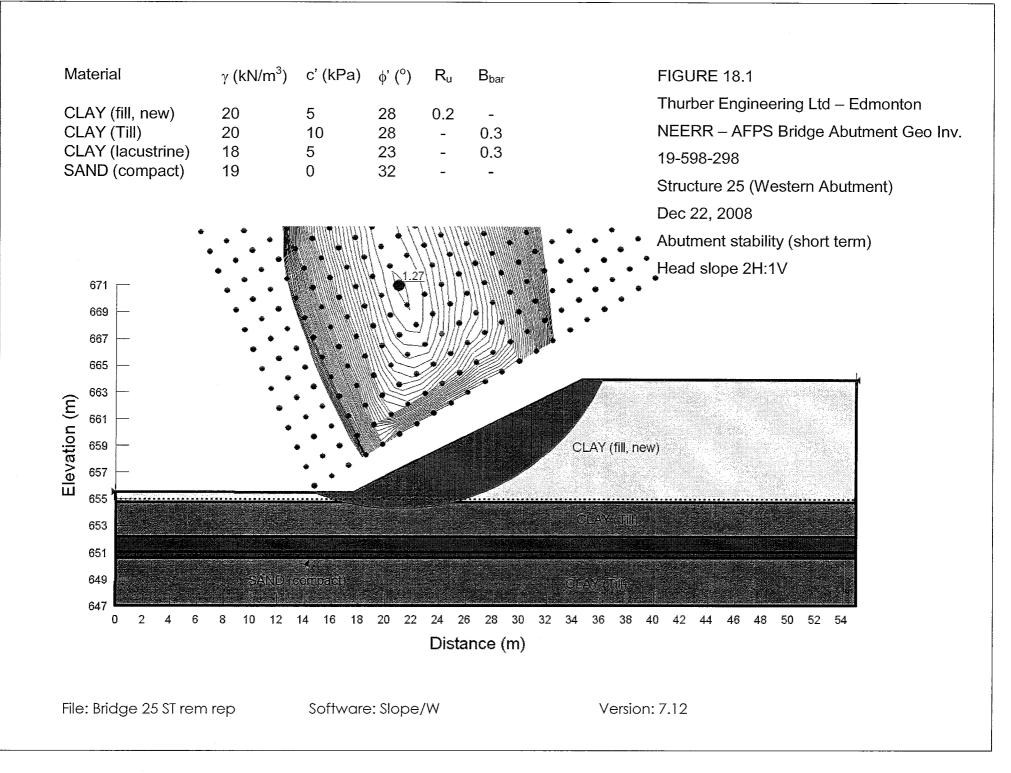

Dec 22, 2008

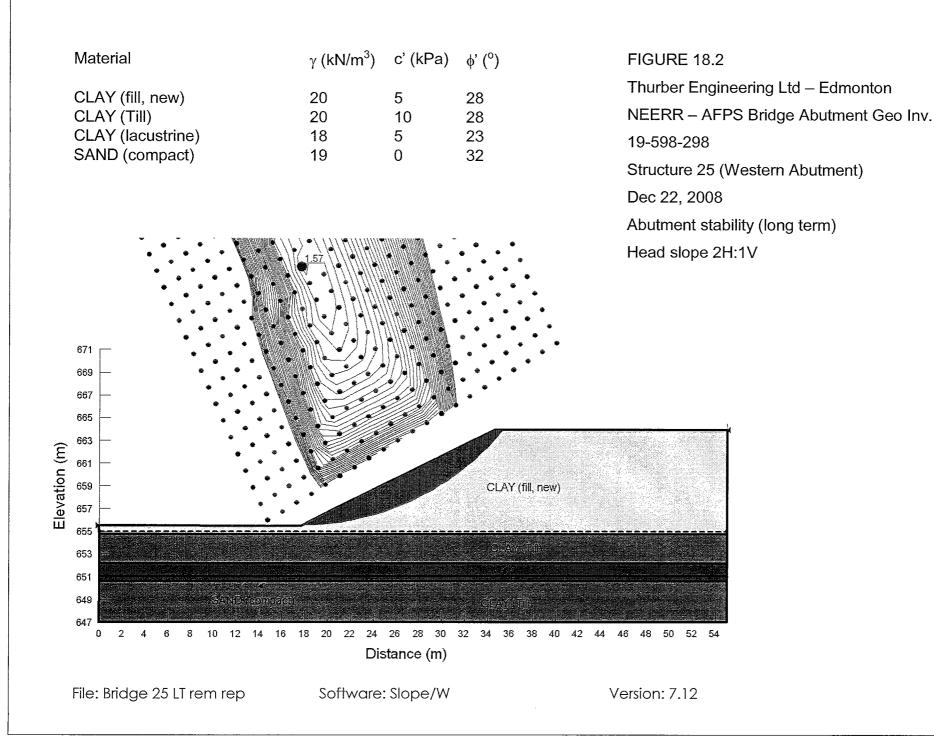
Abutment stability (long term)

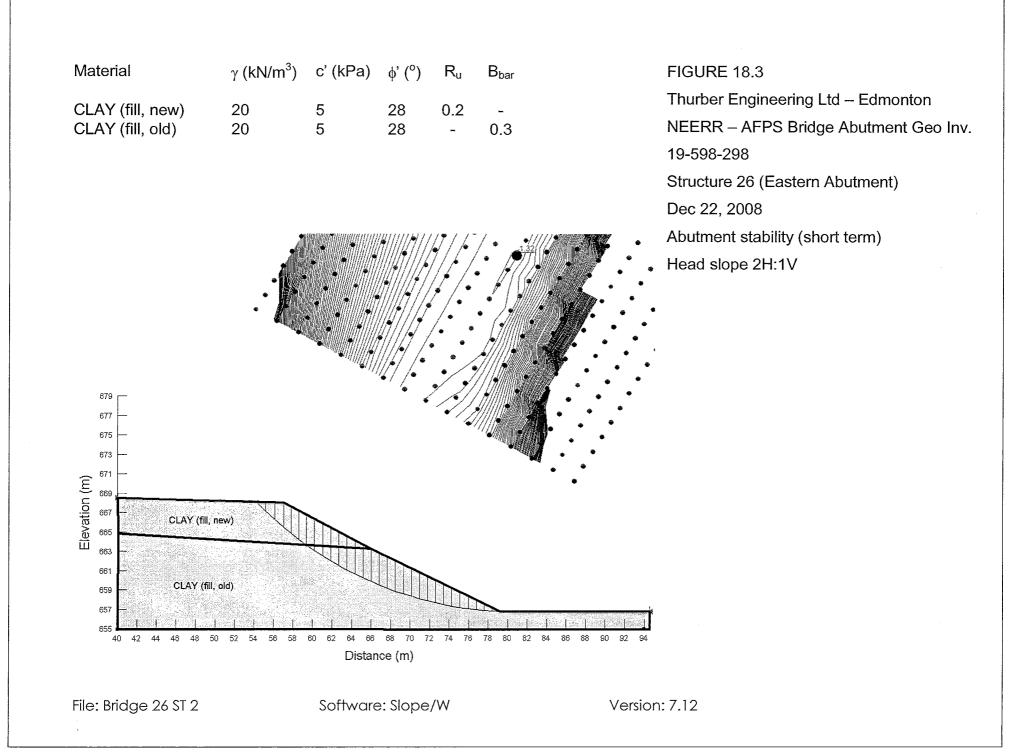
Head slope 3H:1V & retaining wall

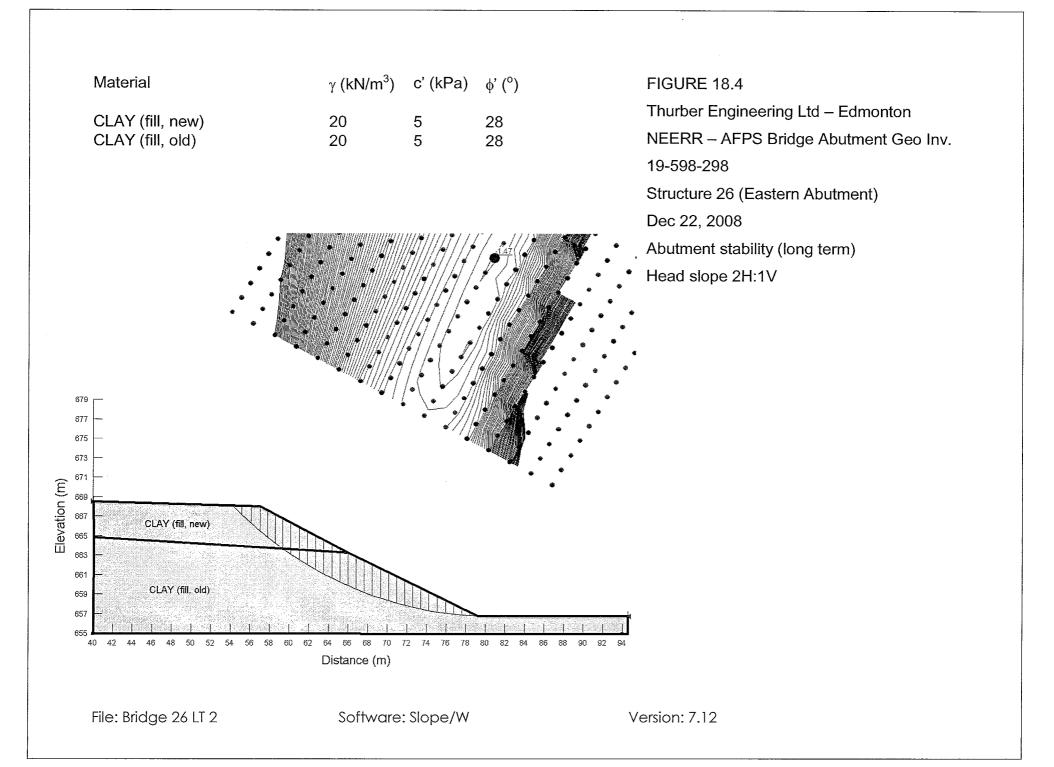

File: Bridge 19 LT wall


Software: Slope/W




FIGURE 17.5


Thurber Engineering Ltd – Edmonton NEERR – AFPS Bridge Abutment Geo Inv. 19-598-298 Structure 20 & 21 (Western Abutment) Dec 22, 2008 Abutment stability (short term) Head slope 2H:1V



APPENDIX E

Selected Photos

Photo 1 – Hwy 216 & Whitemud Drive interchange - Looking north at the east abutment (BF 81157 E-1).

Photo 2 – Hwy 216 & Sherwood Park Freeway interchange - Looking south at the east abutment (BF 75543 W-2).

Photo 3 – Hwy 216 & Sherwood Park Freeway interchange - Looking north at the west abutment (BF75543 E-1).

Photo 4 – Hwy 216 & Sherwood Park Freeway interchange - Looking north at the west abutment (BF75543 W-2).

Photo 5 – 17 Street – Looking west at the northern abutment.

Photo 6 – Existing 17 Street NW bridge over Sherwood Park Freeway, north abutment. Cracks in the concrete panels of the head slope.

Photo 7 – Looking east at the south abutment of the existing Broadmoor Boulevard bridge (BF76648) over Hwy 16.

Photo 8 – Bulging observed in the lower part of the head slope at existing bridge (BF76649) northwest of proposed Bridge 23.

Photo 9 – Growing vegetation between concrete panels in the head slope at existing bridge (BF76649) northwest of proposed Bridge 23.

Photo 10 – Looking east at the northern abutment of the existing bridge (BF76652) near proposed Bridges 14 and 15.

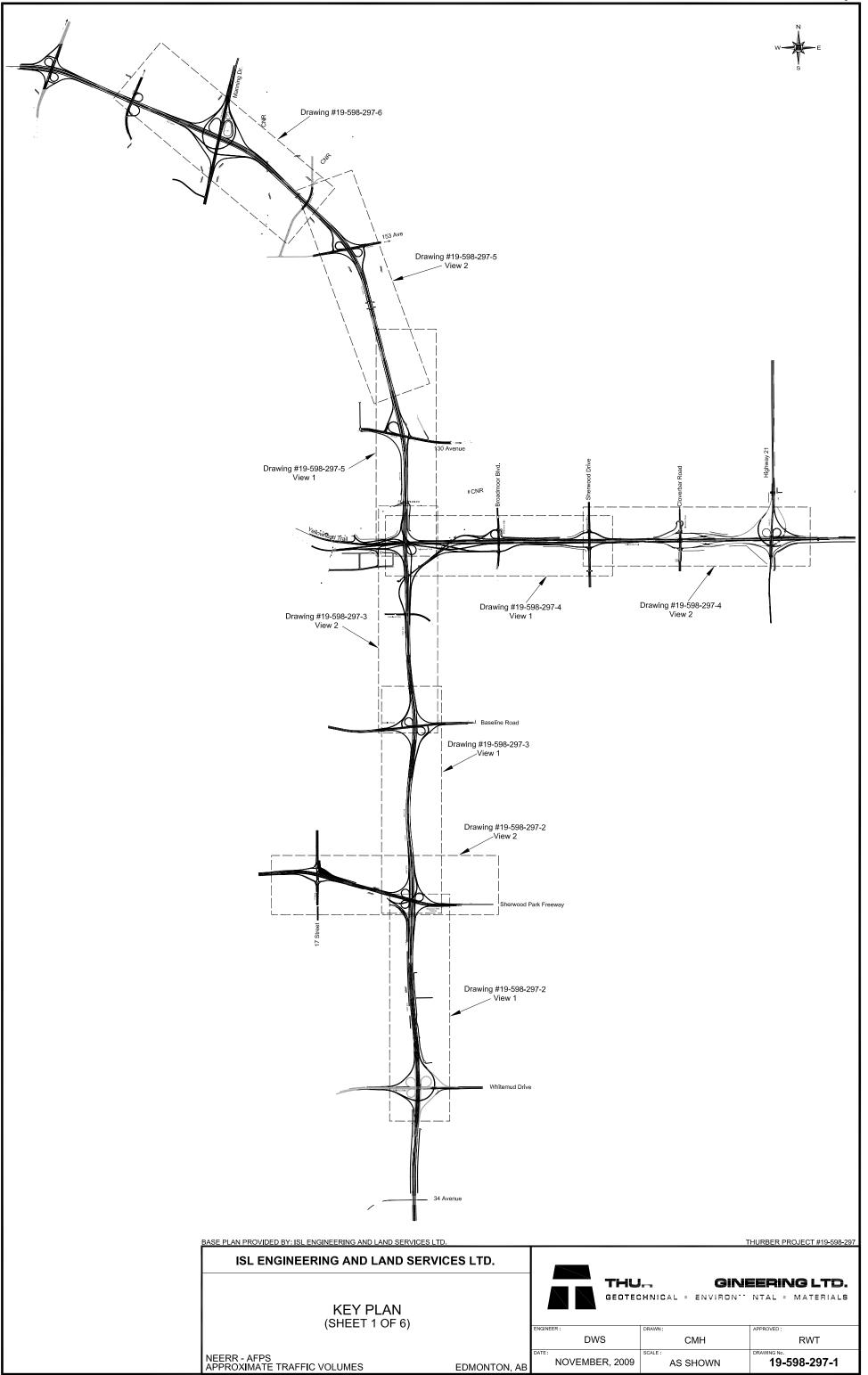
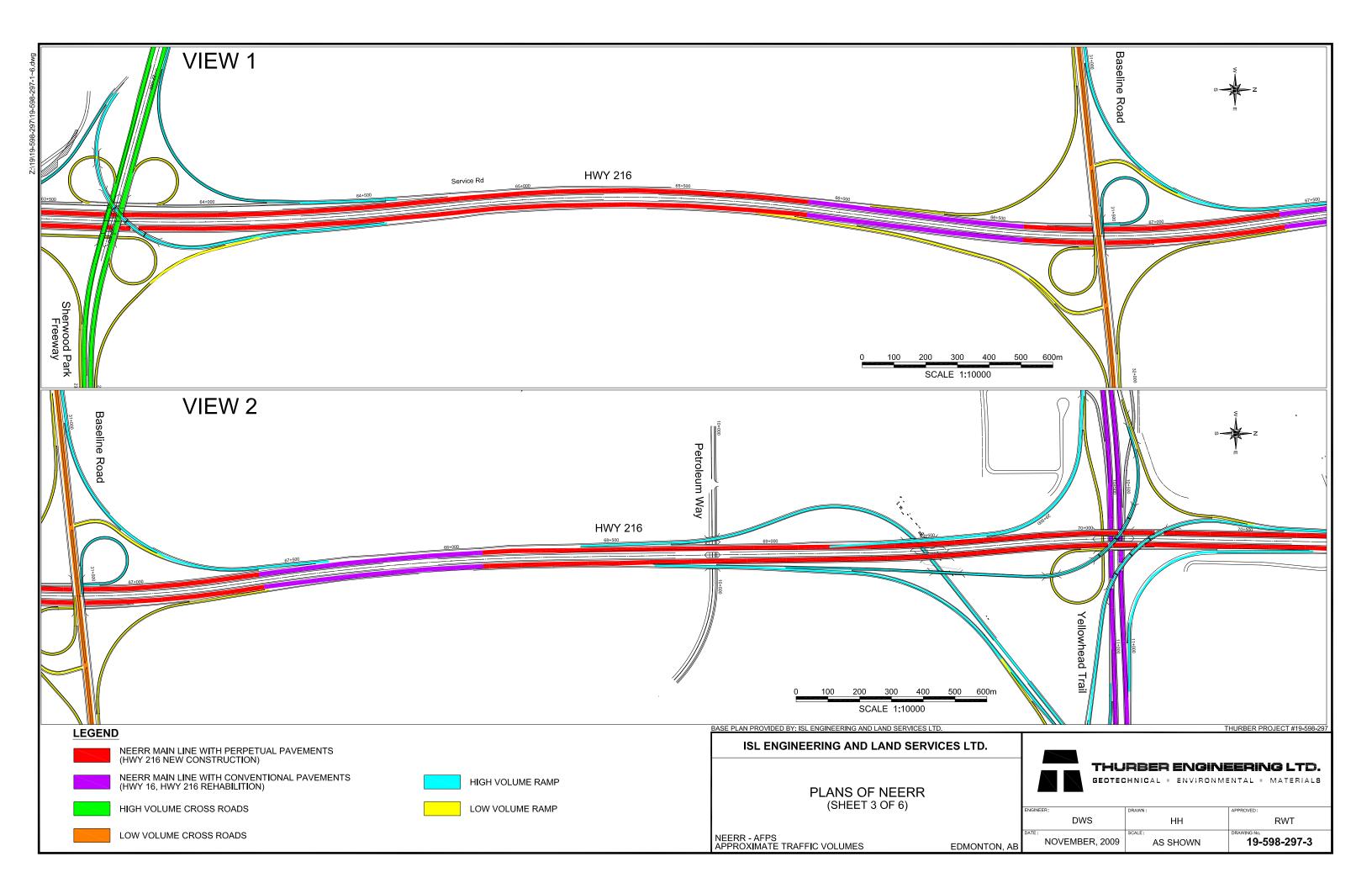
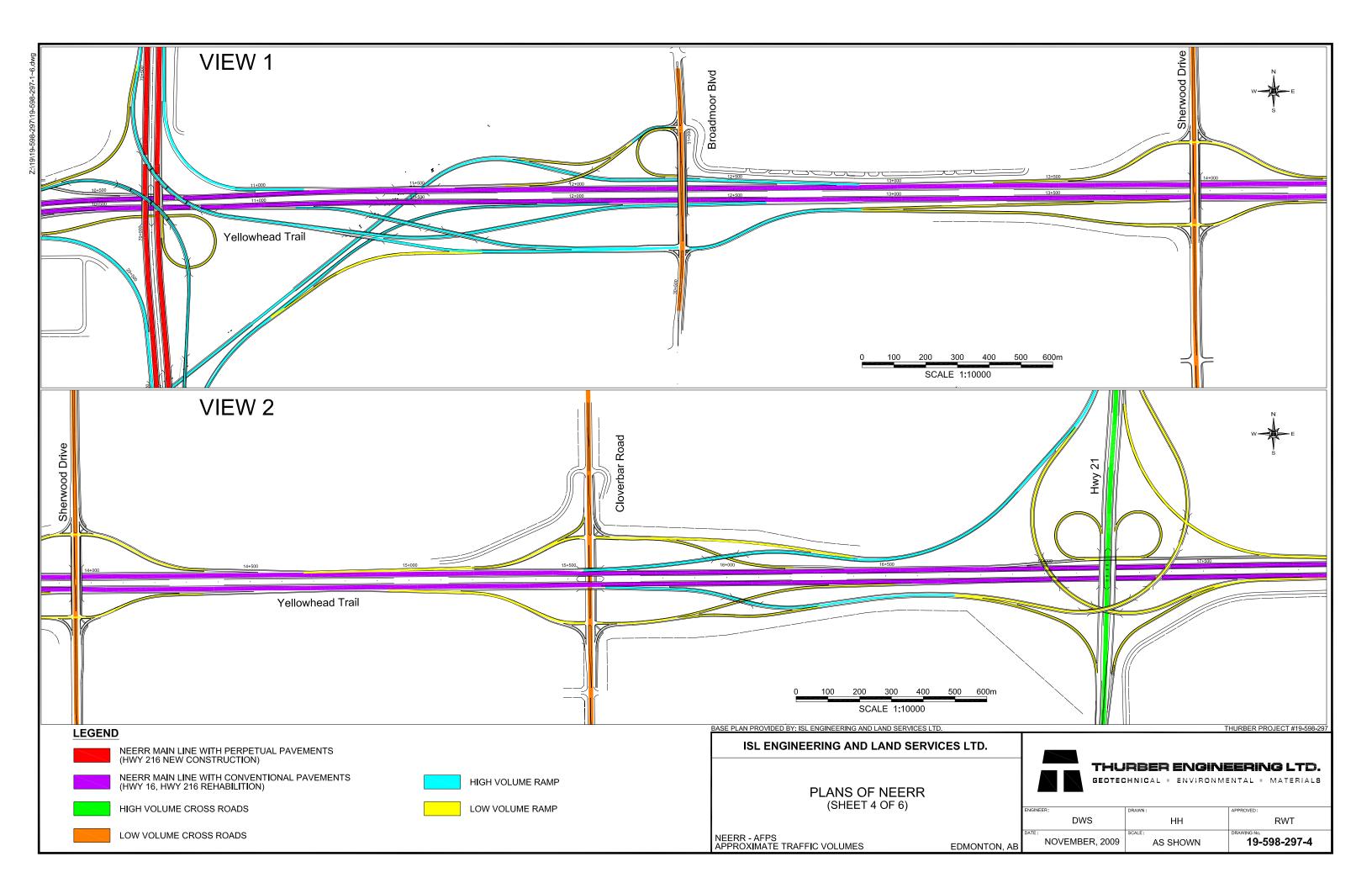
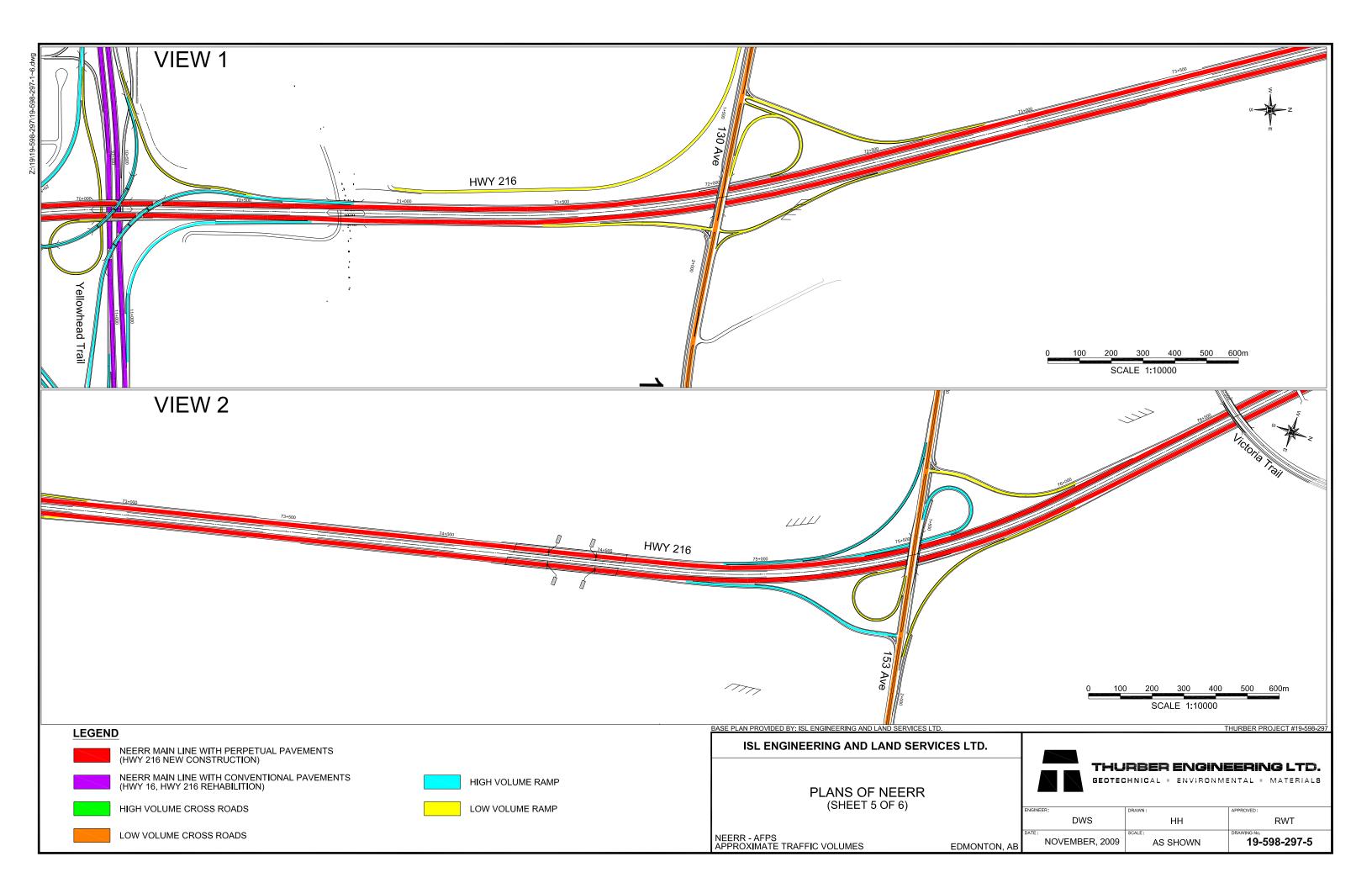
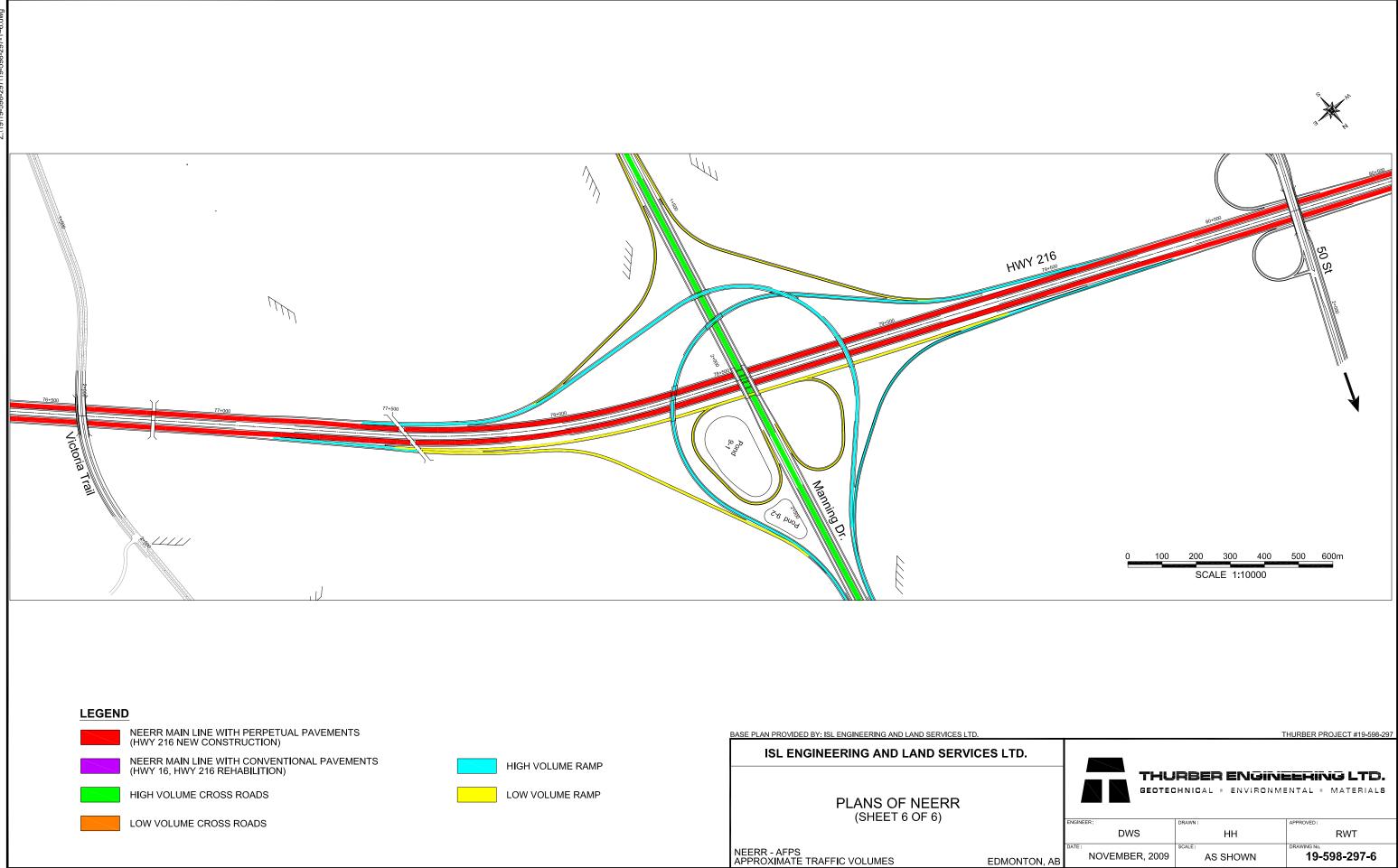


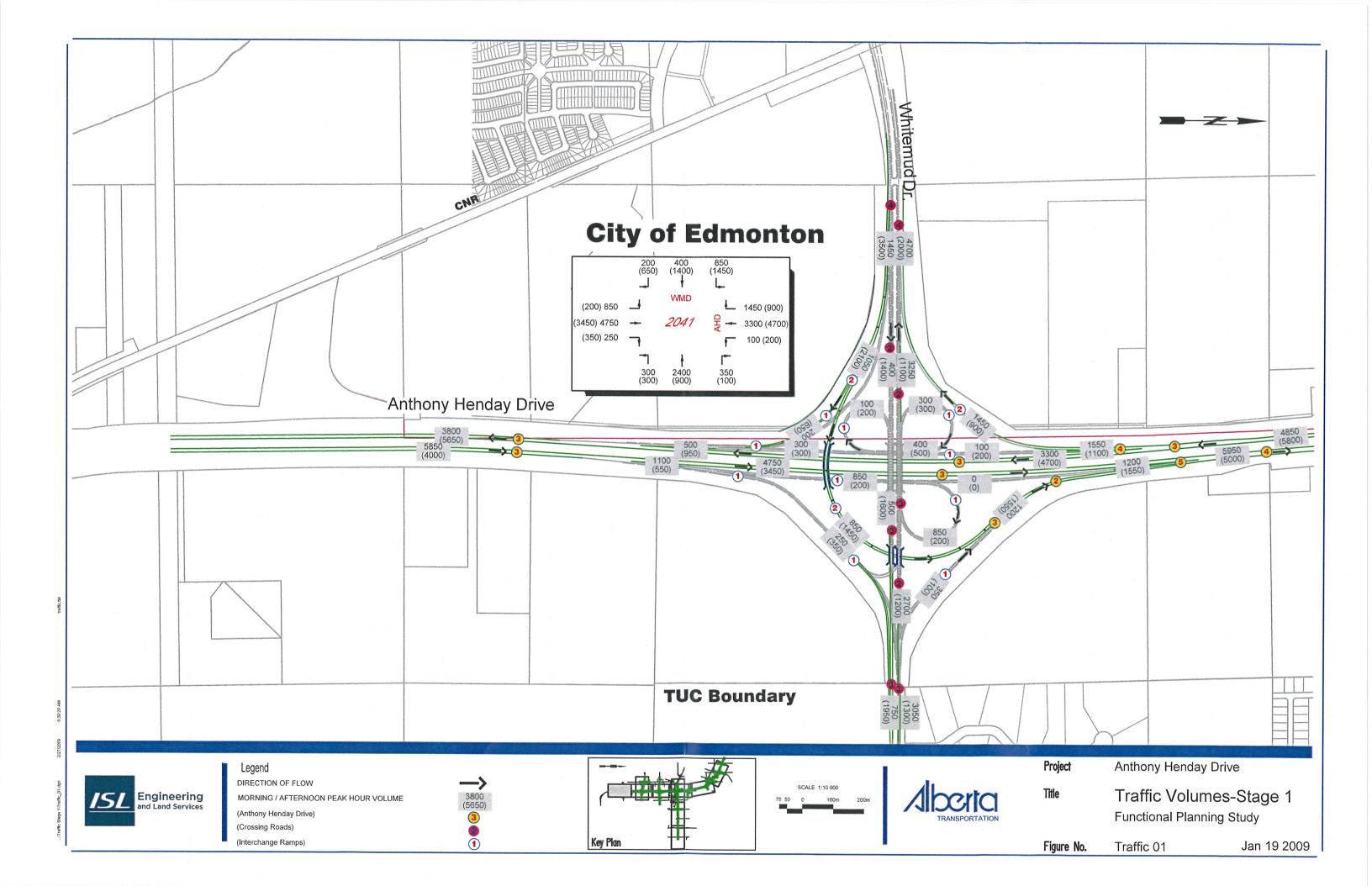
Photo 11 – Existing Hwy 216 northbound bridge (BF76650 N-1) over CP rail. Looking east at the southern abutment.

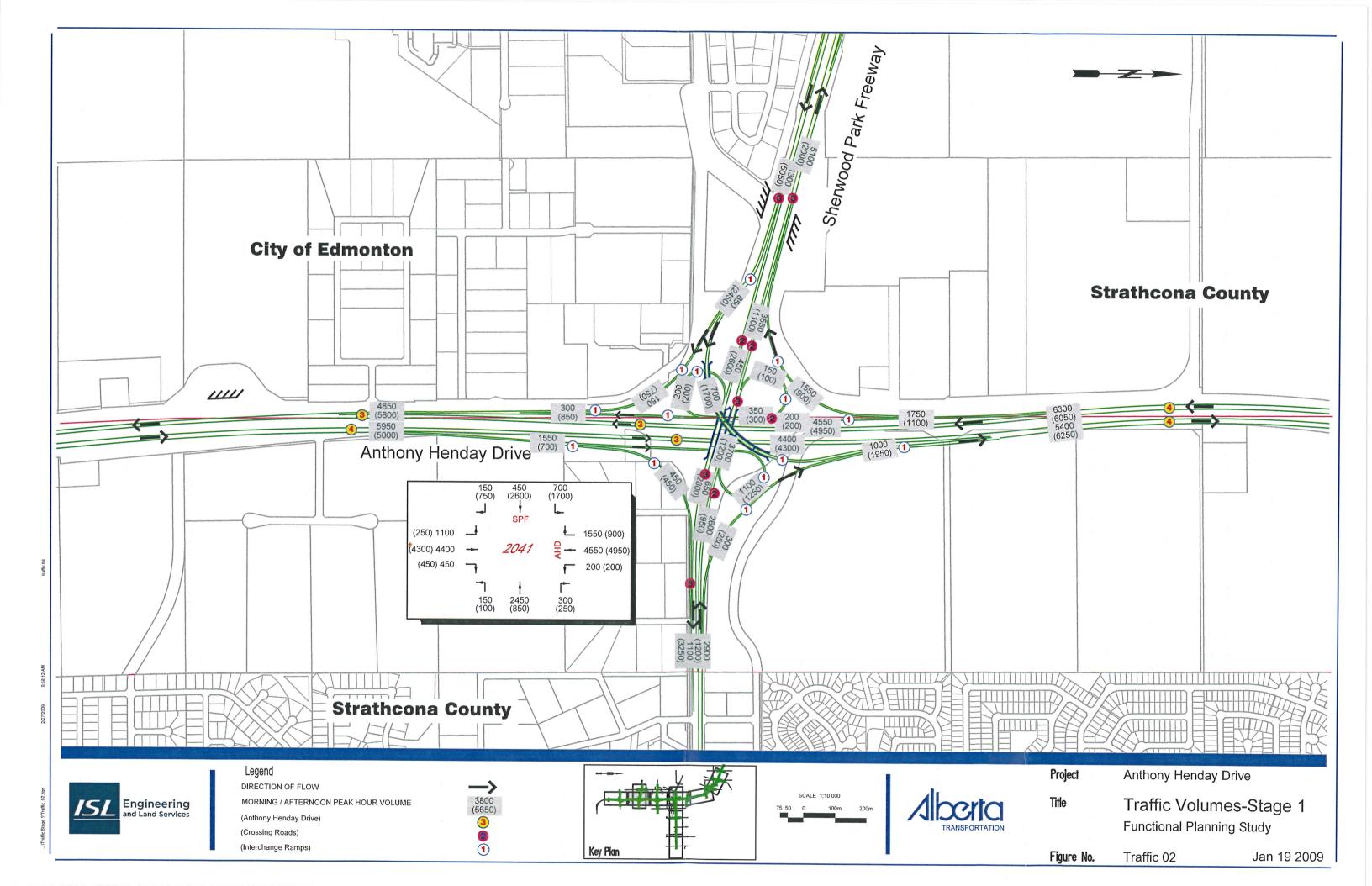


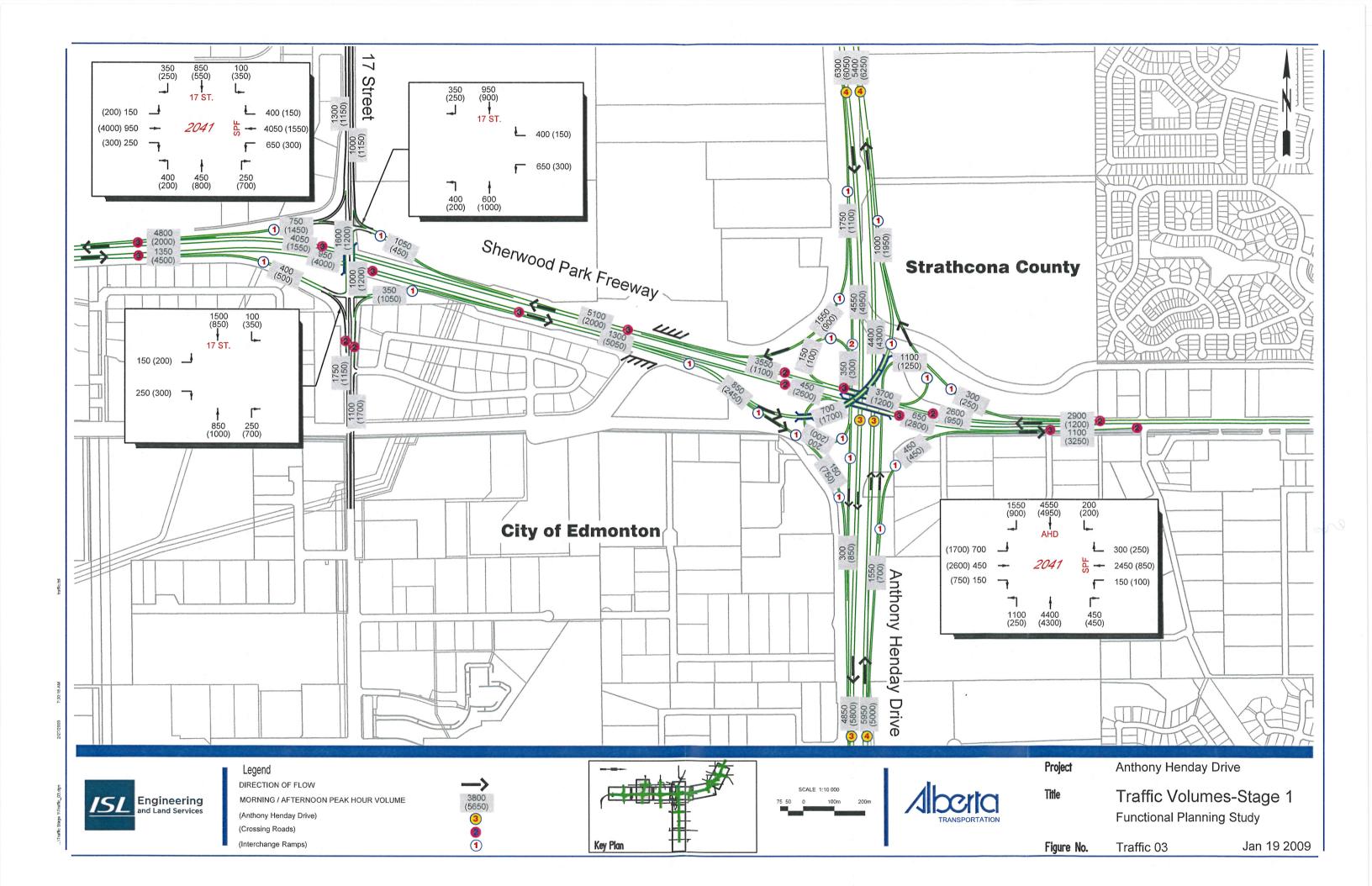

APPENDIX F


Figures 19-598-297-1 to 6 Design Traffic Levels

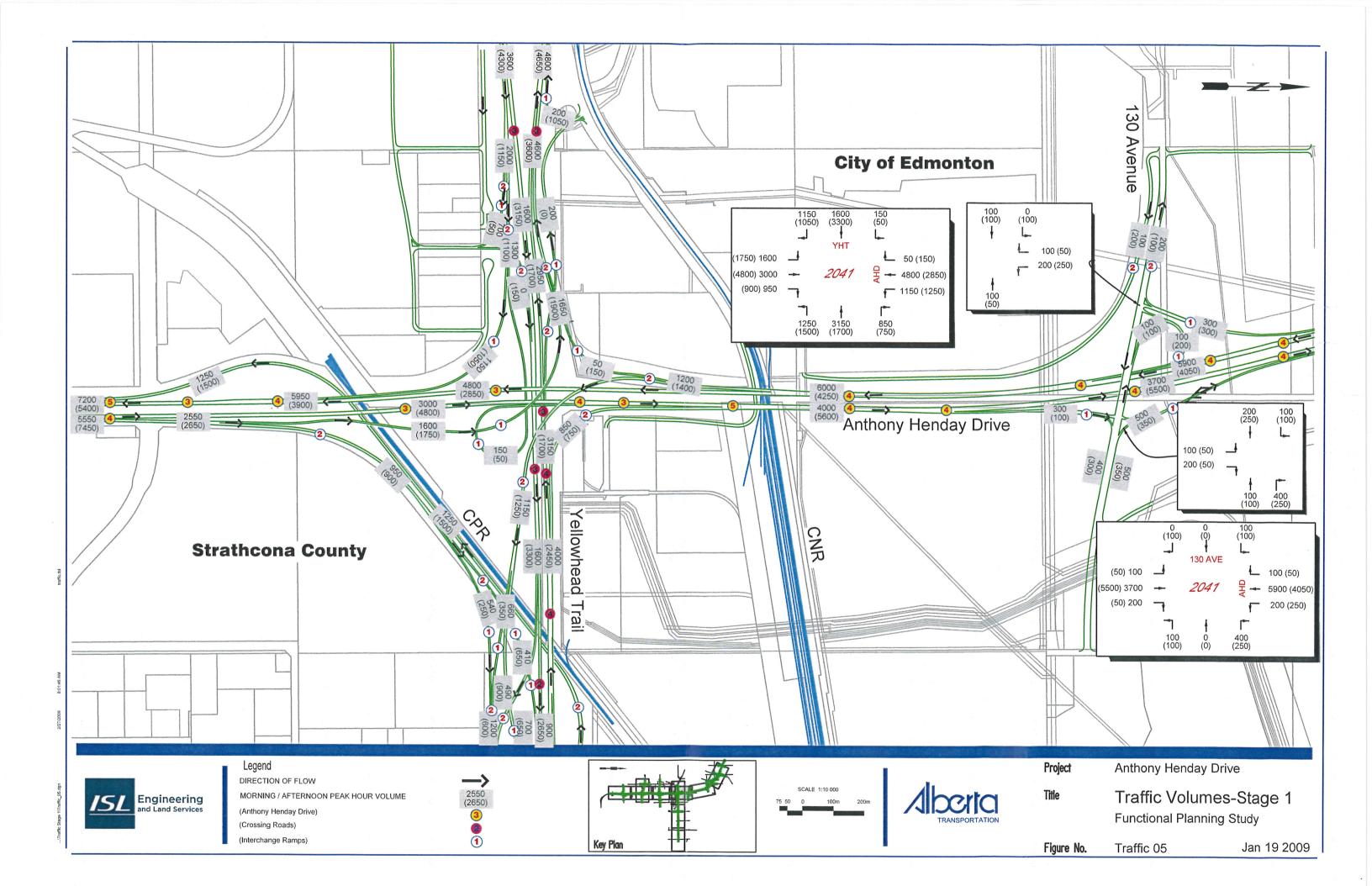


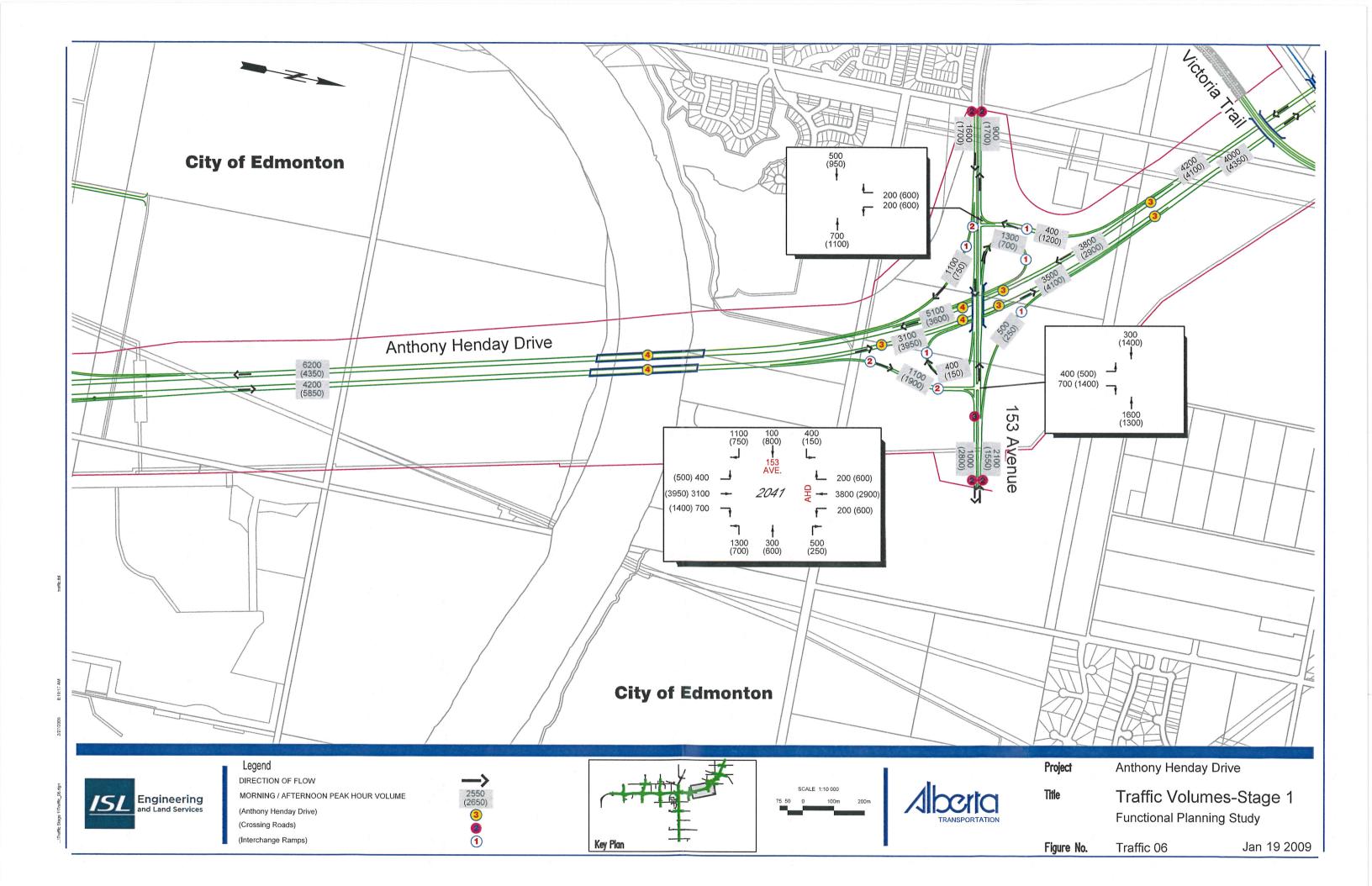


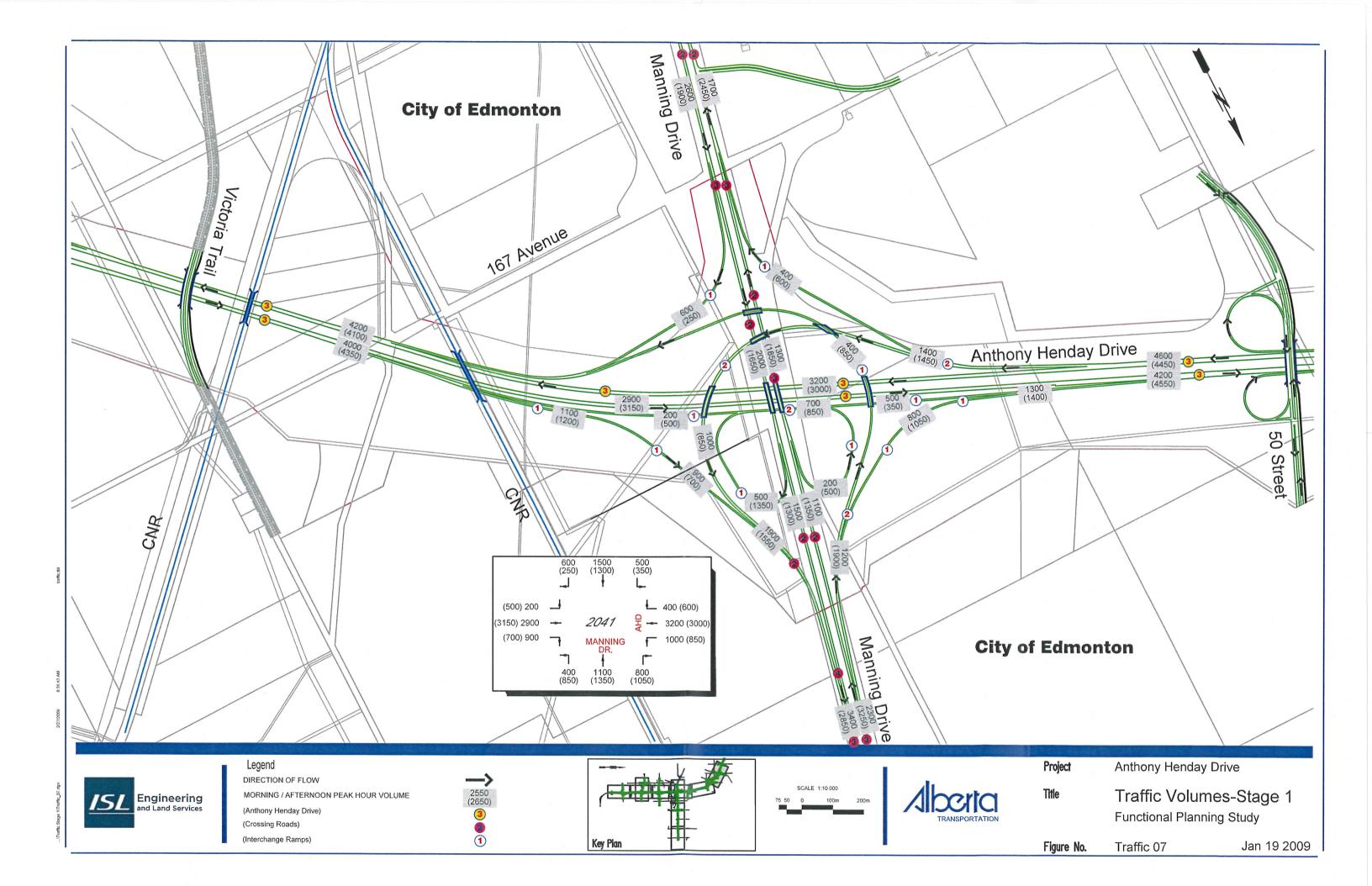


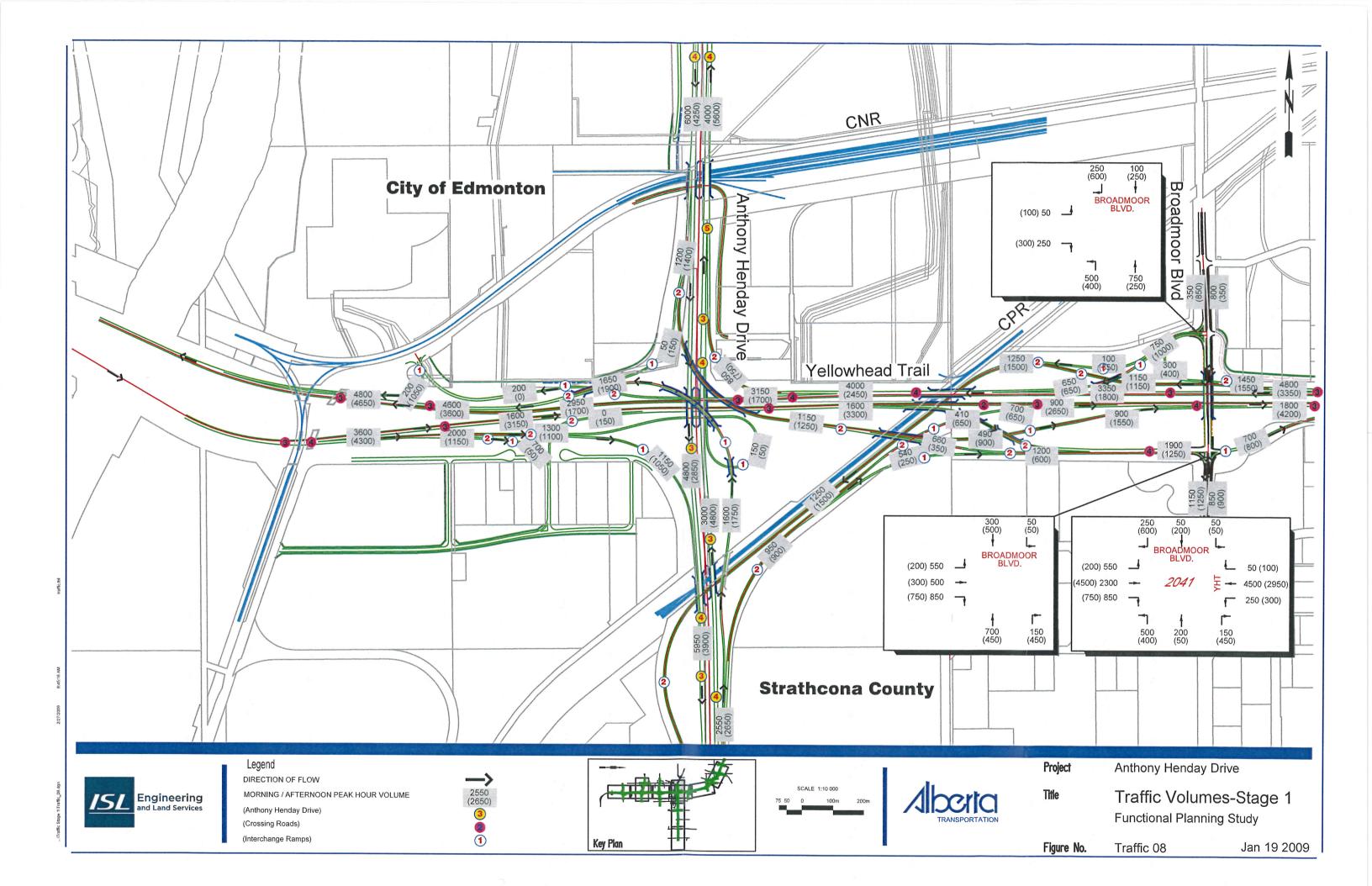


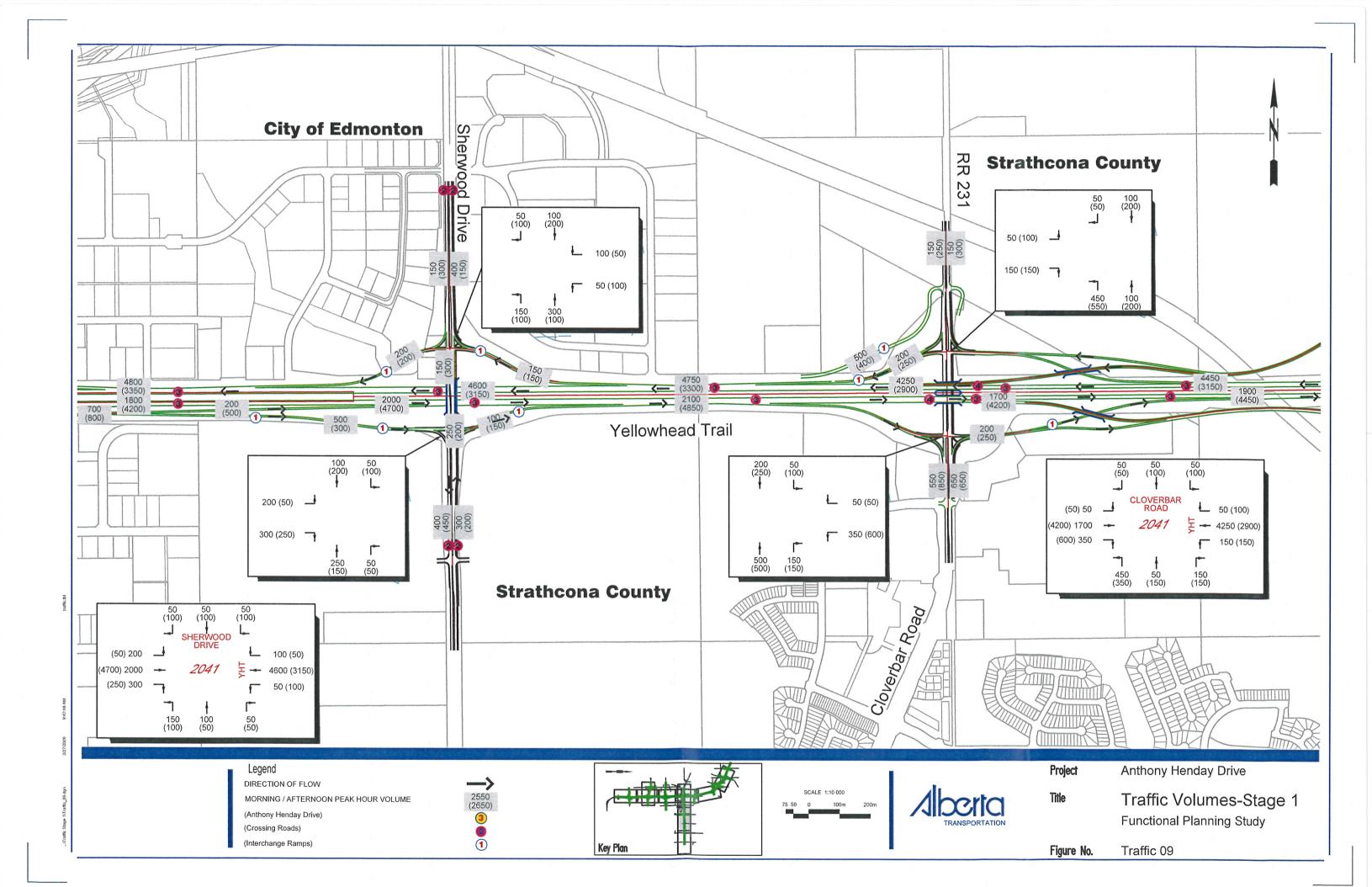


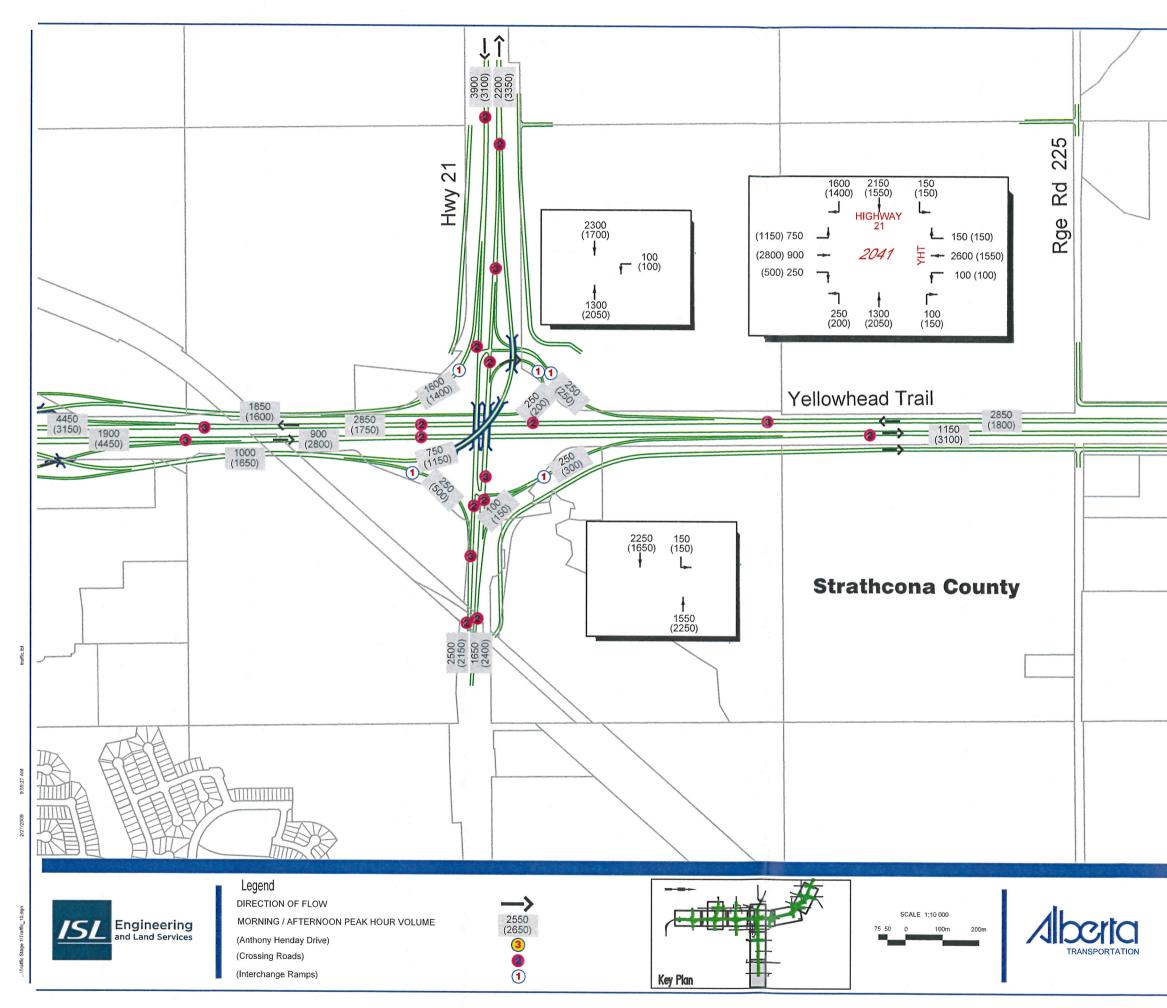


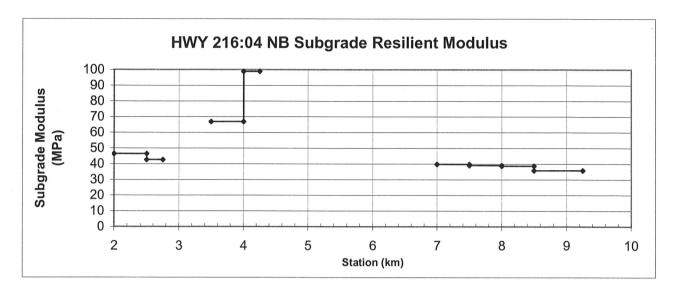


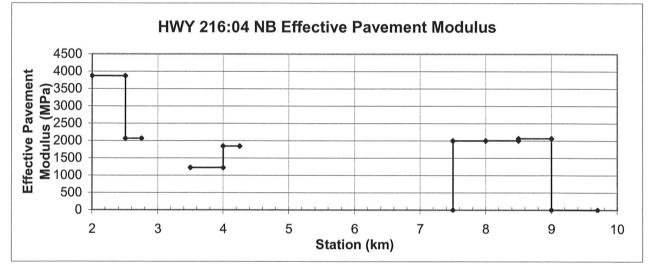


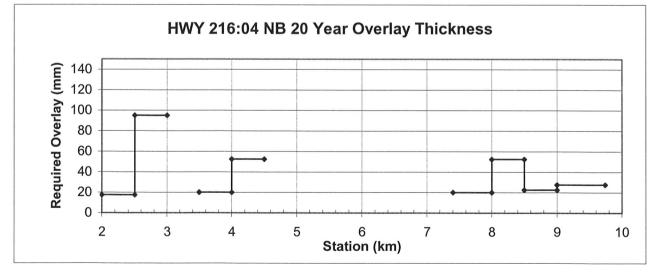


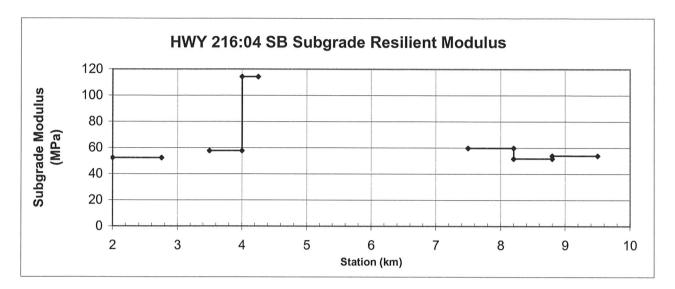

ffic Stage 1\Traffic_04.dgn

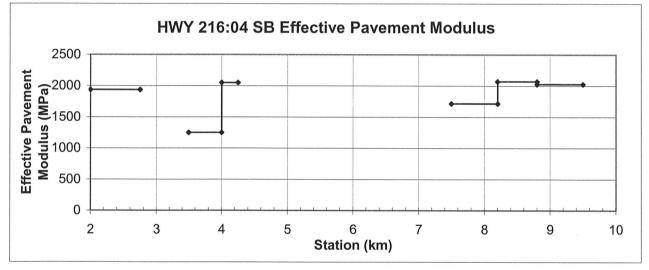


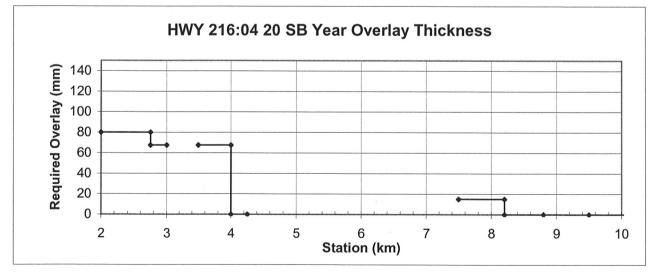


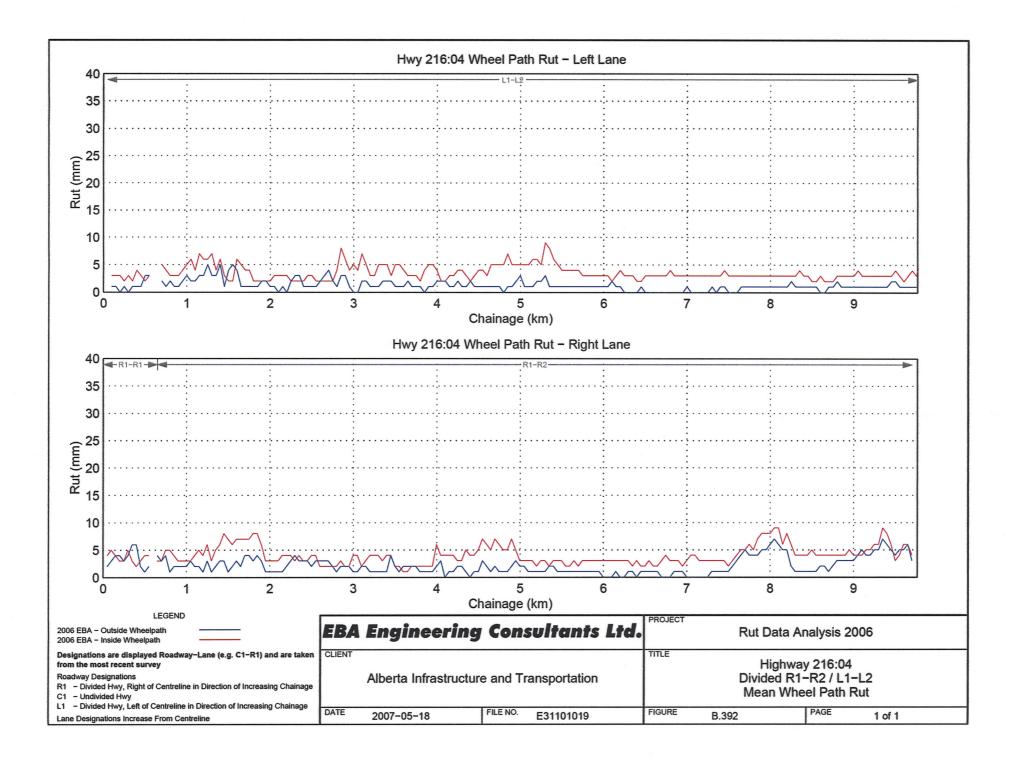

Project	Anthony Henday Drive				
Title	Traffic Volumes-Stage 1 Functional Planning Study				
Figure No.	Traffic 10	Jan 19 2009			

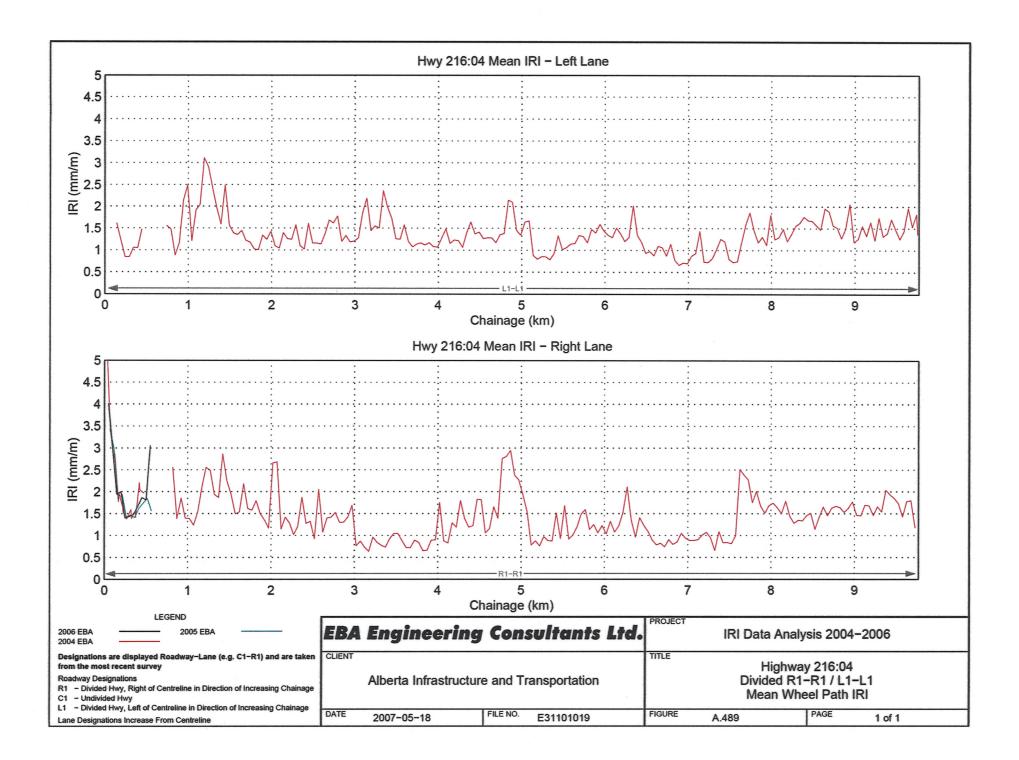



APPENDIX G


Graphs of Subgrade Resilient Modulus Pavement Resilient Modulus and Overlay Thickness IRI Graph Wheel Path Rutting Graph







APPENDIX H

DARWin Pavement Design Printouts

1997 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product Thurber Engineering Itd.

Flexible Structural Design Module

NEERR

AHD Main Line Perpetual Pavement

Flexible Structural Design

144,000,000

80-kN ESALs Over Initial Performance Period Initial Serviceability Terminal Serviceability Reliability Level Overall Standard Deviation Roadbed Soil Resilient Modulus Stage Construction

2.5 95 % 0.45 30,000 kPa 1

4.2

Calculated Design Structural Number

220 mm

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
Layer	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	<u>(Di)(mm)</u>	<u>(m)</u>	<u>SN (mm)</u>
1	ACP	0.4	1	410	-	164
2	GBC	0.14	1	400	-	56
Total	-	-	-	810	-	220

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product Thurber Engineering Itd.

Flexible Structural Design Module

NEERR AHD High Volume Ramp Perpetual Pavement

Flexible Structural Design

61,800,000

30,000 kPa

4.2

2.5

95 %

0.45

1

80-kN ESALs Over Initial Performance Period Initial Serviceability Terminal Serviceability Reliability Level Overall Standard Deviation Roadbed Soil Resilient Modulus Stage Construction

Calculated Design Structural Number

198 mm

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	<u>(Di)(mm)</u>	<u>(m)</u>	<u>SN (mm)</u>
1	ACP	0.4	1	360	-	120
2	GBC	0.14	1	400	-	56
Total	-	-	-	700	-	176

*Note: This value is not represented by the inputs or an error occurred in calculation.

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product Thurber Engineering Itd.

Flexible Structural Design Module

NEERR AHD Low Volume Ramp Perpetual Pavement

Flexible Structural Design

20,600,000

4.2

2.5

95 %

0.45

80-kN ESALs Over Initial Performance Period Initial Serviceability Terminal Serviceability Reliability Level Overall Standard Deviation Roadbed Soil Resilient Modulus Stage Construction

30,000 kPa 1

Calculated Design Structural Number

173 mm

Layer 1	Material Description	Struct Coef. <u>(Ai)</u> 0.4	Drain Coef. <u>(Mi)</u> 1	Thickness <u>(Di)(mm)</u> 300	Width <u>(m)</u> -	Calculated <u>SN (mm)</u> 120
2	GBC	0.14	1	400	-	56
Total	-	-	-	700	-	176

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product Thurber Engineering Itd.

Flexible Structural Design Module

NEERR

Main Line Conventional Pavements

Flexible Structural Design

34,300,000

30,000 kPa

4.2

2.5

95 %

0.45

1

80-kN ESALs Over Initial Performance Period Initial Serviceability Terminal Serviceability Reliability Level Overall Standard Deviation Roadbed Soil Resilient Modulus Stage Construction

Calculated Design Structural Number

184 mm

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	<u>(Di)(mm)</u>	<u>(m)</u>	<u>SN (mm)</u>
1	ACP	0.4	1	320	-	128
2	GBC	0.14	1	400	-	56
Total	-	-	. –	720	-	184

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product Thurber Engineering Itd.

Flexible Structural Design Module

NEERR High Volume Cross Roads and YHT Ramp Conventional Pavements

Flexible Structural Design

14,700,000

30,000 kPa

4.2

2.5

95 %

0.45

1

80-kN ESALs Over Initial Performance Period Initial Serviceability Terminal Serviceability Reliability Level Overall Standard Deviation Roadbed Soil Resilient Modulus Stage Construction

Calculated Design Structural Number

166 mm

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	<u>(Di)(mm)</u>	<u>(m)</u>	<u>SN (mm)</u>
1	ACP	0.4	1	280	-	112
2	GBC	0.14	1	400	-	56
Total	-	-	-	680	-	168

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product Thurber Engineering Itd.

Flexible Structural Design Module

NEERR Low Volume Cross Roads

Conventional Pavements

Flexible Structural Design

9,800,000

4.2

2.5

90 %

0.45

80-kN ESALs Over Initial Performance Period Initial Serviceability Terminal Serviceability Reliability Level Overall Standard Deviation Roadbed Soil Resilient Modulus Stage Construction

Calculated Design Structural Number

1 150 mm

30,000 kPa

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
<u>Layer</u>	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	<u>(Di)(mm)</u>	<u>(m)</u>	SN (mm)
1	ACP	0.4	1	260	-	104
2	GBC	0.14	1	350	-	49
Total	-	-	-	610	-	153

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product Thurber Engineering Itd.

Flexible Structural Design Module

NEERR Low Volume Ramps Conventional Pavements

Flexible Structural Design

4,900,000

4.2

2.5

85 %

0.45

1

80-kN ESALs Over Initial Performance Period Initial Serviceability Terminal Serviceability Reliability Level Overall Standard Deviation Roadbed Soil Resilient Modulus Stage Construction

Calculated Design Structural Number

131 mm

30,000 kPa

Layer 1	<u>Material Description</u> ACP GBC	Struct Coef. <u>(Ai)</u> 0.4 0.14	Drain Coef. (<u>Mi)</u> 1	Thickness (<u>Di)(mm)</u> 210 350	Width (<u>m)</u> -	Calculated <u>SN (mm)</u> 84
Total	-	-	-	560	-	49 133

APPENDIX I

Recommended Construction Procedures

RECOMMENDED CONSTRUCTION PROCEDURES

The following construction procedures are considered to represent good practice and are to be read in conjunction with the text of this report.

1. EXCAVATED FOUNDATIONS

- 1.1 Excavation close to foundation level should be done carefully to avoid disturbance of the soil. It is essential to prevent the soil at foundation level from deterioration due to excessive drying or becoming wet from surface or seepage water. Good drainage both during and after construction is essential.
- 1.2 Sumps, if required, should be located well away from the foundation area. Softened or over dried soil must be removed and replaced by lean mix concrete or by extending the foundations.
- 1.3 The foundation must be kept from freezing both during and after construction. Foundation concrete should not be placed on or against frozen soil.

2. BACKFILLING

- 2.1 Backfill around foundations should be placed in such a manner so as to prevent settlement and to be relatively impervious near the surface so that water does not pond against foundations nor be allowed to seep into the soil.
- 2.2 Backfill should not be placed until the structure has sufficient strength to withstand the earth pressures resulting from placement and compaction.
- 2.3 All backfill around grade beams, foundation walls, etc. must be carefully and uniformly compacted. The backfill should be placed in even layers and no frozen or organic material should be incorporated into the fill. All lumps of material must be broken down or squeezed together during placing and compaction.

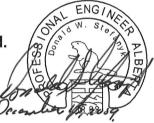
- 2.4 The final grade (allowing for some settlement of the backfill) should shed water away from the structure.
- 2.5 During construction, precautions should be taken to prevent water ponding in grade beam excavations thereby acting as a source of water to soften the soil under the floor slab area or providing a source of water for frost action if the building is not heated during freezing weather.

3. DRIVEN STEEL PILES

- 3.1 Piles shall be driven by equipment having a striking weight of not less than one-third of the driven weight of the piles. The driver should be capable of delivering at least 27 kN-metres (20,000 ft-lbs) of energy.
- 3.2 The number of blows required to drive the pile each foot should be recorded for every pile as an indication of the satisfactory carrying capacity of the pile and as an indicator of potential tip damage.
- 3.3 The driving energy should be restricted to 6300 kN-metres per square metre (3,000 ft-lbs per square inch) of steel in the pile cross section to avoid over-stressing the steel during driving.
- 3.4 After each pile is driven to its required depth an elevation should be taken of the pile top or on a suitable mark on the side of the pile. This elevation should be checked periodically to ensure that it is not heaved by the driving of adjacent piles. Piles that are heaved must be redriven.
- 3.5 For piles which displace a considerable amount of soil during driving, such as closed-end piles, care must be taken that the driving does not cause damaging horizontal displacement of existing structures or foundations.
- 3.6 Where piles are designed to gain support by skin friction in the soil, it is essential that the pile have ends and walls free from protrusions which would cause voids or disturbance of the adjacent soil during driving.

4. BORED CAST-IN-PLACE CONCRETE PILES

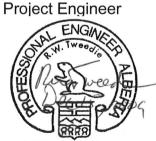
- 4.1 If there is evidence of water bearing and/or sloughing soil, casing should be used to seal off the water or prevent the sloughing of the sides of the hole. The concrete and reinforcing steel should be on hand and placed as soon as the pile hole has been completed and approved.
- 4.2 Pile bells, if used, should be formed entirely in self-supporting soil and it may be necessary in some cases to extend the pile bell if caving occurs at the location of the bell.
- 4.3 Water should not be left ponded on the pile base and should be removed, or dried by the use of dry cement when permitted by the engineer.
- 4.4 Concrete should be placed without segregation and carefully vibrated throughout the full length of the pile to ensure that voids do not exist in the pile shaft. The concrete slump should be between 75 and 125 mm with a minimum compressive strength at 28 days of 21 MPa (3000 psi). Higher compressive strengths may be required for structural or durability reasons and higher slumps may be necessary for closely spaced reinforcing bars or where concrete is to be tremied under water.
- 4.5 Steel reinforcing should be tied into the grade beam reinforcing steel. This recommendation is important where the soil below grade beam can swell from a change in moisture content or by frost action before the building is heated.

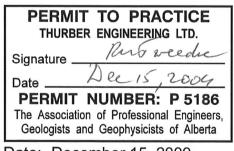


NORTHEAST EDMONTON RING ROAD ADVANCED FUNCTIONAL PLANNING STUDY MANNING DRIVE TO WHITEMUD DRIVE GEOTECHNICAL INVESTIGATION VOLUME 2 of 2

Report

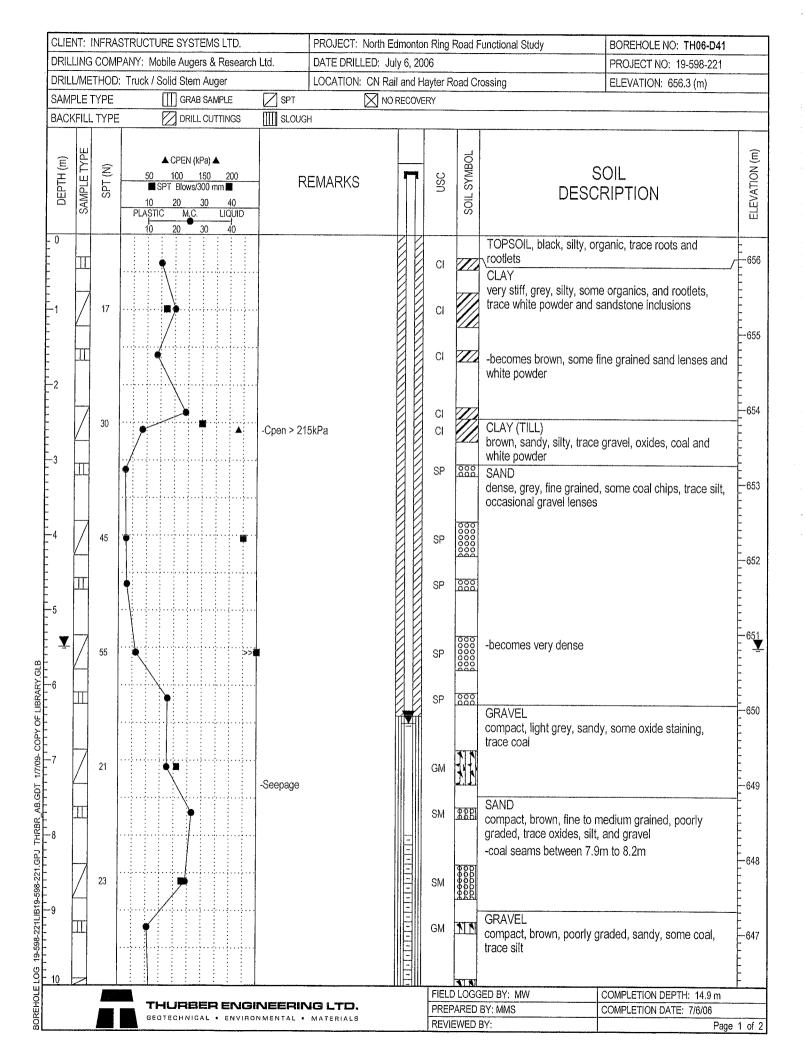
to

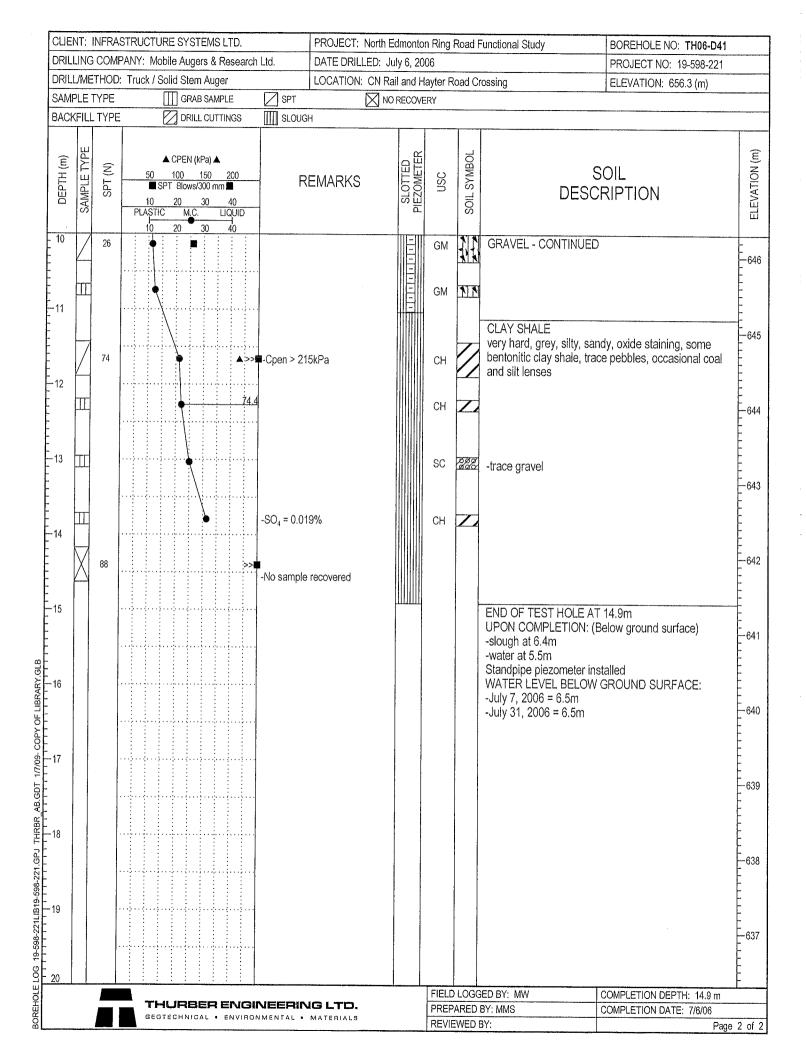

ISL Engineering and Land Services Ltd.

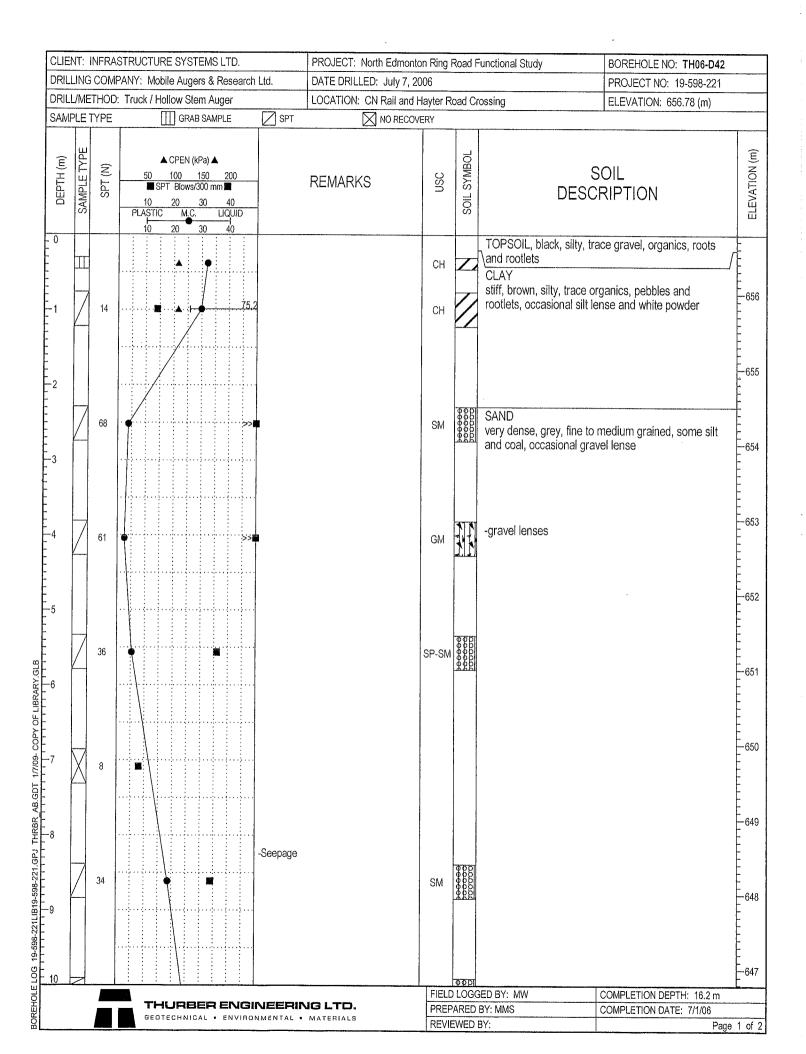

Don W. Stefanyk, B.Sc., P.Eng. Project Engineer

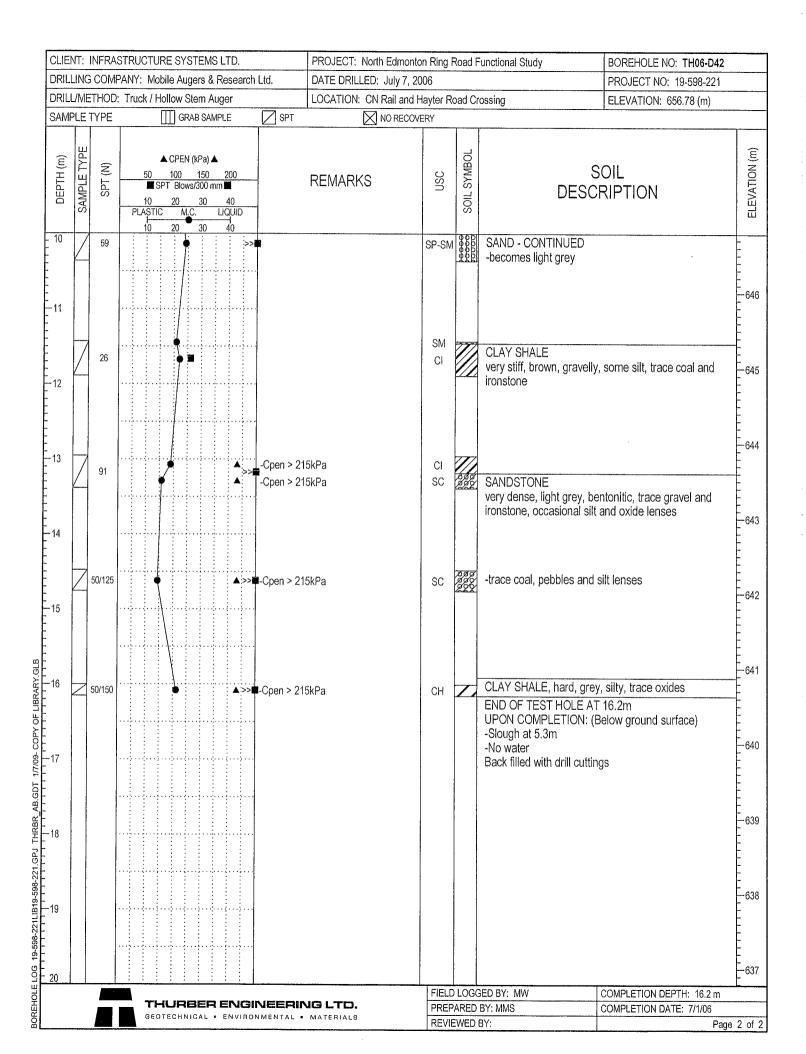
Shawn G. Russell, B.A.Sc, P.Eng.

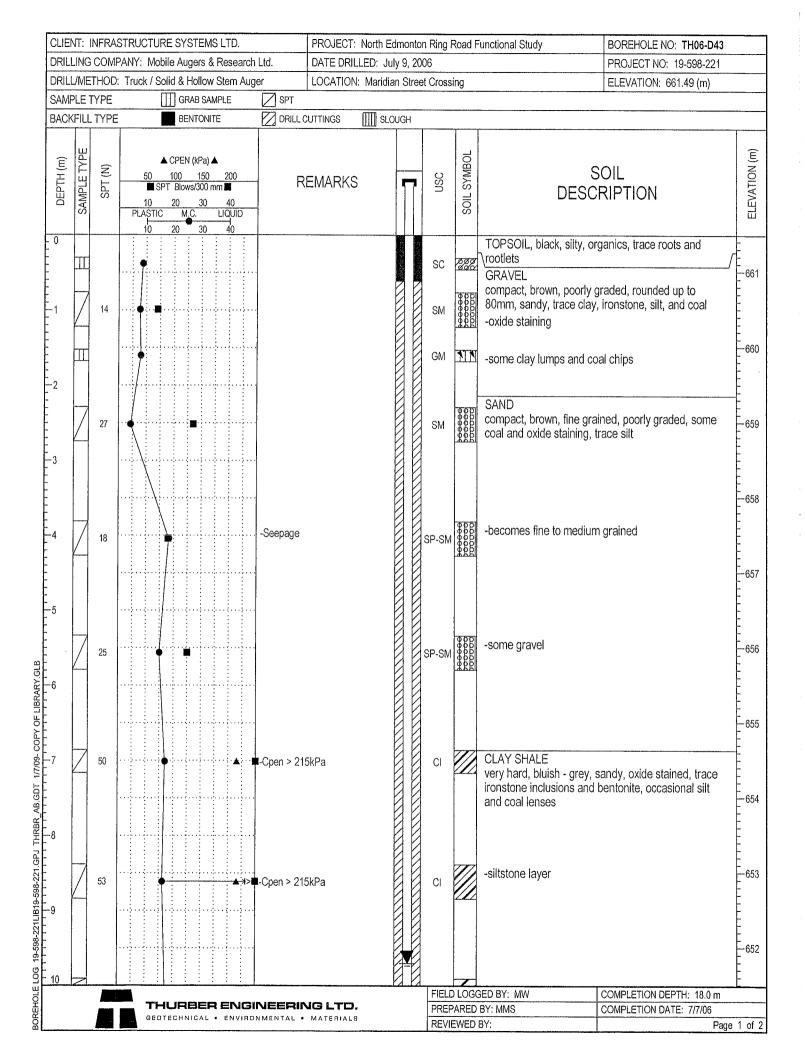
Robin Tweedie, M.Sc., P.Eng. Review Principal

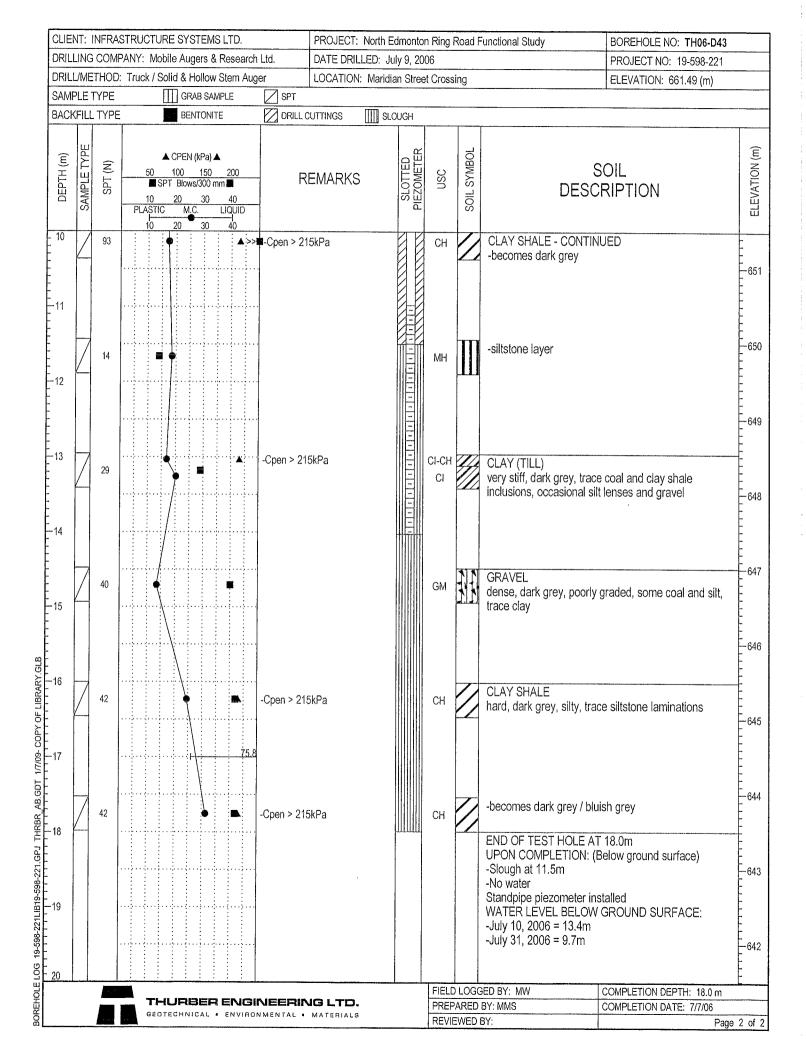

Date: December 15, 2009 File: 19-598-298

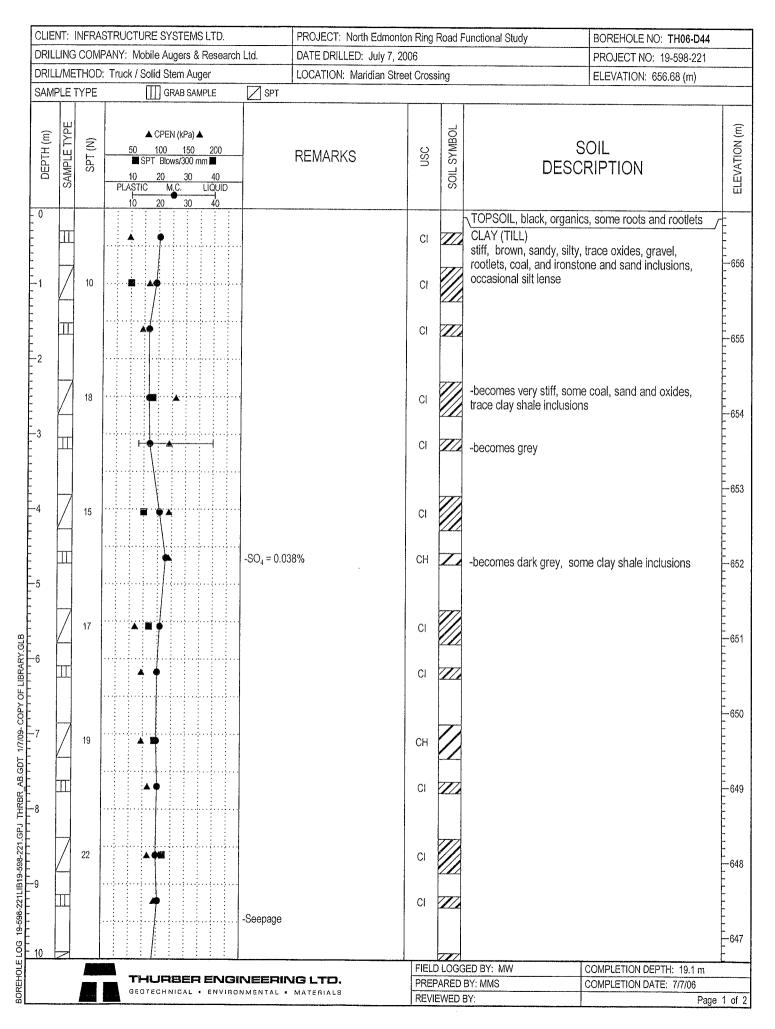


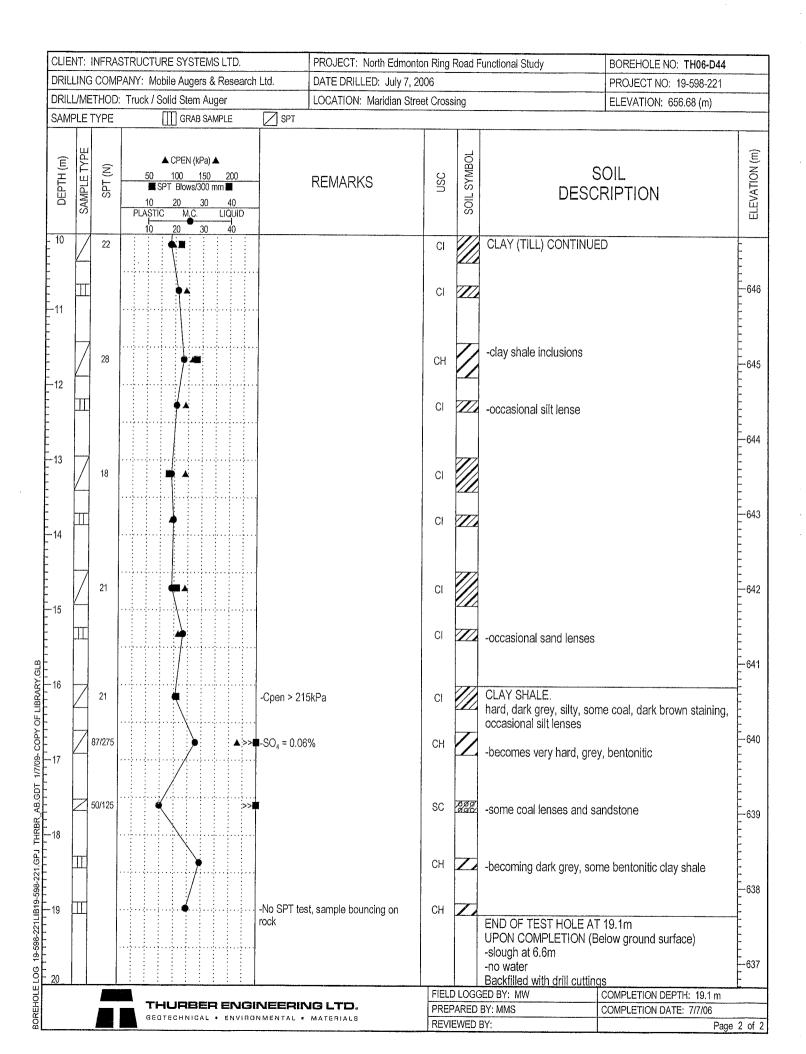

VOLUME 2

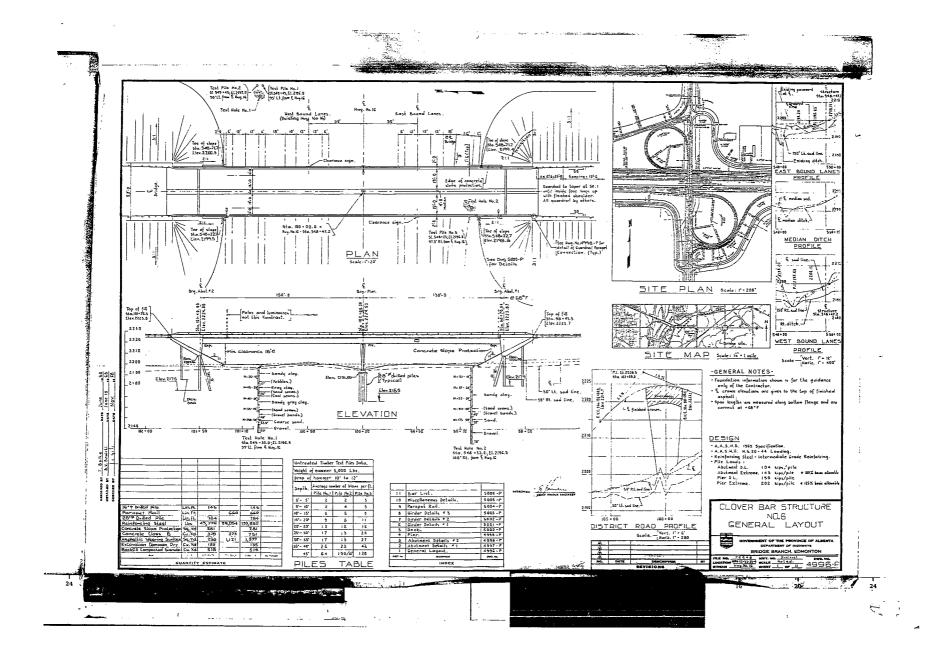

APPENDIX J

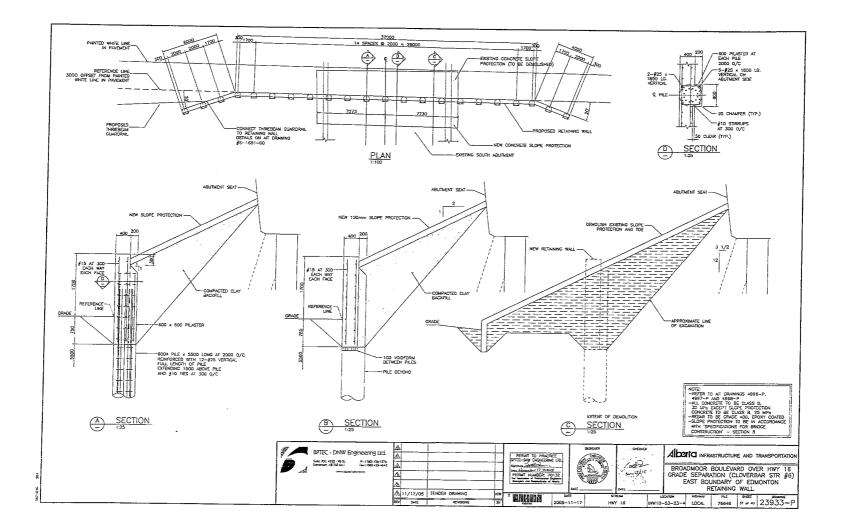

Previous Test Hole Logs Selected Relevant Information from AT Files

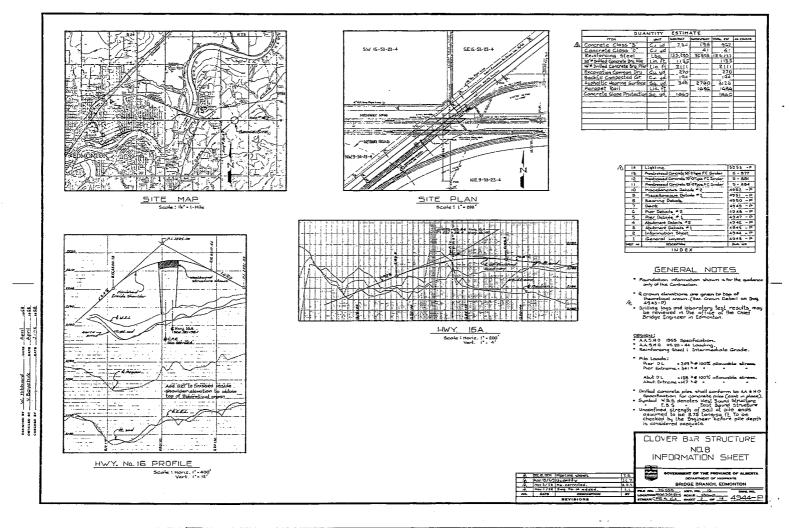




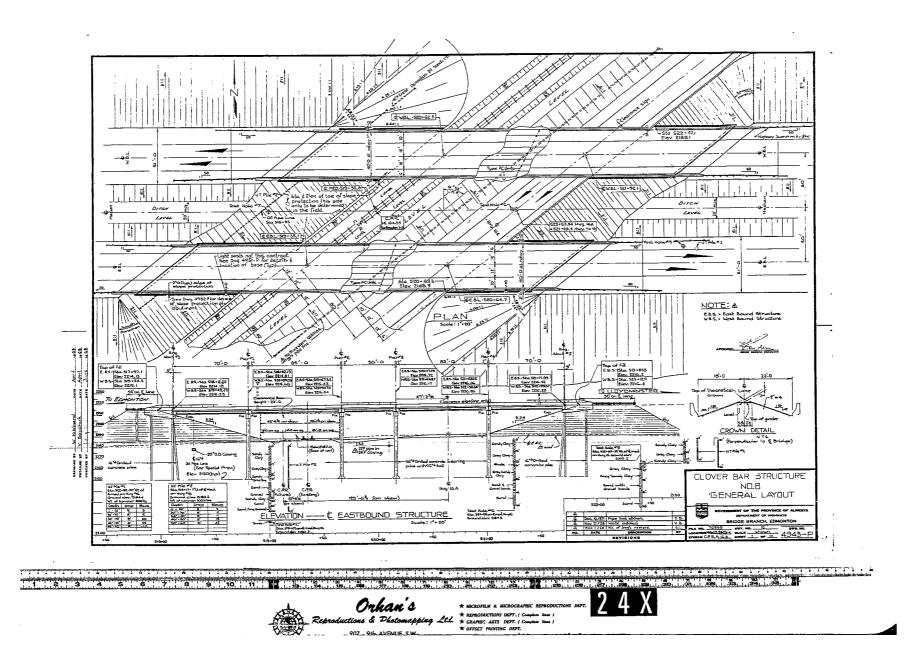




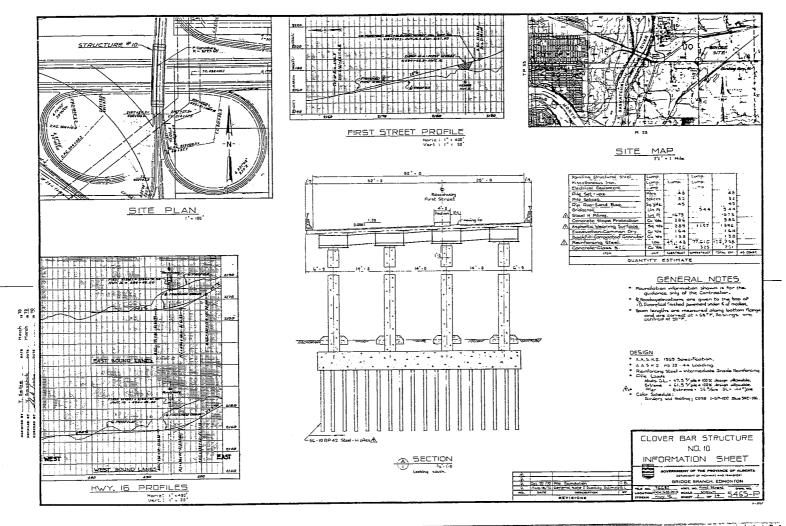


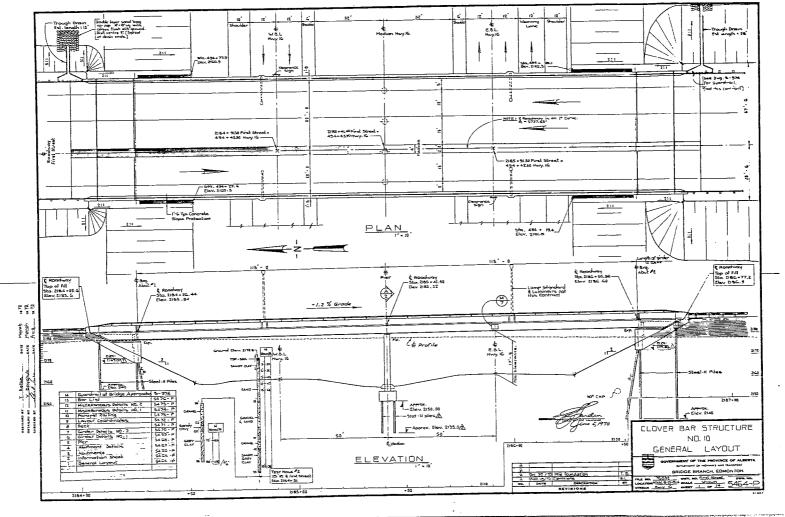


BF76648



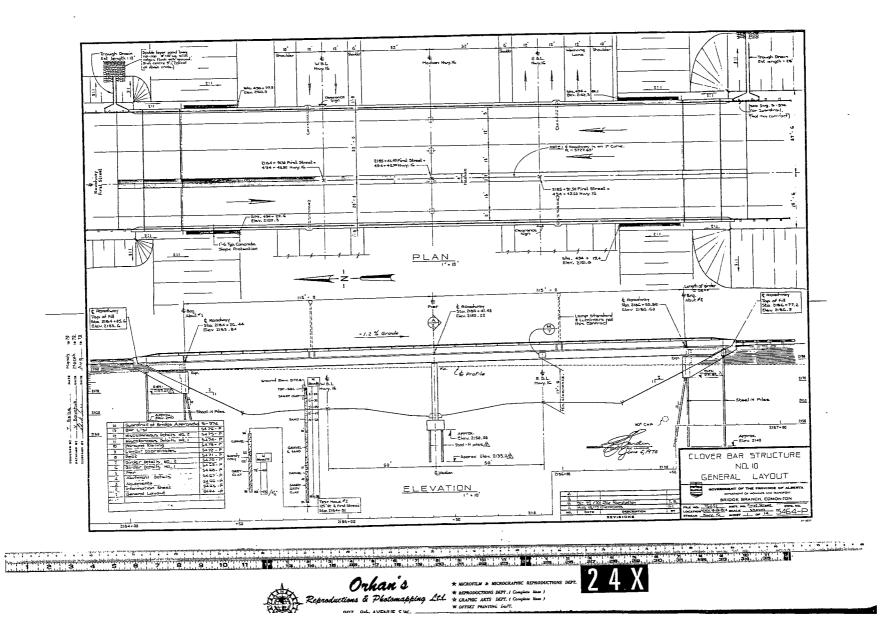
BF76339





M

BF76652


X 2 Orhan's * MICROFILM & MICROGRAPHIC REPRODUCTIONS DEPT. Reproductions & Photomapping Ltd. * REPRODUCTIONS DET. (Complete Bins) OCTOR SO

2

4 X

Orhan's * MICROFILM & MICROGRAPHIC REPRODUCTIONS DEPT. Reproductions & Photomapping Lill * REPRODUCTIONS DEPT. (Complete line) Reproductions & Photomapping Lill * CRUPIC ARTS DEPT. (Complete line) * OFFICE Philipping Lill * CRUPIC ARTS DEPT. (Complete line) * OFFICE Philipping Lill * CRUPIC ARTS DEPT. (Complete line) * OFFICE Philipping Lill * CRUPIC ARTS DEPT. (Complete line)

BF76651

R.M.HARDY & ASSOCIATES LTD.

CARSWELL ENGINEERING LTD. FOUNDATION INVESTIGATION PROPOSED GRADE SEPARATION HIGHWAYS 14X AND 16A EAST EDMONTON, ALBERTA

E-2950

JUNE 21, 1974

The second

に正式

消費量

に行いた

INDEX

	Page
INTRODUCTION	1
FIELD WORK	2
SOIL CONDITIONS	3
GROUND WATER CONDITIONS	5
SOLUBLE SULPHATES	5
DISCUSSION AND RECOMMENDATIONS	5

APPENDIX	A	Aprime	Plates 1 to	13
APPENDIX	в		Explanation	Sheets
APPENDIX	С		Information	Sheet on Sulphated Soils
APPENDIX	D	-	Recommended	Construction Procedures

INTRODUCTION

印度

R. M. Hardy & Associates Ltd., Edmonton were asked by Mr. Eugene Collins, P.Eng. of Carswell Engineering Ltd., on behalf of the Alberta Department of Highways Bridge Branch, to carry out a site investigation for the proposed grade separation at the intersection of Highways 14X and 16A east of Edmonton, Alberta. The purpose of the investigation was to determine the soil conditions at the site and to make recommendations for the design of the foundations for the bridge abutments and central column supports. The location of three test holes and two probe holes had been previously chosen and were indicated on Carswell Engineering Ltd. Drawing No. 1011-Pl. These holes were located in the field with the assistance of a Department of Highways survey crew. The ground elevations at the location of each drill hole were also obtained from the survey crew. Copies of the preliminary bore hole logs were forwarded to Carswell Engineering Ltd. on May 15, 1974. A letter report containing preliminary recommendations was forwarded on May 21, 1974.

R.M.HARDY & ASSOCIATES LTD.

It is understood that the total abutment loads will be of the order of 1200 kips and the total central support load will be about 2000 kips. In addition it is understood that the east and west approach fills will

- 1 -

be placed during this summer and that the construction of the foundations for the bridge will not take place until the fall of this year. It is expected that the maximum fill height adjacent to the bridge abutments will be of the order of 18 feet.

R.M.HARDY & ASSOCIATES LTD.

FIELD WORK

and the second

利用

The field drilling program was performed on May 13 and 14, 1974. The Test Holes (1, 2 and 3) were extended to depths ranging between 39.5 feet and 44.5 feet. Disturbed and undisturbed samples were taken at regular intervals throughout the depth of each test hole. The soil stratigraphy was noted as drilling progressed and approximate unconfined compressive strengths were obtained for each undisturbed sample in the field with a pocket penetrometer. In addition to the three test holes suggested by Carswell Engineering Ltd. two extra test holes were drilled to depths of 13 feet. Test Hole 4 is located at the north edge of a slough which is indicated This extra hole was an attempt to delineate on Plate 1. the softer material in the upper level as encountered in Test Hole 1. The other extra test hole, Test Hole 5, is located at the south edge of another slough which is also indicated on Plate 1. This test hole was drilled to determine if there was a softer layer near the surface due to its proximity to the slough. The two probe holes suggested by Carswell Engineering were extended to depths

- 2 -

of 42 feet. The soil stratigraphy was noted as these holes were drilled and samples were taken at regular intervals for moisture content determination. All samples were brought back to our laboratory for further testing. The water levels were recorded for each drill hole at completion of drilling and at least one day after drilling was completed. The locations of all test holes are shown on Plate 1 in Appendix A.

R.M.HARDY & ASSOCIATES LTD

SOIL CONDITIONS

1000

橋

利用に

新声波的

の記述

間に

The soil stratigraphy at the site consists of a silty clay overlying a clayey till. There is a surficial layer of organic topsoil varying in thickness between 6 inches and 3 feet. In Test Hole 2 a silty clay shale was encountered between depths of 38 to 44 feet below which there is a layer of silty sand. In Probe Hole 1 a layer of silty sand was encountered between depths of 33 to 38 feet below which there is a silty clay to the depth investigated. The silty clay overlying the clay till contains sand, rust stains and salt pockets with occasional coal pockets and the odd pebble. This silty clay is medium plastic and is firm to very stiff with unconfined compressive strengths varying between 0.5 and 3.25 tons per square foot as measured with the pocket penetrometer in the field.

- 3 -

The clayey till is silty and sandy and contains salt, coal and sand pockets with pebbles up to ½ inch in diameter. It is medium plastic and is stiff to very stiff with unconfined compressive strengths ranging between 1.5 and 4.0 tons per square foot as measured with the pocket penetrometer in the field. The clay shale encountered in Test Hole 2 is medium to high plastic and is very stiff. The underlying sand is compact. The silty sand encountered in Probe Hole 1 appears to be compact also and the underlying silty clay is high plastic and very stiff. A detailed log of the soil stratigraphy in each drill hole is given in Plates 2 to 13 in Appendix A. Explanation sheets defining the notations used on the logs are enclosed in Appendix B.

構成

記録

瞬間

R.M.HARDY & ASSOCIATES LTD.

Laboratory tests performed on the soil samples included moisture contents, Atterberg limits, soluble sulphate tests, confined compression tests and one cyclic loading test. The results of all these tests are given on the respective drill hole logs. The results of the confined compression tests performed in the laboratory generally give lower strength values for the soil than was measured in the field with the pocket penetrometer. It is expected that this discrepancy is due to sample disturbance and this is supported by the relatively large strains at failure in all of the tests.

- 4 -

The result of the cyclic loading test indicates an average modulus of elasticity of about 12,000 psi. for the first two stages of load cycles. During the load increase for the final cycling sequence the sample failed.

R.M.HARDY & ASSOCIATES LTD.

GROUND WATER CONDITIONS

認識

In all of the drill holes free water was encountered at or below the surface of the clay till. It is expected that this water is contained in sand lenses or coal pockets. The water levels recorded in the drill holes at 1 or 2 days after the completion of drilling are recorded on each drill hole log. These water levels vary between 0 to 13 feet below the surface of the ground. It is expected that all sand, coal or salt pockets will contain excess water.

SOLUBLE SULPHATES

The results of the soluble sulphate tests are recorded on the drill hole logs. The concentrations determined in the laboratory range between 0% and 0.20% with the majority being less than 0.10%. Such concentrations of soluble sulphates are considered negligible to mild. DISCUSSION AND RECOMMENDATIONS

The soil conditions at the site are quite consistent with the exception of the upper 10 feet in Test Hole 1 and about 5 feet in Test Hole 4. The silty clay in these two test holes is softer than the material encountered

- 5 -

in the other test holes. It is expected that the weight of embankment fills will cause greater consolidation in the area of Test Holes 1 and 4 and this will continue during the early life of the bridge structure.

R.M.HARDY & ASSOCIATES LTD.

Our recommendations for the design values for different types of foundations are as follows: 1. Strip or spread footings may be designed with an allowable bearing pressure of 3000 psf when founded at 10 feet below the existing grade between Test Holes I and 4. Elsewhere this design value of 3000 psf may be used at 3 feet below existing grade, however all footings should be at a minimum of 8 feet below final grade for frost protection.

- 2. Bored cast-in-place straight shaft concrete piles may be designed using an allowable soil skin friction value of 600 psf. This design value may be utilized below a depth of 10 feet below existing grade between Test Holes 1 and 4 and elsewhere the value of 600 psf may be used below a depth of 3 feet from existing grade. At least the top 5 feet of any pile should be excluded when calculating the friction capacity.
- 3. It is acceptable to combine the friction capacity with the end bearing capacity of the soil. A straight shafted bored cast-in-place concrete pile with or without a bell formed at the base could utilize both properties of the soil. In

- 6 -

this case an end bearing value for the base of the pile of 9000 psf is recommended at a depth of at least 25 feet below existing grade. In addition a soil skin friction value of 450 psf may be used for the straight part of the shaft. This value of 450 psf may be used below a depth of 10 feet from existing grade between Test Holes 1 and 4 and elsewhere this value may be used below a depth of 3 feet from existing grade. At least the top 5 feet of any pile should be excluded when calculating the friction capacity.

が消費的

R.M.HARDY & ASSOCIATES LTD.

4. Another form of foundation which may be considered is driven steel piles. These piles may be either pipe sections or H sections and may be designed using an allowable soil skin friction value of 375 psf. This value of 375 psf may be used below a depth of 10 feet from existing grade between Test Holes 1 and 4 and below a depth of 3 feet from existing grade elsewhere with at least the top 5 feet of any pile being neglected for capacity calculation.

The free water observed in the test holes indicates that it may be necessary to provide casing for any bored holes at this site. If bored holes are extended into the sand encountered at 33 feet depth in Probe Hole 1 casing will almost certainly be required. For this reason it is recommended that a trial boring should be made at the site prior to final bidding for contracts.

- 7 -

It is expected that the bored cast-in-place concrete type pile will provide the most economical type of foundation for the central support. Since the approach fills will have been placed before the installation of the foundations it is expected that a pile type foundation will be the most practical choice for the abutment support. The installation of bored cast-in-place concrete type piles through the fill may necessitate casing to confine the fill material. The alternative of driven steel piles could probably be installed more easily through the fill material.

ない

作業者

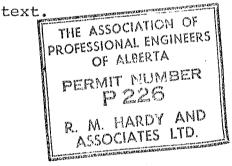
能限

語の語

R.M.HARDY & ASSOCIATES LTD.

Based upon the results of the soluble sulphate tests performed, the concentrations are generally low. It is considered that normal Portland cement can be used for the formation of foundations. Additional information on soluble sulphate concentrations is given in Appendix C.

The placing of the approach fills prior to the installation of the foundations will facilitate some of the consolidation which will occur under the weight of the fill. This consolidation will introduce negative skin friction loads of pile foundations. It is for this reason that at least the top 5 feet below existing grade of any pile should be neglected when calculating the soil friction capacity. In the area between Test Holes 1 and 4 this depth has been increased to 10 feet below existing


- 8 -

grade because of the softer soil encountered. In considering the negative skin friction contributed by the fill it is assumed that the fill will be compacted to at least 95% standard Proctor density.

Based upon the results of the cyclic loading test it is concluded that the initial settlement under the piles will be negligible, under the design load of 9000 psf end bearing.

There are some other general recommendations for construction procedures enclosed in Appendix D. These recommendations should be read in conjunction with this

Per:

AJH/jc

道法に

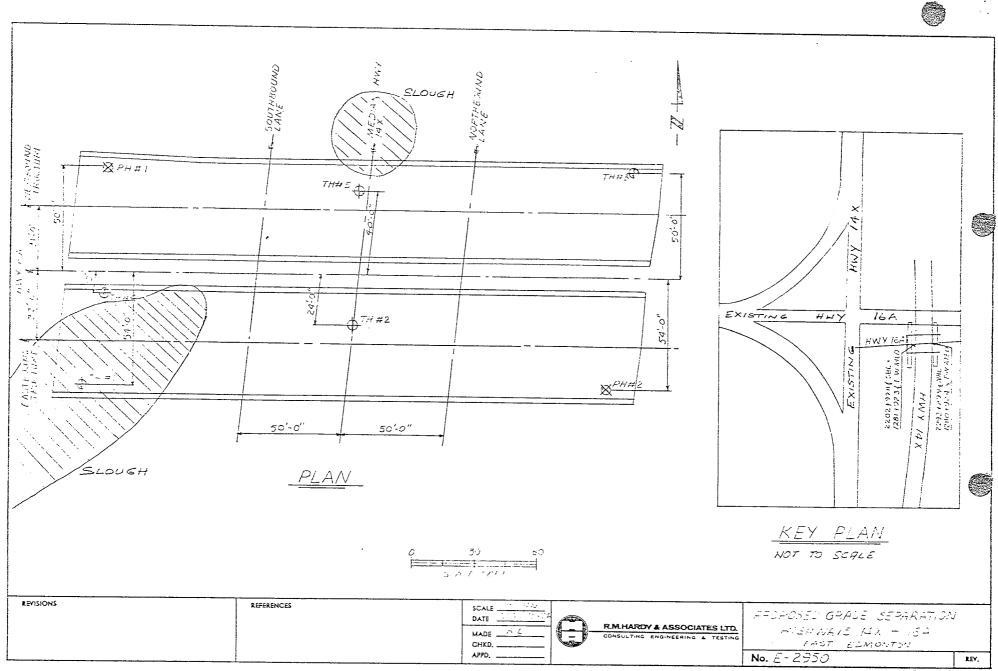
開設

の変換

Respectfully submitted,

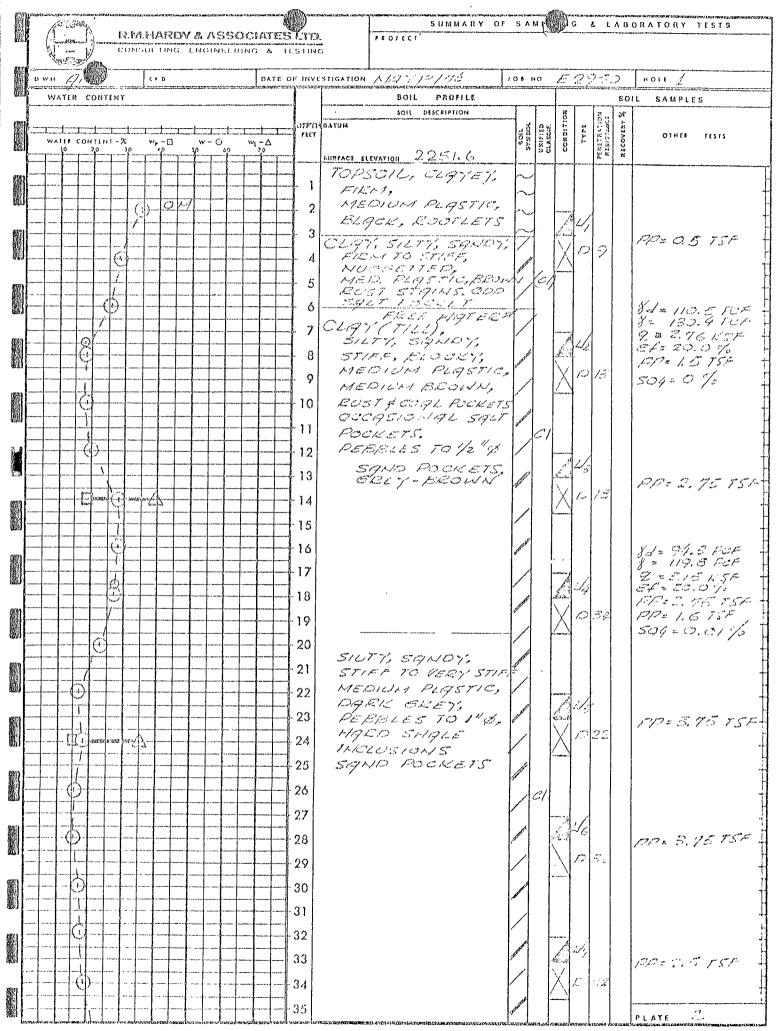
R. M. HARDY & ASSOCIATES LTD.,

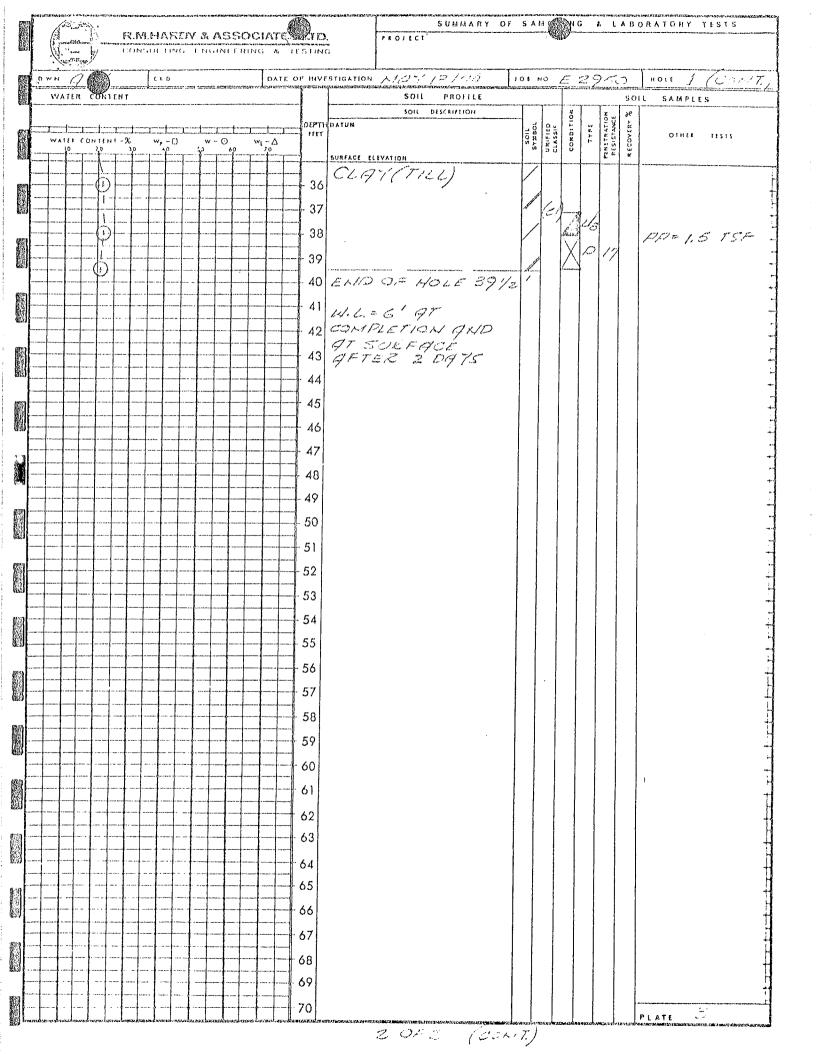
e t. Hanna.

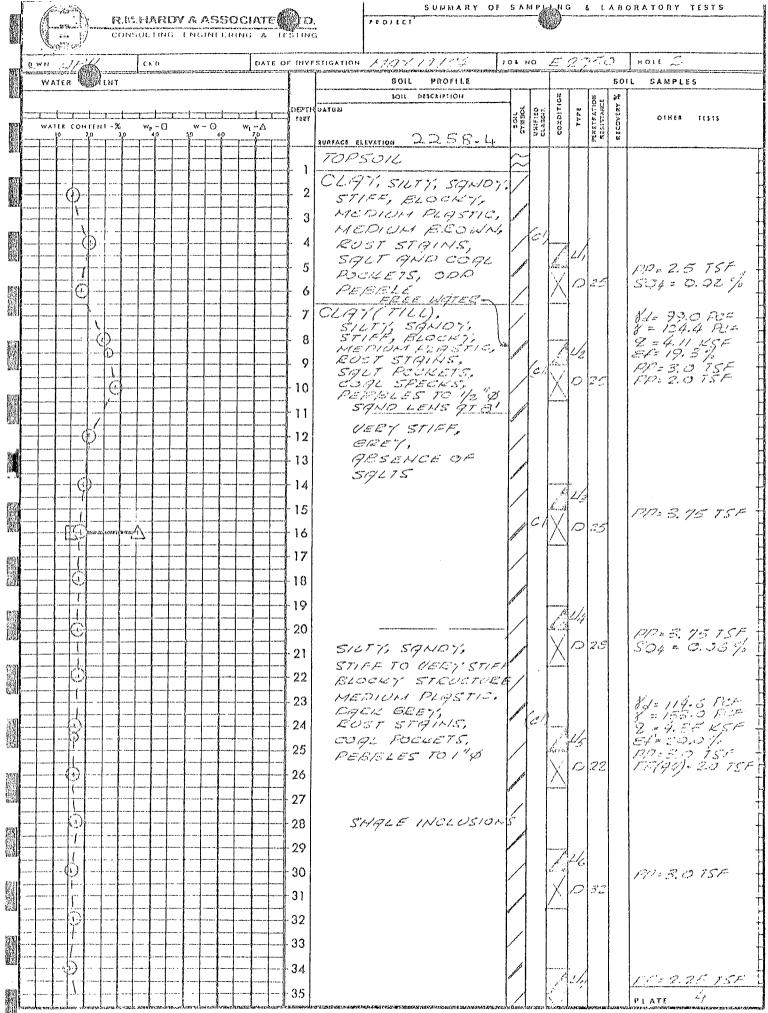

R.M.HARDY & ASSOCIATES LTD.

A. J. Hanna, P.Eng.

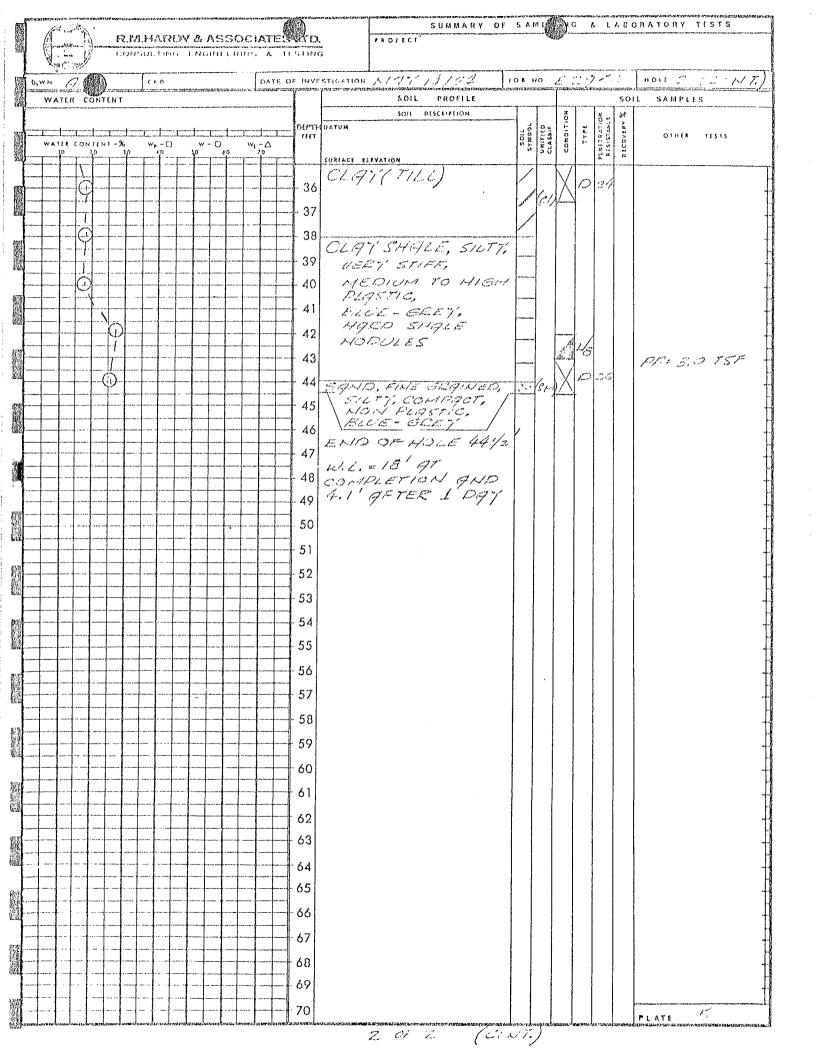
APPENDIX A

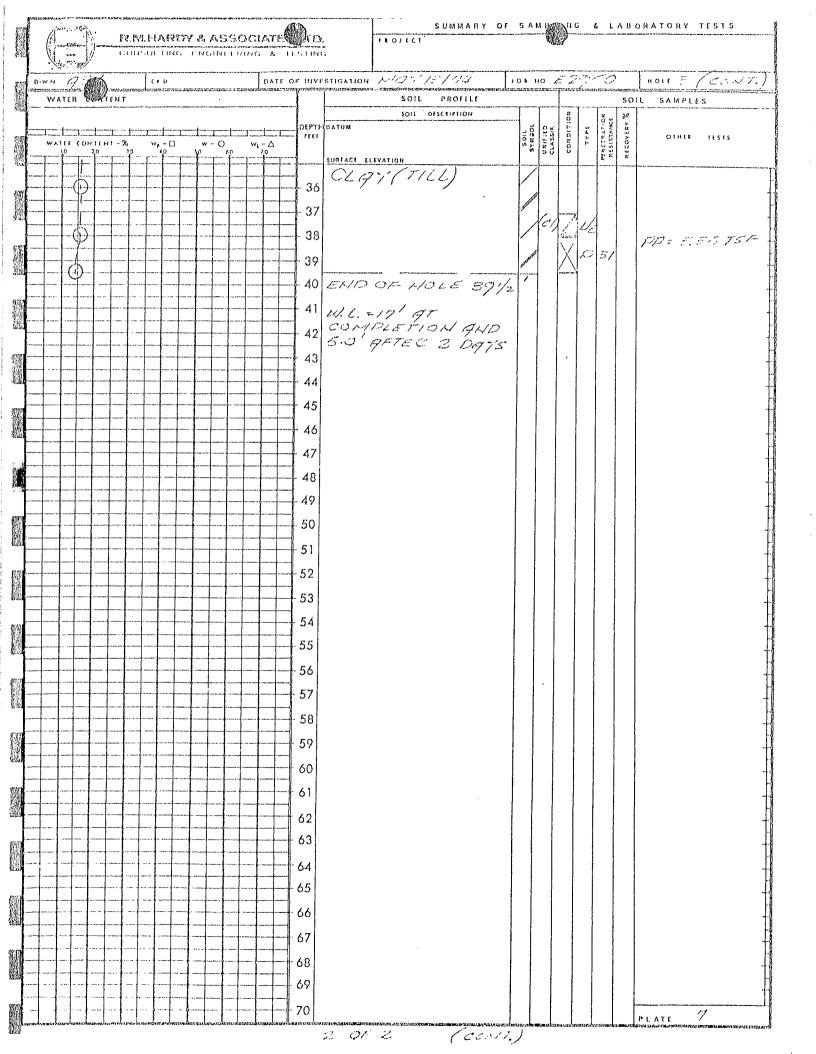

Plates 1 to 13



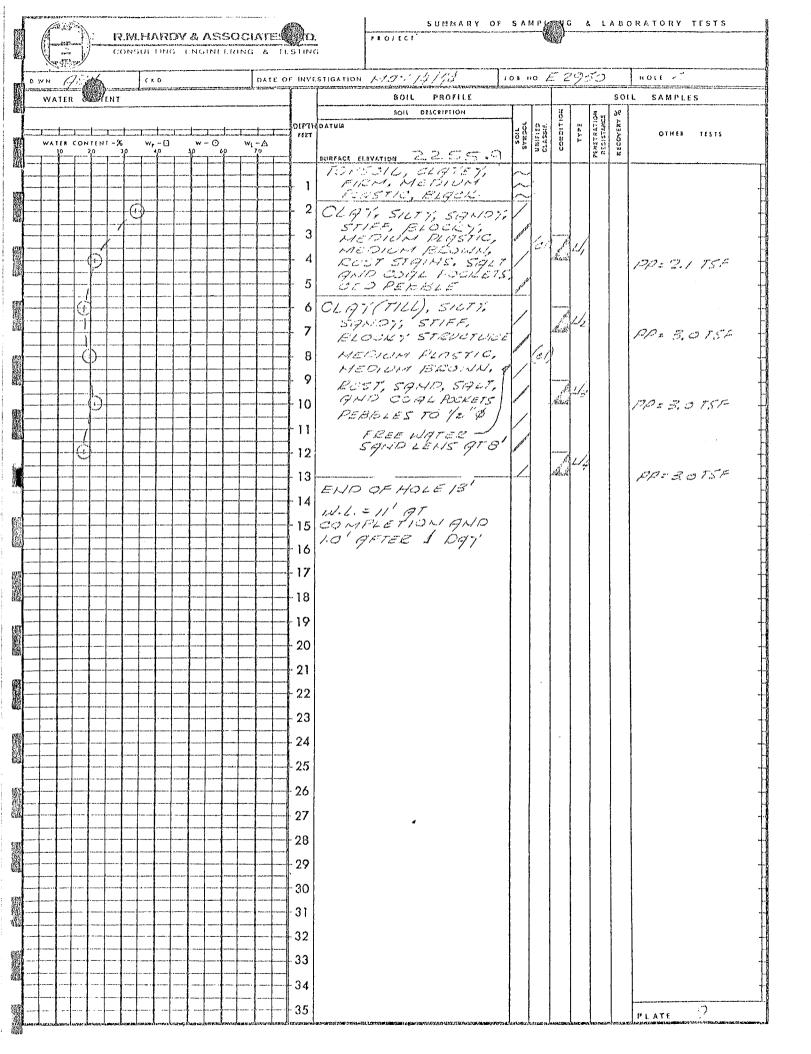

1000

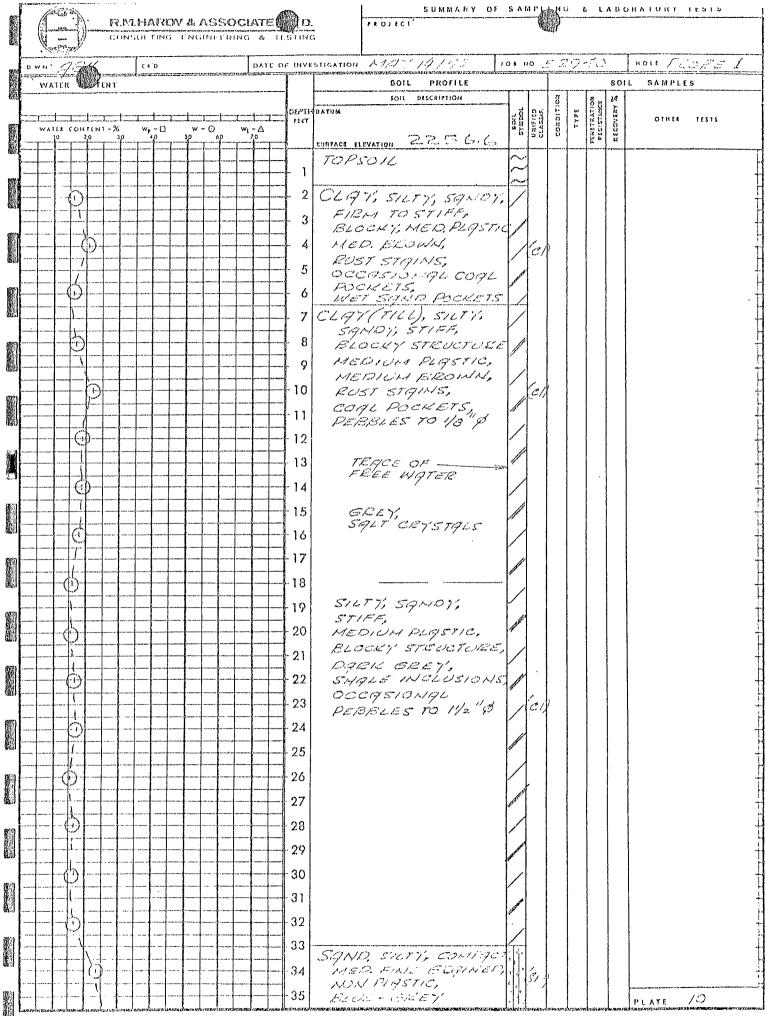
Sec. Sec.

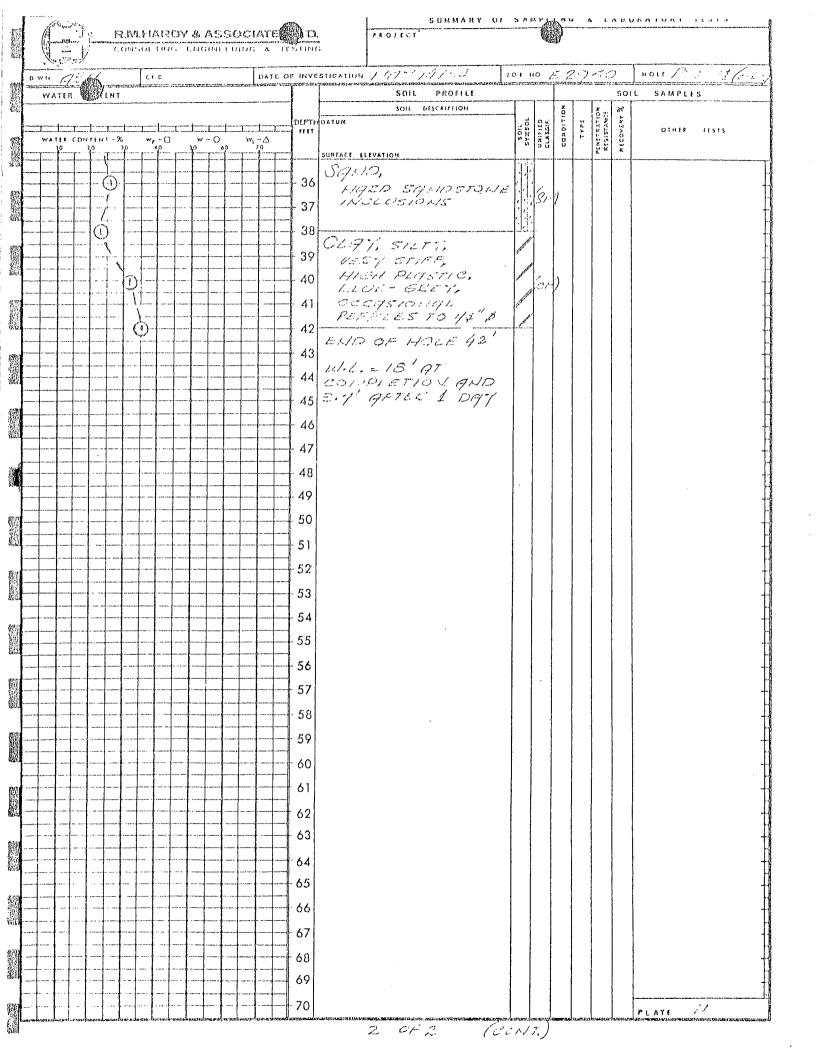

PLATE 1

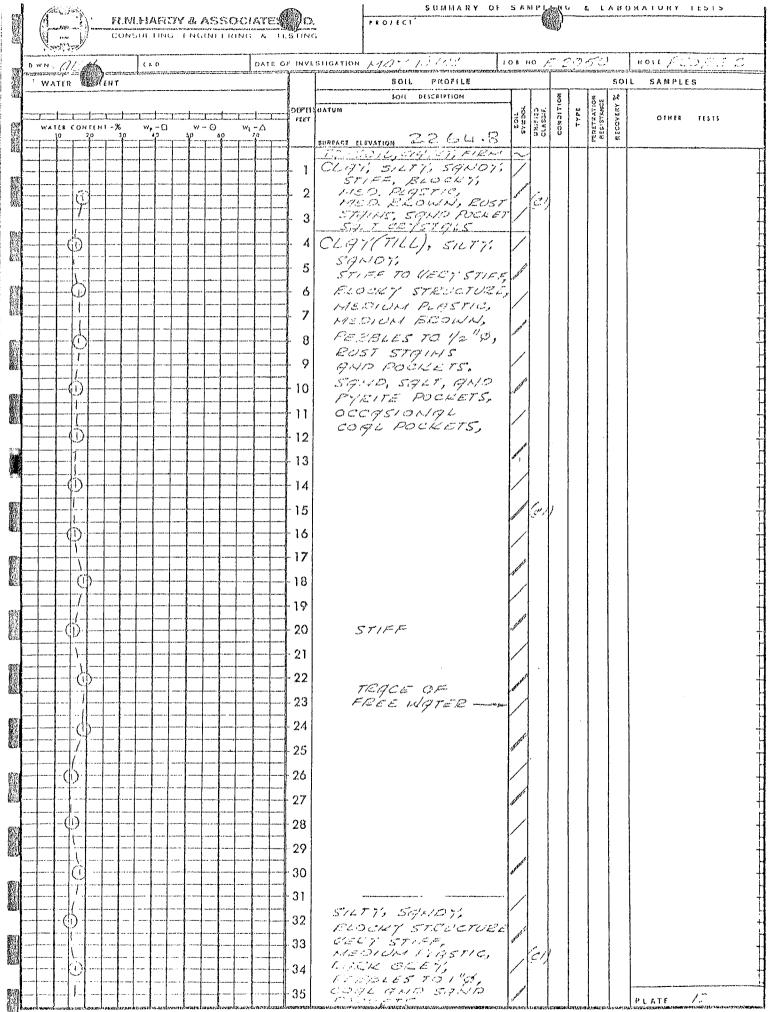


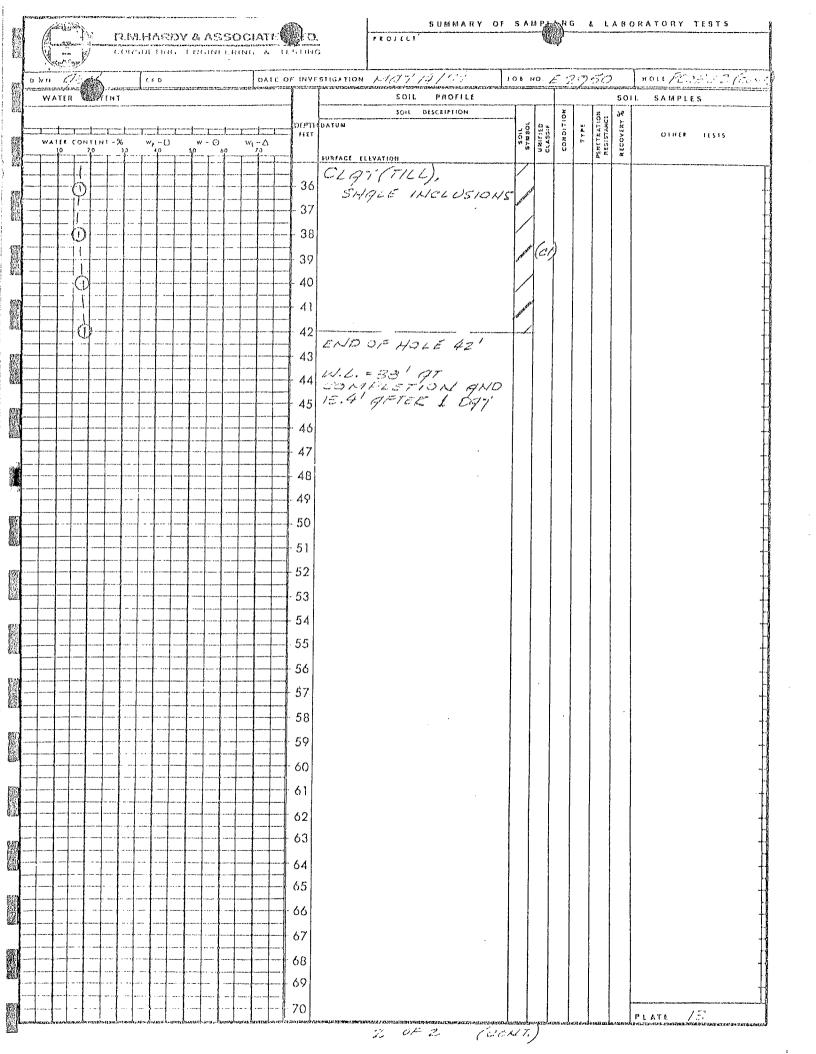
10/ 2




 W H	1	The Eato	• 14 • • • • • • • • • • • • •		ско			v		1	ATE	OF 1	NVE		101	6 HC	E.	29	م م ک	>	HOLE S
19752A.C	// 11:12:12:12:12:12:12:12:12:12:12:12:12:1			mut	111111-15 J		217.WTE)	47.539.754		anno	r:::::::::::::::::::::::::::::::::::::	and the second	2:1480	BOIL PROFILE	**********	- -		sostium	17.5277375	SOI	
	A+CR	C	~					*******						SOIL DESCRIPTION				T	R	1	
		rl					~-f	• • • •	4					DATUN	{	3	9 . I Ž	w l	ATTO ATTO	EXX	
 V//			1 - %		w, - [-1 W	- 0	J	w _i	A		88.6		10	1 and	CLASCIF.	12	PENETRATION REGISTANCE	RECOVERY	OTHER TESTS
· · · ·	10	20		ρ			¥-	⁶	¢) 			OURVACE FLOVATION 2259.1			90 U		1 a	2	
								ļ	ļ	 }				TOPSCIL, SUGTETS LE TO MED. PLASTIC, F.	341 1	4					
			+										1	TO MED. PEGETIC, E.	IPC KI	~ 1					
	-	-6											2	CLAT, SILTY, SAND STIFF TO VERY SI	1.00				ļ		
														ELOCIET MED. FUO	5771 M	and C	21/2	14			
				-+			+						3	MED LOUWH, EU AND EGIT POCKE	57		See				RP = 8.25 TSP
		一志					+						4			1	-1	C	14		SQ4= 0.01%
1		N/				_	1						×4 .	CLIGT (TILE), SILT	1.		12	4			
													5	SIGNOY,	- 105	A					
1-		25		-+				-					6	STIFF TO GERY ST ELOCKY STRUCT							Nuchar
												_		MEDINES DIPER			1				11- 114.3 For Y= 122.3 FOR
												-+	7	MEDIUM BEOWN		J.					2=5.25 KOF
1-	1	21-				1							8		·		. Inter	1/2	1		2 = 5.25 KSF 54 = 19.99 120: 2.895
1_		SP-				1	<u> </u>							occasional Sq.	17	\wedge		10	2/		1217: 2.0755
+			-										9	POCKETS, PEBELES	- 1/1		ΙX	$\int $	1.44		
1-						-	1					1.	10		1	and a start	f square				
L		4					ļ									1	<u>[</u>]				
	-	-i+-					1						11		ľ	$\left \right $	· '				
	1	a -				-	1					1.	2	FEER MATER					Ł		
		1-	↓ [FREE WIJTER SYND AND CO. POCKETS	76		1	1/2			
	-		 										13	POCKETS	Ĺ			1	ļ		1712: 2.0 75F
1		KD.	200307	$\overline{\Lambda}$		1		1				1,	4		ſ		ΞX	D	22	1	
_		=1/-				+	1-	$\left - \right $				{						¥			
		$\neg $					\vdash	$\left - \right $				-† 1	5	GREY - BROW. PEBBLES TO 1							
1_		at-				1	1					1,	6	PEBBLES TO 1	"Ø						81= 93.6 PCF
		7	├					$\left - \right $								AT I					X = 123.6 PCF
1			5										7		24	"	*****	11	1	1	Q = Z = 0 KSF
		GV-	ř.			1	<u> </u>					-11	8			\wedge	. Arteri	14	1	.	SF = 19.6 % PP= 2.2 1SF
+		-11	┼──┠			+		$\left - \right $		-+	-+-				ľ		\rightarrow	0	22		and the second s
1					1							<u>_</u> 1.1	9		ß	FREET			1	1	
-		-(1)-			- -	-				_]		-+ 2	20	VERY STIFF. IRONSTONE	ľ						1
		-7[+							ł	IRONSTONE INCLUSIONS							
1		1					[21						ļ	1	
+		9-	<u>∤</u> }		-		}					-+2	22	DARK GRET SIGLT CRYSTA	4			r i			
1-		-1-1	<u>├</u>				<u> </u>					-1,	23	SALT CRYSTA	1 dis 55		1				20 1
1													ς.ψ				\mathbb{N}		32	,	PP = 4.0 TSF SO4 = 0.20 %
		9-			- -								4			and the				1	SUA= 4.20%
+		-1					1					-	25				·	1			
						Į						1				$\boldsymbol{\lambda}$			1		
		Q	┝┈╋									-{ 2	6		ľ				1		12 112.9 PCF
		1				1							7								9 = 123, 6 Mar
		Ø-					[12	4		4	15		14	1		Va= 112,9 PCF y= 152,6 FCF 2= 555 KSF E1= 20,0%
	-	Ð}	-			+						- 2	8	a a frank na sana a sa			12				121=2.5 TSF PP=1.1 TSF
		71								_			9	SILTY, SANDY,	V		X	D	24	1	PP=1.7 TSF
							ļ						.7	STIFF		Same -		¥.			
) -				+							0	STIFF, MEDIOM PLASTI	C,						
		·· {										1,	11	PERSALES IVI Y	1 1	$\langle \rangle$	in l		1		
									_					COAL FOCKETS		J ^c	-1				
)†										- - 3	2		A	STACE		·			
		[1							3				đ	17	1		171- 2.5 TSF
						ļ											K	1-	2%		
	4)			•								4				- X	$\langle \rangle$	121		HITTING ON ROCK
1	- i - [.	na sali a s				I				1	1	41			1	75.1	r.	M.		4	


13/	and a second	, 595 199 199 199		F C	ON!	501	1111	VC 3 6	đi I NG	85 1N	5 0 1 Ri	NG NG	ate &	TL.	<u>Do</u>	SUMMARY OF SAMPLING & LABORATORY TESTS
				·		(r	D					T	DAT	E OF	- INVI	VISTIGATION A17714/11/ 101 NO E29/10 HOLE 4
1.522/22 1-72	//////////	n (ny 7) n (ny 7) E R		ат. Исмп	seneratestat F	dana			23.04.2C		112000	mada		המיסרי	,	sere and a series of the serie
			- 1.0								~ ~ ~ ~ ~		~ • • • • •			BOIL DESCRIPTION B B w 22
						- <u> </u>	+	r	1	1	1		<u> </u>		DEFT FERT	THE DATURE TO CHE THE RESTS
w	ATE	я со	20	41 - ;	χ 30	w,	,~[] 40		W .	- 0	0	wi	- A			
	[F	1		Ť		Í-		Ĩ-		ļ	ļ'	İП			A BARTAILE CERVALITION Los Construction Contractions of the second
							+		·}	<u> </u>	ļ			}	1	TOPSOIL, CLEYET, T
										1					- 1	FLASTIC, BLACK
_				(\cdot)			- 				<u> </u>			{	- 2	
				Ť		-									- 3	CLAT, SILTT, SAMOT, FIRM TO STIFE,
		_						ļ	I		ļ	ļ			Ŭ	BLOCKY STRUCTURE & CALLU
-+				-16	7-			+						{	- 4	A MEDIUM PLASTIC, PD: 1.0 TSF
				7	1	-	1	1							- 5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
				1-											_	SCLAT(TILL), SLETY, Q=2.48 KSF
				1											- 6	S (197 (TILL), SILTY, S (107), STIFF, 20.04.
-					\perp	-			<u> </u>	<u> </u>	ļ		$\left - \right $]	- 7	RIDCHY STRUCTURE & Bask DDA 20 1St
		-	4-					+			<u> </u>	<u> </u>			- 8	$P_{12} = 1.25$ TSF
			1			1_					<u> </u>					MENTON BROWN / CA
	-+								–						. <u>9</u>	RUST STAINS,
_	1		\$		1_	-	1	1							- 10	SALT, COAL, AND SALTS, TOUS OTSF
			¥	+				<u> </u>		 				{		SAMD POCKOIS, DECOUSE TO 1/10/
	-		Æ	-]_	+	1	<u> </u>	<u> </u>						- 11	PERBLES TO 1/2 P WET SAND LENS
1-			<u>sr</u>	-	1	1	_		ļ		[F			- 12	
-																DAEX GEEY
					1	1_	 		1	1					- 13	ENTO OF HOLE 13'
	_					-			<u> </u>					-	- 14	
+	\pm			1											. 1 5	$W.L = 8 \ \mathcal{P}T$
									ļ	ļ					10	0.20' GETER LOGY
		- -	-		1				\vdash						- 16	
						_	1		<u> </u>						17	
				+												
					1										-18	
		_				-	 	<u> </u>	<u> </u>					_	19	
		+			+			+							- 20	
_			1_	1	1					<u> </u>					x .u	
		-+-		-	1-										- 21	
1	1			-					[- 22	
	_ -								 						-	
				-			1								- 23	
	_				. <u> </u>	ļ									24	
_					-	<u>†</u>	E		-						- 25	
1							_		<u> </u>						<u>~</u> ~~	
															26	
	_			1	-	[27	
			1_	-											28	
															-29	
	_			-	1										20	
															· 30	
	- -														-31	
-				-	-										32	
	-		-													
	- -			-	1										-33	
_	- -			-											.34	
						ļ										
					1	t i	ş			h				{	·35	PLATE


ţ



1 91 2

1 QF 2

R.M.HARDY & ASSOCIATES LTD.

APPENDIX B

Explanation Sheets

EXPLANATION OF TERMS AND SYMBOLS

These pages present an explanation of the terms and symbols used on the log sheet entitled "Summary of Sampling and Laboratory Tests". The materials, boundaries, and conditions have been established only at the test hole locations and could differ elsewhere on the site.

WATER CONTENT AND ATTERBERG LIMITS

The natural moisture or water content of the soil at the time of drilling is plotted against depth, together with the plastic and liquid limits whenever determined in the laboratory. All water contents are expressed in terms of percentage of dry weight. The abbreviations and graphic symbols are defined as follows:

\odot	W	natural moisture content
$\overline{\mathbf{O}}$	۳P	plastic limit (ASTM, D424)
\triangle	wL	liquid limit (ASTM, D423)
	NP	non plastic soil
	>	seepage
	Y	observed water level

DEPTH

This column refers to the depth below the surface. The corresponding elevations are sometimes shown with respect to the datum given.

SOIL DESCRIPTION

Soils of different engineering classification are commonly grouped generically for ease of reference. Seepage and the water level are indicated beside the graphical representation using those symbols defined under "Water Content".

SOIL PROFILE

Soil types are designated by a modified version of the Unified Soil Classification System ("The Unified Soil Classification System", Technical Memorandum No. 3-357, Vol. 1, 1953, the Waterways Research Station, U.S.A.). Page 3 of this appendix defines these terms and symbols. Letters appearing in parentheses denote visual identifications which have not been verified in the laboratory.

SOIL SAMPLES

 $\label{eq:condition} \mbox{CONDITION} \mbox{ — This column indicates the depth and the condition of each sample attempted.}$

TYPE — The type of sample is indicated in this column as follows:

- A auger sample
- B block sample
- C rock core
- D drive sample
- P Pitcher tube sample
- U thin walled tube sample
- W wash or air return sample
- O other (see text)

PENETRATION RESISTANCE — Unless otherwise noted this column refers to the number of blows (N) of a 140 pound hammer dropping 30 inches required to drive a 2 inch O.D. open end sampler a distance of one foot from 0.5 to 1.5 feet into the soil. This is the standard penetration test referred to in ASTM, D1586.

RECOVERY — This column states the proportion in percent of the sampled length that was recovered. If nothing is shown the amount of recovery was not measured.

OTHER TESTS

In this column are tabulated results of all other laboratory tests as indicated by the following symbols:

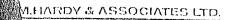
- * C Consolidation test
 - Fines Fraction washing past #200 sieve
 - G Specific gravity
 - k Permeability coefficient
- * MA Mechanical grain size analysis
- pp Pocket penetrometer strength tsf
- * q Triaxial compression test
- qu Unconfined compressive strength
- SB Shearbox test
- SO₄ Concentration of soluble sulphates
- * ST Swelling test
 - VS Vane shear strength (undisturbed-remolded)
 - ^c f Unit strain at failure
 - Y Unit weight of soil (bulk density) pcf
 - Yd Unit dry weight of soil pcf

* These tests are usually summarized separately.

::

O					CLASSIE	ICATION SYSTEM FOR SOILS				
) Major	DIVISION	GROUP			TYPICAL DESCRIPTION		ABORATORY ASSIFICATION CRITERIA		
a a			GW	N N N N N	RED	WELL GRADED GRAVELS, LITTLE OR NO FINES	$C_{U} = \frac{D_{60}}{D_{10}} > 0$	$6 C_{C} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}} = 1$		
SIEVE)	GRAVELS GRAVELS THAN HALF COARSE ANS LARGER THAN NO. 4 SIEVE	CLEAN GRAVELS (LITTLE OR NO FINES)	GP		RED	POORLY GRADED GRAVELS, AND GRAVEL- SAND MIXTURES, LITTLE OR NO FINES		NOT MEETING DVE REQUIREMENTS		
8	GRAVI GRAVI E THAN HA AINS LARG NO. 4 S	DIRTY GRAVELS	GM		YELLOW	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES	CONTENT OF FINES			
INED SOILS T LARGER THAN	MORE GRAII	(WITH SOME FINES)	GC		YELLOW	CLAYEY GRAVELS, GRAVEL-SAND-(SILT) CLAY MIXTURES	EXCEEDS 12%	ATTERBERG LIMITS ABOVE "A" LINE P.I. MORE THAN 7		
COARSE-GRAINED HALF BY WEIGHT LARI	wz	CLEAN SANDS	sw	00000000000000000000000000000000000000	RED	WELL GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES	$C_U = \frac{D_{60}}{D_{10}} >$	4 $C_{C} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}} = 1$		
	4DS HALF FIN ALLER THA SIEVE	(LITTLE OR NO FINES)	SP		RED	POORLY GRADED SANDS, LITTLE OR NO FINES	NOT MEETING ABOVE REQUIREMENTS			
(MORE THAN	SANDS MORE THAN HALF FINE GRAINS SMALLER THAN NO. 4 SIEVE	DIRTY SANDS	SM		YELLOW	SILTY SANDS, SAND-SILT MIXTURES	CONTENT OF FINES	ATTERBERG LIMITS BELOW "A" LINE P.I. LESS THAN 4		
	20	(WITH SOME FINES)	sc		YELLOW	CLAYEY SANDS, SAND-(SILT) CLAY MIXTURES	EXCEEDS 12%	ATTERBERG LIMITS ABOVE "A" LINE P.I. MORE THAN 7		
	LTS "A" LINE IGIBLE ANIC TENT	W _L < 50 %	ML		GREEN	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY SANDS OF SLIGHT PLASTICITY		CLASSIFICATION S BASED UPON		
200 SIEVE)	SILTS BELOW "A" LINE NEGLIGILE ORGANIC CONTENT	$W_L^{>50\%}$	мн	ШЩ	BLUE	INORGANIC SILTS, MICACEOUS OR DIATO- MACEOUS, FINE SANDY OR SILTY SOILS				
	NE ON HART RGANIC	W _L < 30 %	CL		GREEN	INORGANIC CLAYS OF LOW PLASTICITY, GRAVELLY, SANDY, OR SILTY CLAYS, LEAN CLAYS	-			
FINE-GRAINED SOILS HALF BY WEIGHT PASSES	CLAYS ABOVE "A" LINE ON PLASTICIT" " LINE ON NECLIGIBLE ORGANIC CONTENT	30% < W _L < 50%	сі		GREEN- BLUE	INORGANIC CLAYS OF MEDIUM PLASTI- CITY, SILTY CLAYS	-			
FINE-C	ABO	$W_L > 50\%$	сн		BLUE	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS	-			
(MORE TH	ANIC TS & AYS "A" LINE CHART	$W_L < 50\%$	OL		GREEN	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	WHENEVER THE NATURE OF THE FI. CONTENT HAS NOT BEEN DETERMINE IT IS DESIGNATED BY THE LETTER "F", E. SF IS A MIXTURE OF SAND WITH SILT OF			
	ORGAN SILTS SILTS CLAY BELOW "A"	$W_L > 50\%$	он	ОН		ORGANIC CLAYS OF HIGH PLASTICITY	CLAY			
	HIGHLY ORG	ANIC SOILS	Pt		ORANGE	PEAT AND OTHER HIGHLY ORGANIC SOILS	STRONG COL FIBROUS TEX	OR OR ODOR, AND OF TURE		
		SPECIAL S	YMBOLS			50 PLASTICITY CHART		СН		
		DROCK NDIFFERENTIATED)		OVERBURI		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, p	. Une MH		
	SA	NDSTONE					οι	ОН		
		IALE				0 10 20 30	40 50 LIMIT (%)	60 70 80		
		AESTONE DNGLOMERATE				 ALL SIEVE SIZES MENTIONED ON E.11. BOUNDARY CLASSIFICATIONS PO GROUPS ARE GIVEN COMBINED O GRADED GRAVEL SAND MIXTUR 1297 	DSSESSING CH GROUP SYMBOL	ARACTERISTICS OF TWO .S, E.G. GW-GC IS A WEL		
		AL				12%.	DY & ASS	OCIATES LTD.		

際の記述



APPENDIX C

Information Sheet on Sulphated Soils

INFORMATION SUCCT

PORTLAND CEMENT CONCRETE IN CONTACT WITH SULPHATE SOILS AND WATER

The Prairie Provinces of Western Canada contain varying amounts of sulphate salts. These are mainly found as calcium, sodium and magnesium salts. Their solubility increases in the order given, with sodium sulphate being in the order of 25 times and magnesium sulphate 130 times more soluble than calcium sulphate.

The distribution is varied with sodium sulphate being more predominant in Alberta, a mixture in Saskatchewan and magnesium sulphate more predominant in Manitoba, probably due to their solubility and the general water flow being from West to East.

They must of course be in solution and contact to react with Portland cement concrete. This reaction is a chemical one with hydrated lime and hydrated calcium aluminate in the cement paste, that results in disruptive expansion.

Protective measures may therefore be of two types:

(a) Isolation of the concrete from the salt solution by impermeable membranes (note that Damproofing treatments do not qualify as an impermeable membrane).

(b) Use of sulphate resistant cements. (note: Type V Cements).

The severity of attack will therefore depend on the availability of salt, the potential source of water, and the flow and pressure of water solution the concrete is subject to.

In order to classify the potential severity of a particular condition, the soluble sulphate content of the soil or ground water is measured, and can be potentially classified by Table II given in CSA A23.2 Page 56 reproduced here for information.

TABLE II

ATTACK ON CONCRETE BY SOILS AND GROUND WATERS CONTAINING VARIOUS SULPHATE CONCENTRATIONS

Case	Relative Degree of Sulphate Attack	Per Cent Water Soluble Sulphate (as SO ₄) in Soil Samples	Parts per Million Sulphate (as SO,) in Ground Water Samples			
a b c d	Negligible Positive (mild) Considerable Severe	0.00 to 0.10 0.10 to 0.20 0.20 to 0.50 Over 0.50	0 to 150 150 to 1,000 1,000 to 2,000 Over 2,000			

It should be carefully noted that in alkali areas, the concentration can vary by as much as 600 times in a small area. The potential severity of attack should therefore be judged on an area rather than an isolated location test, and the flow and availability of groundwater is of considerable importance.

Please note that the resistance of concrete to sulphate attack is dependent on impermeability which is a function of the water cement ratio. For conditions (b) and (c) shown in Table II above, the water cement ratio should not exceed 0.50 and for condition (d) should not exceed 0.45, by weight.

The quality of concrete desired should therefore be chosen on the basis of impermeability as judged by water cement ratio. This means that 2500 psi concrete is not satisfactory since it has a water cement ratio in the order of 0.65 and a much higher quality concrete must be used to provide adequate resistance to sulphate attack, bearing in mind the ground-water conditions.

The following references are recommended for further information:

C.S.A. A23.2 - 1967 Section 29 & Appendix D "Performance of Concrete" by E. G. Swenson.

R.M.HARDY & ASSOCIATES LTD.

APPENDIX D

Recommended Construction Procedures

RECOMMENDED CONSTRUCTION PROCEDURES

The following construction procedures are recommended to ensure the satisfactory performance of the structures. The recommendations are to be read in conjunction with the text of the report.

R.M.HARDY & ASSOCIATES LTD.

1. EXCAVATED FOUNDATIONS

時代の記

1.1 Excavation close to foundation level should be done carefully to avoid disturbance of the soil. It is essential to prevent the soil at foundation level from deterioration due to excessive drying or becoming wet from surface or seepage water. Good drainage both during and after construction is essential.

1.2 Sumps if required should be located well away from the foundation area. Softened or overdried soil must be removed and replaced by lean mix concrete or by extending the foundations.

1.3 The foundation must be kept from freezing both during and after construction. Unless permitted by the engineer the foundation concrete should not be placed on or against frozen soil.

2. BACKFILLING

2.1 Backfill around foundations should be placed in such a manner so as to prevent settlement and to be relatively impervious near the surface so that water does not pond against foundations nor be allowed to seep into the soil.

2.2 Backfill should not be placed until the structure has sufficient strength to withstand the earth pressures resulting from placement and compaction.

R.M.HARDY & ASSOCIATES LTD.

2.3 All backfill around grade beams, foundation walls, etc. must be carefully and uniformly compacted. The backfill should be placed in even layers and no frozen nor organic material should be incorporated into the fill. All lumps of material must be broken down or squeezed together during placing and compaction.

2.4 The final grade (allowing for some settlement of the backfill) should shed water away from the structure.

2.5 During construction, precautions should be taken to prevent water ponding in grade beam excavations thereby acting as a source of water to soften the soil under the floor slab area or providing a source of water for frost action if the building is not heated during freezing weather.

3. BORED CAST-IN-PLACE CONCRETE PILES

3.1 Piles should be installed under full-time inspection of an experienced and competent person.

3.2 Soil may contain sand and silt lenses which are water bearing and sloughing. Casing should be on hand before drilling starts and be used if necessary to seal off water or prevent sloughing of the hole. The concrete and reinforcing steel should be on hand and placed as soon as the pile hole has been completed and approved.

3.3 Pile bells, if used, should be formed entirely in self-supporting soil and it may be necessary in some cases to extend the pile bell if caving occurs at the location of the bell.

R.M.HARDY & ASSOCIATES LTD.

3.4 Water should not be left ponded on the pile base and should be removed, or dried by the use of dry cement when permitted by the engineer.

3.5 Concrete should be placed without segregation and carefully vibrated throughout the full length of the pile to ensure that voids do not exist in the pile shaft. The concrete slump should be between two and five inches with a minimum compressive strength at 28 days of 3000 psi. (Note: Higher compressive strength may be required for structural or durability reasons).

3.6 Steel reinforcing should be tied into the grade beam reinforcing steel. This recommendation is important where the soil below grade beam can swell from a change in moisture content or by frost action before the building is heated.

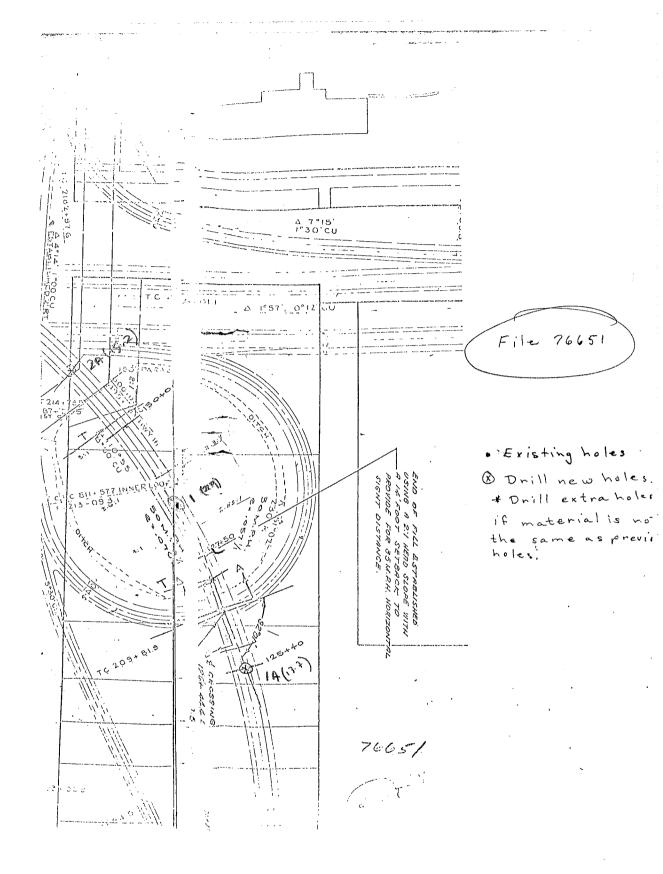
3.7 Piles closer than 2 1/2 diameters should not be drilled and poured consecutively unless permitted by the engineer and depending upon soil conditions. Where the drilling operation might affect the concrete in the adjacent pile the drilling should not be carried out until the concrete has at least 24 hours to set, or before the concrete has reached its initial set.

4. DRIVEN STEEL PILES

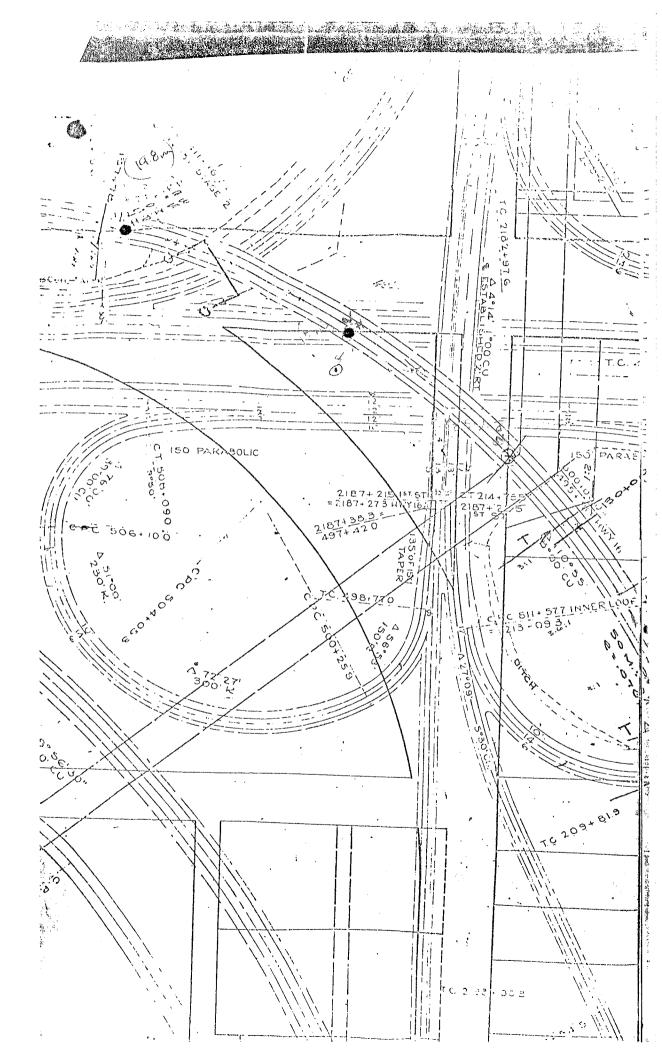
書を読

形がい

4.1 Piles shall be driven by equipment having a striking weight not less than one-third of the driven weight of the pile. The driver should be capable of delivering at least 15,000 ft. lbs. of energy.


4.2 The number of blows required to drive the pile each foot should be recorded for every pile as an indication of the satisfactory carrying capacity of the pile and as an indicator of potential tip damage.

R.M.HARDY & ASSOCIATES LTD.


4.3 . After each pile is driven to its required depth an elevation should be taken of the pile top or on a suitable mark on the side of the pile. This elevation should be checked periodically to ensure that it is not heaved by the driving of adjacent piles. Piles that are heaved must be redriven.

4.4 For piles which displace a considerable amount of soil during driving, such as closed-end pipe piles, care must be taken that the driving does not cause damaging horizontal displacement to existing structures or foundations.

4.5 Where piles are designed to gain support by skin friction in the soil it is essential that the pile have ends and walls free from protrusions which could cause voids or disturbance of the adjacent soil during driving.

Ç.

<u>уу</u> - тө			6	
H.R.B.F.	1025-65 Province of Alberta Department of Highways		Bridge File: 76651 ProjectINTERCHANGE AT CLOVER BAR CO Site 128 + 40 Sample Location <u>& North- West Outer Connec</u>	tor
	TEST HOLE LOG		Hole #1 Depth 751 Technician Prelusky Date Sept. 9	769
Elevation	of Ground Surface (Zero Depth)	<u>21</u>	84.4 665 m	
Lievation Method or	of Water Table Advancing Hole		LEGEND	
Remarks_		y_Auge	r Liquid Limit	
	<u>15' - 75' We</u>	t_ <u>Dril</u>	Field Moisture o Plastic Limit *	
s iii				
Blows N Soil Profile	FIELD CLASSIFICATION		P.P. MOISTURE CONTENT - %	
	$\frac{0.0' - 2.5' \text{ Top-soil}}{2.5' - 3.0' \text{ silty cl}}$	kg/cm ²		
· ·	Pen. @ 3' 9 26 44 6" 12" 18"	35 12"		
	<u>sándy clay</u> Pen. @ 6 ¹ -19 43 67	48		
	6" 12" 18" sandy clay(sand band			
	Pen. @ 9' 17 48 78 6" 12" 18" @9.5' sand begins	61 12"	sandy clay to 9.5"	
	Pen. @ 12' 21 45 93 6" 12" 18"	72		
	<u>6" 12" 18"</u>	79 12"		
	fine sand (brownish	in co	lor)	
-201	Shelby @ 20'			
	fine_sand			
-251	Pen. @ 25' 24 58 100	76		
	<u> </u>	76		
-28.5'	fine sand to 28.51	clay	to 30 ⁴	
	<u>Shelby @ 30'</u>			
		sand-	Sea 22	
-351	gravel			
	gravel			
	gravel			
	gravel			
521	grave]			
-52'	gravel ends at 52'sandy clay begins at 52'			譂

۴	,‡* ₩										
ē	HR	<u>B.F.</u> 1	025-65 PROVINCE OF ALBERTA DEPARTMENT OF HIGHWAYS TEST HOLE LOG		Bridge File: 76651 ProjectINTERCHANGE AT CLOVER BAR COMPLE: Site 128 + 40 Sample Location D North-West Outer Connector Hole #1 Depth 75: Technician Prelusky Date Sept, 9/69						
DEPTH IN FEET	Elev Met Rem	vation o hod of ,	of Ground Surface (Zero Depth) of Water Table Advancing Hole FIELD CLASSIFICATION Pen. @ 55' 10 20 21 1	σ, F	LEGEND Liquid Limit A Field Moisture O Plastic Limit * PP MOISTURE CONTENT - %						
57 <u>1</u> 60 <u>1</u>			6" 12" 18" 11 Pen, sank 11" with on Sandy clay Shelby @ 60' (bag samp	2" 1 <u>y 2 n</u> a							
66 <u>1</u>	-65		Sandy clay Pen. @ 65' 33 88 119 6" 12" 18" (no recovery	}							
69 <u>1</u> 72 <u>1</u> 75 <u>1</u>			clay (T.V.) clay (T.V.) traces of clay Pen. @ 75' 53 185 300								
			<u> 6" 12" 14.5</u> <u> </u>	8.51							
_											
-	, , , , , , , , , , , , , , , , , , ,										
-											

DEPTH IN FEET

				Aberta Highways	6 & Trans		VISUAL IDENTIFICATION OF UNDISTURBED SOIL SAMPLES									
	6 Pen	.0 .		Sample	es	Pro	oject: 7665	nician: WW	WW							
				- 1		Sit	Site: Interchange at Clover Bar Complex Date: September 9th, 1969									
	Sample No.			1	Structur	e	Relative Density	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec. Grav- ity		
				Medium			Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High							
	39637	1	3	3.5	M		М	N	lt.brown	below	M	silty clay	CL:CI	2.72		
	39638	1	6	4.0	M		M	N	lt.brown	opt	M	silty sandy clay	CL:CI	2.72		
	39639	1	9	4.5+	M		М	N	dk.brown	opt	M	pebbles sandy clay	CL:CI	2.72		
	39640	1	12	0.5	G		M	N	lt.brown	- to below	L	pebble fine uniform sand	SU	2,68		
	39641	1	15	3.75	G		D	N	lt.brown	opt	L	fine uniform sand	SU	2.68		
 	39642	1	25	0.25	G		<u>M</u>	N	lt.brown	opt	L	uniform sand	SU	2.68		
Re	mar ⁱ															
-				Ho	le_#1	_ 1	28+40	<u>E N.W.</u> C	Duter_Conne	ector				////		

i Munda sist			Alberta Highway:	s & Tran	VISUAL asport	IDENTI	FICATION	OF UNI	DISTURB	ED SOIL	SAMPL	ES
2 s	helb	У	Sampl	es	Project: 70	6651			Tech	nician: W.W.		
·····					Site: Interchar	nge Clove	r Bar Comp	lex	Date			
AMPLE Southing te 1.06+		Depth Ft.	Consist- ency	Structure	e Relative Density	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec. Grav- ity
			Pocket Penet- ration T/ft. ²	Massive Stratifie Nugget Granular Other	Medium	Strong Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Optimum	Low Medium High			
39630	1	20	0.5	G	M	N	lt.brown	opt	low	uniform sand	SU	2.68
39631	1	30	2.1	M	M	N.	lt.brown	opt. to +	med.	sandy clay	CI	2.72
			Hold	e #1]	128+40 b N	W Outer C						

. +8-64

A Shure A Shi		ce of A ent of		ه ۵ Tran		DENTIF	ICATION	OF UNI	DISTURB	ED SOIL	SAMPL	ES
l Sh	elby		_ Sample	es	Project: 760 Site: Interchan		lover Bar C	omplex		nician: WW. : September 10	th, 1969	
Sample No.+	Hol e No		Consist- ency	Structure	Relative Density	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec. Grav- ity
			Penet- ration	Massive Stratifie Nugget Granular Other	Medium	Strong Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High			
39809	1	60		M	L	N	lt.grey	opt.+	М	sandy silty clay	CL:CI	
narte				Hole	#1 128+40	E N	W Outer Co	nnector				

				Alberta Highway:	s & Tra	VISUAL	IDENTIF	FICATION	I OF UN	DISTURB	ED SOIL	SAMPL	.ES
	5 Sh	elby		Sample	es	Project:	76651			Tech	inician: W.I	V.,	
						Sire: Interc	hange at (lover Bar	Complex	Date	September 10	th, 1969	The state of the second second
SAMP Sample	5	1	Depth Ft.	Consist- ency	Structure	e Density	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec. Grav- ity
				Pocker Penet- ration T 'ft . ²	Massive Stratifie Nugget Granular Other	Medium	Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Cther	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High			
396	88	1	70	2.75	M	M	N	dk,grey	opt.+	M	sandy clay pebbles	CI	2.72
396	89	3	20	1.6	М	М	N	lt.brown	above	М	pebbles silty clay	CI	2,72
396	90	3	55	4.5+	М	D	Ν	dk.grey	below	Н	clay & shale	СН	2.75
396	91	3	30	1.5	М	М	Ν	dk.brown	above	M ·	sandy clay	CL:CI	2.72
396	92	3	45 、	1.5	M	Ν	N	dk.grey	above	M	sandy clay pebbles	CI	2.72
			:		2 4 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2				·		·		•
			:		1 								•
	-			i		-		40 Concernantia - 44					
	:	-											:
emarka	. 4	~	÷	n na sana sana d	Hote #1	128+40	-L	Outer conne	ector		An em annes e roman e se er ar ar ar er randa.		
					Hole #3	137+30	30'1:	th NW Outer	r Connector				

	Province o		iys <u>é Trai</u>	VISUAL	DENTH	FICATION	OF UN	DISTURB	ED SOIL	SAMPL	
	o écaso.	Sam	ples	Project- Site: Interch	76051 ange at G	llover Ber	Complex	and the second	nician: C.L. September 104	n. 196.	
Sample No.	HoldDep	- ency Pocke Penet-	Structu Massive Stratifi	Very Loose		Color Lt. Brown Dk. Brown		Plasticity Low Medium		Cassag- rande	Est . Spec Grav ity
		tation 17 tr. ²	<i>4~</i> ,	Medium r pense Extremely Dense	None	Lt. Grey Dk. Grey Black Other	Optimum Opt. + Above Opt. Wet	Hìgh			1 1 1 1
		0 ~ .5 + 1.0−	М	2	1.7		- to below	1 1 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	cilt a bențonite condy clay pebbles	Cll	4
	- ~				F 14		+ to stave	м	pebbles	CL:CI	1.7-
		يې مېکې ور د د	G	<u>ř</u>	1	lt.brown	jogt.	- -	unifons sand	۳۹». ت د .	1.55
1. 671		· • ڪ	Ģ			lt.brown	<u>2</u> -2-	i.	uniform sand	3Ű	2.88
		2 2.2	G	L	14	lt.broen	. ಆನಿರ್.	1	uniform sand uniform sand	51	
÷	· · · · · · · · · · · · · · · · · · ·		C	<u> </u>		it.brown	ojt.	<u>द</u> ्	cluy lumps	SU: 97	; I . 68
	, ,										
			1		norm			1 - -			:
	: - •			4 4					· · · · · · · · · · · · · · · · · · ·		
nares	• • •	··· •• • •		Hole 11	128444	i ħ W	Suter Conna	otor	هر بيني من المستقامين مع المحم		
				Mole ge	1344)5		6 N Outer				. 7

PROVINCE OF ALBERTA

DEPARTMENT OF HIGHWAYS & Transport

ENGINEER: A. Weber DATE: September 9th, 1969 Edmonton

SOILS INVESTIGATION

Ī	Sample No.	Bag or Jar	Station	Į	Depth Below	Sieve	e No.	% Pa	ssing				Classif	Field	Est.	Est.	Pot. Frost	
	105 +	Jar No		Loc.	Grade	4	10	40	200	L.L.	P.L.	P.I.	ication	Moist %	Opt. Moist	Proct. Dens.	Frost Action	Remarks
	39637	3 1 1 1	l I I	0 	31	99.4	98.8	98 .	94	60.4	22.6	37.8	СН	18.7	24	96	low	clay
	39638	1 1 1	1 2 8 1	Connectør #1	6'	99.9	99.6	95	70 -	41.2	14.3	26,9	CI	12.3	15	115	ĺow	sandy clay
	39639	TUBES	1 0 7	ar Co e #1	91	95	91	85	57	38.8	14.2	24.6	CI	12.0	15	115	low	sandy clay
	39640	PENO.	128+40	V.Outer Hole	12'	93	92.6	90	25			trace	SU	5.3			med.	uniform fine sand
	39641	1 1 1 1	I I I I	Z I I	15'		100	95	23			trace	SU	7.2			med.	11
	3 9 642	3 8 1 1	1 1 2 2	1 1 2 5	25'		100	92	21			trace	SU	6.3			med.	11
									·									1.

PROVINCE OF ALBERTA

DEPARTMENT OF HIGHWAYS & Transport

SOILS INVESTIGATION

FILE: 76651 ENGINEER: <u>A.</u> Weber DATE: September 9th, 1969

Edmonton

Int. at Clover Bar Complex REMARKS:

Sample No	Bag or Jar	Station	Loc.	Depth Below	Siev	e No.	% Pa	ssing		ם ו	DI	Classif	Field	Est.	Est.	Pot.	_
No. 10 ⁵ +	No		1	Grade		10	40	200	L.L.	Га .	۳.۱.	icatior	Field Moist %	Opt. Moist	Proct. Dens.	Frost Action	Remarks
39630	Shelby Tubes	128+40	E NW Outer Connector	[[] [[] 20'	100	100	99	12			trace		3.4				uniform fine sand
39631	She		b NI Oute Coni	eleh 30,	100	100	97.7	52	26.5	13.0	13,5	CL	14.7	12			sand, clay
																	inter:

1 DO

PROVINCE OF ALBERTA

DEPARTMENT OF HIGHWAYS & Transport

SOILS INVESTIGATION

FILE: 76651 A. Weber _____ ENGINEER: DATE: September 10th, 1969 Edmonton

Sample No. 10 ⁵ +	Bag or	Station		Depth Below	Sieve	e No.	% Pa	ssing			D (Classif	Field	Est . Opt . Moist	Est.	Pot.	
10 ⁵ +	Jar No	Station		Grade	4	10	40	200	L.L.	Y.L.	P.I.	ication	Moist %	Opt. Moist	Proct. Dens.	Frost Action	Remarks
39809	Shelby Tube	128+40	b NW Oute Connector Hole #1	r 60'			100			19.5			18.9		103		clay
			: 														
•																	
																	(hf)-

PROVINCE OF ALBERTA

DEPARTMENT OF HIGHWAYS & Transport

FILE: 76651 ENGINEER: A. Weber DATE: September 10th, 1969 Edmonton

SOILS INVESTIGATION

REMARKS: Int. at Clover Bar Complex

Sample No.	Bag or	Stop.	Loc.	Depth Below	Sieve	No.	% Pa	ssing		PI		Classif	Field	Est.	Est. Proct	Pot - Frost Action	Remarks
$10^{3} +$	No		2001	Grade		10	40	200	e	* * * *		ication	<u>%</u>	Moist	Dens.	Action	Kemdrks
39688	1	1	E NW Oute Connector Hole #1	701	99.3	98.7	96	76	46.2	14.3	31.9	C1	17.6	16			sandy clay
39689	dbes		Hole #) CONNECTOR HolE #3 HolE #3	201	98.7	98	95	73	46.8	14.8	32.0	<u>C1</u>	19.7	1.6			sandy clay
39690	T Zd		NECTON MECTON	551	100	100	99.2	87	59.9	29.6	30.3	CH	20.5	30			silt, clay
39691	Shel	1 37 +	LTE R CON HOI.	30ª	100	99.3	96	70	44.3	14.8	29.5	Cl	19.8	16			sandy clay
39692					99.9	99.3	96	71	43.5	14.7	28,8	CI	18.5	15			sandy clay
	-	1	-														
•																	

)			-													
		+	-		<u> </u>												p.p.=

. .

7.÷.

PROVINCE OF ALBERTA

FILE: 76651 ENGINEER: A. Weber DATE: September 10th, 1969

Edmonton

& Transport SOILS INVESTIGATION

DEPARTMENT OF HIGHWAYS

Samp	le Ba	g or		Loc.	Depth	Sieve	e No.	% Pc	assing	1			Classif	Field	Est.	Est.	Pot.	
105			Station	Loc.	Below Grade	·	10	40	200	L.L.	P.L.	P.1.	ication	Moist %	Opt. Moist	Proct. Dens.	Frost Action	Remarks
- <u> </u>			128+40		er 75'		100	99.9	68 ⁻									fine sand,silt bentonite
3967	3	і У			31	98.3	97.2	92	70	34.6	12.8	21.8	Cl.	16.9	13	120	med.	sandy clay
3967		rubes	:	OUT ER	6'		100	99.9	36			trace	SF	14,9				fine sand
3967	5	TENO.	134+0	F E N.W. C CONNECTOR HOLE #2	9'		100	99.3	20			trace	SF	9.4			med,	fine sand
3967	6		2 2 2	2	121	·	100	98.6	11			trace	su	8.5			med.	uniform fine sam
3967	7	1	1 1 1		15'	99.9	99.8	90	19			trace	SU	_7,9			med.	uniform fine sar
													7 7 7					
			:															
				······································														
																		·····
	1990 Al																	

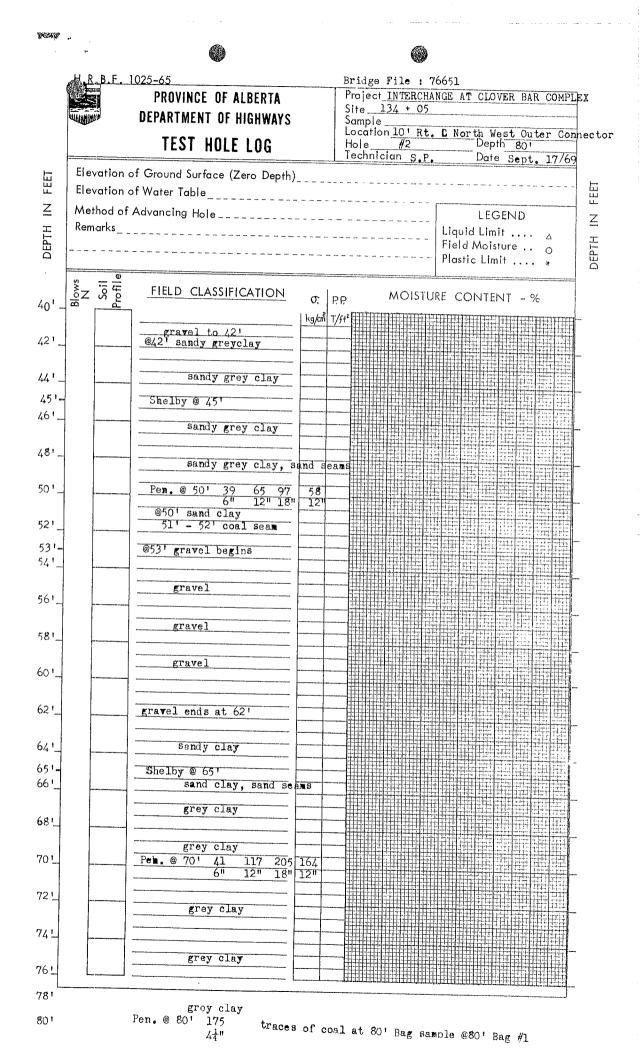
				Alberta Highways	5 & Tran	V spor	ISUAL I	DENTIF	ICATION	OF UN	DISTURE	ED SOIL	SAMPL	
And the Property of the Proper		5 Pen	ΰ.	Sample	es	Pro	ject: 7	6651			Tech	nnician; W.W.		
					1	Site	e: Intercha	nge at C	lover Bar	Complex	Date	: September 10t	h, 1969	
······································	Somple No ² +		Depth Ft.	Consist- ency	Structur	e	Relative Density	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec. Grav- ity
n en en en andere an en				ration	Massive Stratifie Nugget Granular Other	d	Very Loose Loose Medium Dense Extremely Dense	Strong Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High			
	39672	1	75	4.5+	M		D	Ν	lt.grey	- LO below	Н	silt & bentonite	СН	2.75
	39673	2	3	1.3-2.0	М		М	N	lt.brown	+ to above	М	sandy clay pebbles	CL:CI	2.72
	39674	2	6	0.8	G		М	N	lt.brown	opt.	L	uniform sand	SU	2.68
-	39675	2		0.5	G		М	N	lt,brown	opt.	L	uniform sand	SU	2,68
	39676	2		0.2	G		L	N	lt.brown	opt.	L	uniform sand uniform sand	SU	2.68
	39677	2	15	(),5	G		L	N	lt,brown	opt.	L	clay lumps	SU:SC	2.68
ann an an an an ann ann ann an an an an		and and a second se						•						
Re	mart				_	Hol	e #1	128+40	E N.W.	Outer Conned	etor			
			-			Hol	e #2	134÷05	10'rt b	N.W. Outer	Connector			į
-		•		• •				× .						1/2'

	HRBF 957 65	PRO	VINCE OF A	1 REDTà	PROJEC	т. 76651			L OC A	TION: Interchan	ge at Clover Bar Complex
		DEPAR	TMENT OF I	HIGHWAYS	DATE: Transport	Septembe	er 9 & 10,	1969		RKS: A. Weber	Penetrometer Samples
	CONTRACT								ed for	% Saturation.	
	SAMELE No. +	HOLE	DEPTH INCI	MOISTURE BEFORE	MOISTURE AFTER	SATURATION BEFORE	SATURATION AFTER	0, Xy se (m	POCKET PENET RAT ON 1 serv	FAILURE	REMARKS
	39637	1	3	19.2	18.7	58.5	57.2	3.71	3.5	o 58 shear	
	39638	L	6	12.5	12.3	72,6	71.1	4.53	4.0	55 shear	Vane shear - 1.90 TSF
	39639	1	19	12.4	12.0	82.3	79.7	6.64	a present de la construcción de la	the contract of the second	Vane shear - 2.5+ TSF
	39640	1	12	No unce	onfine -	sand			0.5		
ŀ	39641	1	15	7.6	7.2	41.5	39.0	3,80		Vertical shear	
	39642	1	25	No unc	onfine -	sand			0.25		
	39672	1	75	17.1	16.7	94.0	91.7	11,33	4.5+	Coné shear	
	39673	2	3	17.2	16,9	94.4	92.7	1,90		0	Vane shear - 1.0 TSF
	39674	2	6	15.2	14,9	79.2	77.8	0.7		68 ⁰ shear	
	39675	2	9	No unce	onfine - s	and			0.5		· · · · · · · · · · · · · · · · · · ·
	39676	2	12	No unco	onfine - s	and			0,2		
	39677	2	15	No unco	nfine - s	and			0.5	·	

. .

.

SUMMARY OF UNCONFINED COMPRESSION TESTS


A contraction of the second
SUMMARY OF UNCONFINED COMPRESSION TESTS

HRBF 957-65	PROV	INCE OF A	LBERTA	PROJEC		651		LOCA	TION: Interchang	e at Clover Bar Complex
	DEPART TEST	MENT OF H	IIGHWAYS ATORY &	DATE: Transport	September	9 & 10, 1	969	REMAR	RKS: A. Weber.	Shelby Samples
		1	1		Specific	gravities	estimate	ed for %	saturation.	
ANSAMPEE NC 19- 10- +	HOLE No.	DEPTH feet	MOISTURE BEFORE ∞	MOISTURE AFTER	SATURATION BEFORE %	SATURATION AFTER %	0 ₁ Kg∂sq cm	POCKET PENET- RATION Trisq ft.	TYPE OF FAILURE	REMARKS
39630	1	20	no unc	onfine -	sand			0.5		
39631	1	30	14.9	14.7	87.8	86.4	1.73	2.1	65 ⁰ shear	vane shear - 1.22 TSF
39809	1	60	bag sa	mple - nc	unconfin	e				
										$\int \int \langle \psi \rangle$

SUMMARY OF UNCONFINED COMPRESSION TESTS HRBE 957 65 PROJECT: 76651 LOCATION: Int. at Clover Bar Complex PROVINCE OF ALBERTA L DATE: September 10th, 1969 DEPARTMENT OF HIGHWAYS 122 REMARKS: A. Weber - Shelby Samples TESTING LABORATORY **U**linal Specific Gravities Estimated for % Saturations SSAMPLEE POCKET 4403 E DEPTH MOISTURE | MOISTURE ISATURATION SATURATION O. PENET TYPE OF rie -BEFORE AFIER *ne1 BEFORE AFIER REMARKS * ALL URE RATION I Ko so a T Sector 39688 17.6 70 17.9 96.8 95.1 3.18 2.75 flow vane shear - 1.30 TSF 39689 20.0 2019.7 92.8 91.4 1.29 1.6 :55° shear vane shear - 0.62 TSF 39690 3 55 20.7 20.5 85.0 83.9 1.71 4.5+ 53 shear disturbed sample 39691 3 30 20.2 19.8 1.69 1.6 64⁰ shear 95.3 93.3 vane shear - 0.75 TSF 39692 3 45 19.0 18.5 1.5 60° shear 94.7 92.5 1.72 vane shear - 0.75 TSF

	n. galan			研題
ц		1025 45		
	<u>R.B.F.</u>	PROVINCE OF ALBERTA		Bridge File: 76651 Project INTERCHANGE AT CLOVER BAR COMPLEX.
E		DEPARTMENT OF HIGHWAYS		Site <u>134 + 05</u> Sample
		TEST HOLE LOG		Location 10' Rt. C North-West Outer Connecto Hole #2 Depth Technician Prelusky Date Sept. 11/69
_ F	levation		۷ 21	lechnician Prelusky Date Sept. 11/69
	levation d	of Water Table	/~	
≤ №	Nethod of	Advancing Hole		LEGENDZ
R R	emarks	<u>0' - 20'</u>	Dry A	
5		201	_wet_D:	rill Plastic Limit *
SWO	N Soil Profile	FIELD CLASSIFICATION	σ	PP MOISTURE CONTENT - %
ין 🗖		00'- 1:0' Top-soil	kg/cm	
1		<u>1' - 3' sandy clay</u> Pen. @ 3' 5 \$14 29	24	
		<u>6" 12" 18"</u> @5' sand beging	12"	
'		Pen. @ 6' 10 8 28 46- 6" 12" 18"	30	
1			\$3	
		<u> </u>	12"	
2'_		Pen. @ 12' 11 28 58 6" 12" 18"	(47) 12"	
51		sand Pen. @ 15' 15 39 75	60	
		6" 12" 18"	12"	
81_		sand to 20' @ 20	' sand	vit gravel
20' 1'_	1		·	
		gravel & sand		
41				
71		<u> </u>		
'				
01				
31				
-				
6 <u>1</u> 371				
· / د . 9		sand & gravel to 37'		
-		Dulled to 90' Sept 40/ completed Sept	11/69	
21		- Hole completed Sept	2/69	
51				
<u>'</u>				
81				
14				

.....

	Addresses a bette			Alberta Highway:	s & Tran	VISUAL	IDENTIF	ICATION	OF UNI	DISTURB	ED SOIL	SAMPL	ES
	6	Penc).	_ Sampl	es	Project:	76651			Tech	nician: W.W.		
						Site: Inter	change at C	lover Bar	Complex	Date	September 10t	h, 1969	
2	SAMPLE Sample No.5 +		Depth Ft.	Consist- ency	Structur	e Relative Density		Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec Grav ity
وأجوز والإخار والمحادث المحادية المحادث والمحادث والمحادي والمحادي المحادي المحادي المحادية والمحادية والمحادية				Pocket Penet- ration T/ft. ²	Massive Stratifie Nugget Granular Other	Medium	Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High			
	39672	1	75	4.5+	М	D	N	lt.grey	- to below	H	silt & bentonite	СН	2.75
	39673	2	3	1.3-2.0	М	M	N	lt.brown	+ to above	M	sandy clay pebbl e s	CL:CI	2.72
	39674	2	6	0.8	G	M	N	lt.brown	opt.	L	uniform sand	SU	2.68
	39675	2	9	0.5	G	M	N	lt.brown	opt.	L	uniform sand	SU	2.68
	39676	2	12	0.2	G	L	N	lt.brown	opt.	L	uniform sand	SU	2.68
- T	39677	2	15	0.5	G	L	N	lt.brown	opt.	L	uniform sand clay lumps	SU:SC	2.68
·····													
ي ليسميليسيسيل	s					Hole #1	128+40	5 NI LI	Outon Com				
Ri	emar ¹					Hole #1 Hole #2	134+05		Outer Connector N.W. Outer				
													-112-

۰.

			Alberta Highway	rs & Tra	ans	VISUAL II	DENTIF	ICATION	OF UN	DISTURB	ED SOIL	SAMPL	.ES
2 S	helby	,	_ Sampl	es	Р	Project:	76651			Tech	nician: ^W .	W.	
					S	ite: Int. at (Clover B	ar Complex		Date	September 1	7th, 1969)
Stample: No:S 10" +		Depth Ft.	Consist- ency	Structur	e	Relative Density	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec. Grav- ity
			Pocket Penet- ration T/ft. ²	Massive Stratifie Nugget Granular Other		Very Loose Loose Medium Dense Extremely Dense	Strong Medium None	Lt. Browr Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High			
39922	2	45	4.5+	M		D	N	dk.grey	below	M-H	silty clay	CI:CH	2.75
39923	2	65	4.5+	M		M	N	lt.grey	- to belo	w M-H	silty clay W bentonite	CI;CH	2.75
emarte					Ho	ole #2	134+05	10'rt	E N.W. Ou	ter Connect	or		

4	Penc).	Sampl	es F	Project: 7	6651			Tech	inician:		
	<u>-</u>		·	5	ite: Interchan	ge at Cl	over Bar C	omplex	Date	:September 17	th, 1969	<u> </u>
No. +	Hole No		Consist- ency	Structure	Relative Density	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec Grav ity
			Pocket Penet- ration T/ft. ²	Massive Stratified Nugget Granular Other	Very Loose Loose Medium Dense Extremely Dense	Strong Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High			
39931	2	50	1.4	S	M	N	lt.grey	opt.	М	silty clay fine sand	CI	2.72
39932	2	70	4.5+	M	D	N	dk.grey	opt	M-H	silty clay	CI:CH	2.75
39933	2	80	4.5+	M & coa	1 D	N	black	- to below	М	silty clay & coal	OI	2.70
39934	2	80	no rdg.	coal	L	<u>N</u>	black	above	L	coal	coal	2.68
11 ¹				Hole #	¥2 134+05	 10'rt		. Outer Conn				

1

-

PROVINCE OF ALBERTA

FILE: 76651 ENGINEER: A. Weber DATE: September 10th, 1969 Edmonton

DEPARTMENT OF HIGHWAYS & Transp**o**rt

SOILS INVESTIGATION

	Sample No.		C	1	Depth Below	Sieve	e No.	% Pa	issing				Classif	Field	Est.	Est.	Pot. Frost	
	$10^{5} +$	Jar No	Station	Loc.	Grade	4	10	40	200] L.L.	P.L.	P.1.	icatior	Moist %	Opt. Moist	Dens.	Frost Action	Remarks
	39672	I I I	128+40	C N.W.Oute Connector H#1	75'		100	99.9	68	58.0	17.9	40.1	СН	16.7	20	105	low	fine sand,silt bentonite
	39673	1 1 1			31	98.3	97.2	92	70	34.6	12.8	21.8	CL	16.9	13	120	med.	sandy clay
	39674	TUBES		RT E N.W. OUTER CONNECTOR HOLE #2	61		100	99.9	36			trace	SF	14.9			med.	fine sand
	39675	PENO.	134+0	N.W.	91		100	99.3	20			trace	SF	9.4			med.	fine sand
	39676	1 1 1	FF	- RT COJ H	121		100	98.6	11			trace	SU	8.5			med.	uniform fine sar
	39677	1 1 1	I 1 I 1	- 10 - 1 - 10 - 1	151	99.9	99.8	90	19			trace	SU	7.9			med.	uniform fine sar
- *1																		
																		Normal

HRBF II78/68

PROVINCE OF ALBERTA

DEPARTMENT OF HIGHWAYS & Transport

FILE: 76651 A. Weber ENGINEER: DATE: September 17th, 1969 Edmonton

SOILS INVESTIGATION

Sample No.	Bag or Jar	Station	Loc.	Depth Below	Sieve	e No.	% Pa	ssing		P.L.	D I	Classif	Field Moist %	Est.	Est.	Pot.	
105+	No			Grade	4	10	40	200	L.L.	1.2.	ſ.I.	icatior	1VIO1ST %	Opt. Moist	Dens.	Action	Remarks
39922	Shel by Tubes	134+05	10'rt b N.W.Outer Connector Hole #2	451	100	99.9	99.5	93	50.0				16.5				silty clay
39923	She Tu	134	10'r N.W. Conn Hol	65'	100	99.7	99	79	60.8	23.5	36.3	СН	19.1	26			clay
					- <u></u>												
					. <u></u>												
								<u> </u>									
-																	
					<u></u>												
												, , , , , , , , , , , , , , , , , , ,					
																	· II.
														A			Hail

PROVINCE OF ALBERTA

DEPARTMENT OF HIGHWAYS & Transport

FILE:76651ENGINEER:A. WeberDATE:September 17 th, 1969Edmonton

SOILS INVESTIGATION

Sample No.	Bag or	C		Depth Below	Sieve	No.	% Pa	ssing	L.L.	P.L.	P.1	Classif	Field Moist	Est. Opt.	Est. Proct.	Pot. Frost Action	Remarks
$10^{5} +$	Jar No	Station	Loc.	Grade	4	10	40	200				Ication	%	Moist	Dens.	Action	
39931	1	1 1 1	10' RT b N.W.Duter Connector. Hole #2	50'		100	99.4	77	35.8	16.6		CI:CL					sandy clay,silt
39932	. Tubes	+ +	N.W. or. H	70 '	99	98.9	98.5	97	70.3	21.6	48.7	СН	18.4	23			clay
39933	Peno	- 13	RT b nnect	80'		100	89		65.5	34.5	31.0	OH	25.7	30+			clay, coal
39934	1 1 1 1	1 1 1	10- Co	80'						COAL							
						-											
	*				<u> </u>												Fatt
					1	1	1	<u> </u>	1		L		<u> </u>	1	-L	_1	1 Aft

HRBF 957-65 PROJECT: 76651 LOCATION: Interchange at Clover Bar Complex PROVINCE OF ALBERTA DEPARTMENT OF HIGHWAYS Transport September 9 & 10, 1969 REMARKS: A. Weber Penetrometer Samples TESTING LABORATORY Specific Gravities Estimated for % Saturation. SAMPL POCKET HOLE NOLE DEPTH MOISTURE MOISTURE SATURATION SATURATION $\overline{O_1}$ TYPE OF PENET-Nos . No. feet BEFORE AFTER BEFORE AFTER REMARKS FAILURE RATION % % 2 % Kg/sq cm T/sq ft. 0 39637 1 3 19.2 18.7 58.5 57.2 3.71 3.5 58 shear 55[°] shear 39638 1 6 12.5 12.3 72.6 71.1 4.53 4.0 Vane shear - 1.90 TSF 64[°] cone shear Van**e** shear - 2.5+ TSF 39639 1 9 12.4 12.0 82.3 79.7 6.64 4.5+ 39640 1 12 No unconfine - sand 0.5 39641 1 15 7.6 7.2 41.5 39.0 3.80 3.75 Vertical shear 39642 1 25 No unconfine - sand 0.25 39672 1 75 17.1 16.7 94.0 91.7 11.33 4.5+ Cone shear 39673 2 3 17.2 16.9 94.4 52° shear 92.7 1.90 1.65 Vane shear - 1.0 TSF 39674 2 6 15.2 14.9 68⁰ shear 79.2 77.8 0.7 0.8 39675 2 9 No unconfine - sand 0.5 39676 2 12 No unconfine - sand 0.2 39677 2 No unconfine - sand 15 0.5 ÷.

SUMMARY OF UNCONFINED COMPRESSION TESTS

Ŋ

HRBF 957-65 PROJECT: 76651 LOCATION: Int. @ Cloverbar Complex **PROVINCE OF ALBERTA** DEPARTMENT OF HIGHWAYS TESTING LABORATORY September 17th, 1969 REMARKS: A. Weber. Shelby Samples Specific Gravities Estimated for % Saturation. SAMPLE NONS POCKET PENET-HOLE DEPTH MOISTURE MOISTURE SATURATION SATURATION $\overline{O_1}$ TYPE OF No. REMARKS feet BEFORE AFTER BEFORE AFTER FAILURE RATION 105 + 070 07 6.0 %Kg sq cm T/sg ft. 4.5+ 70° shear 39922 2 16.8 45 16.5 90.3 88.7 3.03 Disturbed sample 39923 2 No unconfine - disturbed sample 65 4.5+

SUMMARY OF UNCONFINED COMPRESSION TESTS

HRBF 957-65 PROJECT: 76651 LOCATION: Int. at Cloverbar Complex PROVINCE OF ALBERTA DEPARTMENT OF HIGHWAYS September 10th, 1969. REMARKS: A. Weber. Penetrometer Samples DATE: TESTING LABORATORY & Transport Specific Gravities Estimated for % Saturation. SAMPLE POCKET HOLE DEPTH MOISTURE MOISTURE SATURATION SATURATION σ_{1} PENET-TYPE OF No. REMARKS feet BEFORE AFTER BEFORE AFTER FAILURE :05 RATION ن o;_ <u>%</u> 20 Kg sq cm T. sg ft. 9539 39678 3 3 18.0 17.8 98.5 42⁰ shear 96.9 2,28 1.75 Vane shear - 0.80 TSF 39679 3 6 59[°] shear 17.2 16.9 97.7 96.1 2.13 1.9 Vane shear - 1.00 TSF 39680 3 9 16.2 15.9 94.6 92.6 2.42 1.8 Flow Vane shear - 1.00 TSF 39681 3 12 20.7 20.4 94.3 92.8 1.72 1.75 Flow Vane shear - 0.90 TSF 39682 3 15 22.4 22.0 99.7 45⁰ shear 97.8 2.29 2.25 Vane shear - 1.25 TSF 39683 3 25 21.5 21.2 99.9 98.5 1.97 1.7 Flow Vane shear - 1.00 TSF 39684 3 35 20.1 19.7 97.4 95.3 1.57 Flow 1.25 Vane shear - 0.66 TSF 39685 3 40 20.2 19.8 98.9 97.2 1.49 1.25 Flow Vane shear - 0.65 TSF 39686 3 50 22.9 22.3 95.2 64⁰ cone shear 92.7 6.16 4.5+ 39687 3 65 22.8 22.3 83.9 48⁰ shear 82.0 5.07 4.5+ 39931 2 50 20.2 19.8 88.7 87.1 1.52 1.4 Flow Vane shear - 0.75 TSF 39932 0 2 70 18.7 18.4 91.1 44 shear 89.5 9.12 4,5+ 39933 2 80 26.3 25.7 73.1 71.6 3.46 4.5+ Shear 39934 No undonfine - bag sample 2 80 NY NY

a second s

SUMMARY OF UNCONFINED COMPRESSION TESTS

 \int

fir / a	; (1)	@		•
	R.B.F.	1025-65 PROVINCE OF ALBERTA DEPARTMENT OF HIGHWAYS TEST HOLE LOG		Bridge File: 76651 Project_INTERCHANGE AT CLOVER BAR COMFLEX SiteSample Location_30' Lt. C North-West Outer Connector HoleBopth_65' Technician PreluskyDate Sept. 10/69
FEET		of Ground Surface (Zero Depth) of Water Table		162.3
DEPTH IN	Method of Remarks	Advancing Hole 0' _ 15' Dr 15' - 65' We	y_Aug	gerLiquid Limit Δ T
0'-	Blows N Soil Profile	FIELD CLASSIFICATION		P.P. MOISTURE CONTENT - %
3'_		0' - 2' Top-soil 2' - 3' sandy clay Pen. @ 3' 7 18 32	25	
6'_		<u>6" 12" 18"</u> <u>sandy clay</u> <u>Pen. @ 6' 7 16 32</u> <u>6" 12" 18"</u>	12" 25 12"	
9'_		<u>sandy clay</u> <u>Pen. @ 9' 11 20 55</u> <u>6" 12" 18"</u>	44	
12'_		sandy clay with sand Pen. @ 12' 7 17 37 6" 12" 18" fine sand begins @13'	3eam: 30 12"	
15'_		Pen. @ 15' 9 20 39 6" 12" 18" sand ends at 15'	(Not 30 12"	
18'	-20'	Sandy clay Shelby @ 20'		
21'_		sandy clay		
24' 27'	.251	Pen. @ 25! 10 23 50 6" 12" 18"	40 12"	
301		Sandy clay Shelby @ 30'		
33'_				
	35'	Pen. @ 35' 11 24 45 6" 12" 18"	34 12"	
39'_		clay, silty clay		
421 _	40 '	Pen. @ 40' 11 24 46 6" 12" 18"	35 12"	
45' _		clay, silty clay Shelby @ 45'		
481_		grey clay(very har		
51'_	501	Pen. @ 50' 33 83 205 6" 12" 18"	172 12"	
54'_		clay		

ব'			
R.B.F.	1025-65 PROVINCE OF ALBERTA DEPARTMENT OF HIGHWAYS TEST HOLE LOG		Bridge File: 76651 Project INTERCHANGE AT CLOVER BAR COMPLE Site 137 + 30 Sample Location 30' Lt. C North-West Outer Com Hole #3 Depth 65' Techniclan Prelusky Date Sept. 10/69
Elevation	n of Ground Surface (Zero Depth)	216	62.3
Llevation	of Water Table		
Remarks_	of Advancing Hole		Liquid Limit A
Blows N Soil Profile	FIELD CLASSIFICATION	 0,	
	_Shelby @55' clay _ @ 56' Shale ledge	kg/cm [*]	$\frac{1}{m}$ T/f+ ²
	clay		
	Pen. @ 65' 61 239 6" 12"	178 12"	
L			

.....

· 10	Penc	D.	_ Sample	es _	Project: 766	51			Tech	nician:		
					Site: Interchan	nge at Cl	over Bar C	Complex	Date	e: September 1	10th, 196	j9
Sample No.+	1	Depth Ft.	Consist- ency	Structure	Relative Density	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec Grav ity
			Penet– ration	Massive Stratified Nugget Granular Other	Very Loose Loose Medium Dense Extremely Dense	Strong Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High			
39678	3	3	1.75	М	М	N	lt.brown	opt.+	M	sandy clay pebbles	CL:CI	2.72
39679	3	6	1.75- 2.0	М	М	N	lt.brown	opt,+	M	11	CL:CI	2.72
39680	3	9	1.8	M	М	N	lt.brown	opt.+	М	11	CL:CI	2.72
39681	3	12	1.75	М	M	N	lt.brown	above	M	11	CL:CI	2.72
39682	3	15	2.25	М	М	N	lt.brown	above	М	silty clay pebbles	CI	2.72
39683	3	25	1.7	M	M	N	lt.brown	above	M	sandy clay pebbles	CL:CI	2.72
39684	3	35	1.25	M	М	N	dk.grey	above	М	sandy clay peobles	CL:CI	2.72
39685	3	40	1.25	М	М	N	dk.grey	above	М	sandy clay pebbles	CL:CI	2.72
39686	3	50	4.5+	М	D	N	dk.grey	- to below	Н	clay and coal	СН	2,75
39687	3	65	4.5+	M	D	N	dk.grey	below	H	clay and coal	СН	2.75

H	IRBF	948-	-64

				Alberta Highways	& Tra		IDENTIF	FICATION	OF UNI	DISTURB	ED SOIL	SAMPL	ES
	5 Sh	elby		_ Sample	es	Project:	76651			Tech	nician: W.I	A,	
						Site: Interch	ange at C	lover Bar	Complex	Date	: September 10t	th , 1969	
SAMI Somp AB	15	1	Depth Ft.	Consist- ency	Structur	Relative e Density	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec Grav ity
-				ration	Massive Stratifie Nugget Granular Other	Medium	Strong Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High			
39	9688	1	70	2.75	M	М	N	dk.grey	opt.+	М	sandy clay pebbles	CI	2.7
39	689	3	20	1.6	M	M	N	lt.brown	above	M	pebbles silty clay	CI	2.72
<u> </u>	690	3	55	4.5+	М	D	N	dk.grey	below	Н	clay & shale	СН	2.7
39	691	3	30	1.5	M	<u>M</u>	N	dk.brown	above	M	sandy clay	CL:CI	2.7
39	692	3	45	1.5	M	M	N	dk.grey	above	<u>M</u>	sandy clay pebbles	CI	2.7
marka					Hole #1	128+40	ENW (Duter conne	ector				
					Hole #3	137+30		t <u>t NW</u> Outer	Connector				
·													

TH.

PROVINCE OF ALBERTA

DEPARTMENT OF HIGHWAYS

FILE:76651ENGINEER:A. WeberDATE:September 10th, 1969Edmonton

& Transport

SOILS INVESTIGATION

	Sample No.		Cr. 1		Depth Below	Sieve	∍ No.	% Pa	ssing			D 1	Classif	Field	Est.	Est.	Pot.	
	<u>10³ +</u>	Jar No	Station	Loc.	Grade	4	10	40	200	L.L.	P.L.	P.I.	icatior	Moist %	Opt.	Proct. Dens.	Frost Action	Remarks
	39678	1	1 1 1 1	DR	31	97	96.5	91	62	35.2	13.7	21.5	CI:CI	17.8	14	118		sand, clay
	39679	1	1 1 1	CONNECTOR	6'	99	98	91	60	34.0	13.1	20.9	CL:CI	16.9	13	119		sand, clay
	39680	1	s 1 2 1	I	91	99.5	99	93	60	29.9	12.8	17.1	CL	15.9	12	121		sand, clay
	39681	TUBES	30	OUTER E #3 -	12'		100	95.5	65	37.9	13.7	24.2	CI	20.4	14	118		sandy clay
	39682		+	N.W. HOL	15'	99.5	99	95.5	77	49.5	15.3	34.2	CI:CH	22.0	17	110		sandy clay
	39683	P ENO	- 13	LT E	25'	100	99.4	96	85	44.1	17.1	27.0	CI	21.2	18	108		sandy clay
	<u>9684</u>	1 1 1 5	1 1 1	30-	35'	99.5	98.9	95	71	44.1	18.3	25.8	CI	19.7	18	108		sandy clay
	39685	I I I I	f 1 5 1	1	401	99.9	99.8	96	71	41.8	13.8	28.0	CI	19.8	15	115		sandy clay
	39686	1 1 1 1	1	2 2 2 5	50'	100	100	98.4	87	66.4	26.0	40.4	СН	22.3	27	92		clay,some coal
	39687	1 1 1 1	1 1 3 4	1 1 1 1	651	100	100	98.7	79	64.5	28.8	35.7	CH	22.3	30	90		clay,some coal
																		ji A

A.

. ANALASIANASIA ANALASIANASIANA

PROVINCE OF ALBERTA

FILE:76651ENGINEER:A. WeberDATE:September 10th, 1969Edmonton

DEPARTMENT OF HIGHWAYS & Transport

SOILS INVESTIGATION

Sample No.	Bag or	Station		Depth Below	Sieve	No.	% Pas	ssing	1 1	ΡΙ	PI	Classif	Field	Est.	Est. Proct.	Pot. Frost Action	Remarks
10 ³ +	Jar No		2001	Grade	4	10	40	200	6.6			icatior	%	Moist	Dens.	Action	Nemarks
39688		1201/0	E NW Oute Connector Hole #1	701	99.3	98.7	96	76		14.3			17.6				sandy clay
39689	Tubes .		E E E E E E E E E E E E E E E E E E E	20 '	98.7	98	95	73	46.8	14.8	32.0	CI	19.7	16			sandy clay
39690	by Tu	30	• W• OU NECTC E #3	551	100	100	99.2	87	59.9	29.6	30.3	СН	20.5	30			silt, clay
39691	Shelby	137+	LTE N. W. OUTER	30 1	100	99.3	96	70	44.3	14.8	29.5	CI	19.8	16			sandy clay
39692	1 1 1	1	301	451	99.9	99.3	96	71	43.5	14.7	28,8	CI	18.5	15			sandy clay
	+				 												
	1																
												<u> </u>					In the second se

HRBF 957 65	PROV	VINCE OF A	IREPTA	PROJEC	т. 76651			OCATION: Int. at Cloverbar Complex							
	DEPAR	TMENT OF I		DATE: Transpor	Septem	ber 10th, 1	969,	REMA	RKS: A. Weber.	Penetrometer Samples					
					Specif										
ASAMELE NF	HO, É Nu	()EPTH	BEFORE	AFTER	BEFORE	SATURATION	к	POCKET PENET RATION 1 SUP	L LARF OF						
39678	3	3	18.0	17.8	98.5	96.9		1.75	42 ⁰ shear	Vanc shcar - 0.80 TSF					
39679	3	6	17.2	16.9	97.7	96.1	2.13	1.9	59 ⁰ shear	Vane shear - 1.00 TSF					
39680	3	9 	16.2	15.9	94,6	92.6	2.42	1.8	Flow	Vane shear - 1.00 TSF					
39681	3	12	20.7	20.4	94.3	92,8	1.72	1.75	Flow	Vane shear - 0.90 TSF					
39682	3	15	22.4	22.0	99.7	97.8	2.29	2,25	45 ⁰ shear	Vane shear - 1.25 TSF					
39683	3	25	21.5	21.2	99 . 9	98,5	1.97		Flow	Vane shear - 1.00 TSF					
39684	3	35	20.1	19.7	97.4	95.3	L.57		Flow	Vane shear - 0.66 TSF					
30665	12	4()	ਲੇ0≛ਸ	19.4	09.0	Q7.3	1.40	1.25	IF i way	Yanu shear - 0.05 far					
39686	3	50	22.9	22.3	95.2	92.7	6.16	4.5+	64 ⁰ cone shear						
39687	3	65	22.8	22.3	83.9	82,0	5.07	4.5+	48 ⁰ shear						
39931	2	50	20.2	19.8	88,7	87,1	1.52	<u>ì , 4</u>	Flow						
39932	2	70	18.7	L8.4	91.1	89.5	9,12	4,5+	44 shear	<u>Vane shear - 0.75 TSF</u>					
39933	2	80	26.3	25.7	73.1	71.6	3.46	4.5+	Shear						
39934	2	80	No und	onfine -	bag sample					<u></u>					

1. The second
SUMMARY OF UNCONFINED COMPRESSION TESTS

SUMMARY OF UNCONFINED COMPRESSION TESTS

HRBF 957-65	PROV	INCE OF A	IBERTA	PROJECT: 76651 LOCATION: Int. at Clover Bar Complex												
Wildbrid 11	DEPART	MENT OF H	IGHWAYS .	DATE: ransport	September	10th, 1969		REMAI	RKS: A. Weber -	- Shelby Samples						
	+				Specific (Gravities E	Stimated	d for %	Saturations.							
SAMPLE NOS 1 C° ÷	HOLE No.	DEPTH feet	MOISTURE BEFORE	MOISTURE AFTER	SATURATION BEFORE %	SATURATION AFTER %	0 Kg sq cm	POCKET PENET- RATION Trisq ft.	TYPE OF FAILURE	REMARKS						
39688	1	70	17.9	17.6	96.8	95.1	3.18	2.75	flow	vane shear - 1.30 TSF						
39689	3	20	20.0	19.7	92.8	91.4	1.29	1.6	55 ⁰ shear	vane shear - 0.62 TSF						
39690	3	55	20.7	20.5	85.0	83.9	1.71	4.5+	53 ⁰ shear	disturbed sample						
39691	3	30	20.2	19.8	95,3	93.3	1.69	1.6	64 ⁰ shear	vane shear - 0.75 TSF						
39692	3	45	19.0	18.5	94.7	92.5	1.72	1.5	60 ⁰ shear	vane shear - 0.75 TSF						
•																

	R <u>BF</u>	PROVINCE OF ALBERTA		Pro	ojec	:t			7 <i>6,6</i> 79	RUCTURE II RECT BAMP @ CLOVER BER							
		DEPARTMENT OF HIGHWAYS		Sa	mpl	e	2	5.	<u>t 80</u>	30							
		TEST HOLE LOG		1 Ho	le		•		<u>A</u>	A Depth 45							
					chn	ICI	an	1	<u>'n.</u>	<u>K</u>	<u>ا</u>	Jafe	0	CT.			
		f Ground Surface (Zero Depth)									-						
1		f Water Table <u>Slew</u> <u>StepAge</u> Br					_N_	_FB	EE	WAT		LEG					
	ernod or a emarks ar	Advancing HoleDRXAUGE PBox_11.5FILLCAVING_B	F.J.M.	EEN	21.	5.	27.		-	Liqu		Lim Nois					
R. 5_	GALS_WA	CR AND _ 50 LBS _ DRILLING MUD	<u>1</u>	REU	SED	2	51	<u>99_</u>		Fiel	d N	Aois Lim	ture	••			
CA		, 343 \$ 244 HAVE SAME BLOW C								- Tu:			·····	• • •			
SWC	N Soll Profile	FIELD CLASSIFICATION	σ,	P.P.			мс	DIST	rur	E C	102	NTE	NT	- 9			
ĕ	L S L		kg/cm		H	ĦI	I.F.I	TH:		Ħ	111	HH.	Ш	HH			
-		BROWN SANDY CLAY															
		SHELEN R S															
4																	
		PEN. 108 2 10 6 12 18		E													
	lla	BLACK ORGANIC MATERIAL					臣	1	世	田							
	19113	· .		{													
、	131	SHELRY 2 15'															
		BROWN SANDY CLAY (PEBBLES	· · · ·														
		- FEW SPECIAL CHIDS										111					
7	12																
		PEN 343 @ 2057, 21.0 PEN 244 @ 21.0 - 5 21.5	.									I III					
5' =	re-e-	18 43 66 HR															
		BROWN SILTY SAND															
-		CHELBY @ 25'			雦					<u>hi</u>							
						Ħ											
. =																	
5'		SAND CLAY															
-		<u>FEN. 501 8 30'</u> 6" 12" 18"															
		21 44 99															
-				┼		1173	1711				1 1 1	· • • • • •		and games			
		CHELOY A RE										1111					
-	K	BLUISH GREY SILTY CLAY		┼┦													
		HIGHLY DLASTIC - OPT											1				
_		EPEN 111 101 40			+1##								effer:				
		PEN 111 0 40		<u> </u>								i i ÷ ; i					
		16 43 76					1:1:										
		CHELBY & 45'										HI					
		· · · · ·			E	:11								1			
-																	
-			****			IHI		111	14	illi		1:11	1111	TIT			
					1111	田	1111	1111	1.11	1.,1.				1111			

Stife Constanti			Alberta Highways	5		VISUAL II	DENTIF	FICATION	OF UN	DISTURB	ED SOIL	SAMPL	ES					
SEDI	ari	Trains	ాయారి _ Sample	es		Project: IF 76652 Site:Top Lovel Direct Ramp Clover Dar, Arypture Date: Oct. 15/70												
Sample No.	1	Depth Ft.	Consist- ency	Structur	L	Relative Density	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec Grav ity					
NO'S 10° +			Penet- ration	Massive Stratifie Nugget Granular Other		Very Loose Loose Medium Dense Extremely Dense	Strong Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High								
43954	14	5	4.5+	ilassi ve	5	jense	None	1. 1200.0		Hedhigh	art clay		75					
407955		15	4.0			57		25	Grat.	Mod.	*	77	17					
43956		25	0.75	G		>5	11	32	Alxore	ion	Claver exc	J.C.	2.0					
43957		35	4.5+	lineal ve	}	74	n	-3. Gre	· 72.	JL n	-147	T.	2.75					
43958		15	3	53		23 	<i>स्</i>	et.	5 ²	3	6 <u>7</u>	₩3 	0.4					
emar ⁱ ··		Le . 1	- 125 1	- 30 à														
·																		

*

				Alberta Highway:	5	VISUA	L IDEN	ITIFIC	TION	OF UNI	DISTURB	ED SOIL	SAMPL	ES			
2		211	î î î î î î î î î î î î î î î î î î î	_ Sample	es	Project: Site:	Project: # 76651. Technician: The Top Level Street Resp Dite: Diover Der Structure (* 11. Date: Oct. 15/70.										
Sampl No. SAN	le (PLE	No	Depth Ft.	Consist- ency	Structure	Relati e Densi	1	or Co	lor	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec. Grav- ity			
	5 +			Penet- ration	Massive Stratifie Nugget Granular Other	Medium	n Mei Noi iely	dium Dk. ne Lt.	Brown Brown Grey Grey	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High						
4094/		1p		4.0	/kasive	Danse	Tan	Hed.	. Brown	्रेन् . १० −	i Lijb	Silty Clay	ingen Silver I	2.75			
19912		ALL AND A		18	a	13		àtrai	~~~	Ved.	arty ilsy		97				
45944			25	雄	G.	29 29	17 17	43		(ALC)	Saw.	day of and		2.0			
48949	2		30	2,40	ā.	15	* 3	inc.	irey	÷	11.th	Clay		2.75			
6895			(غ)	4.90			-7	₽ġ.		Cot.	PE	* 9	-i	2.75			
									· · ·								
nar ¹			* <u>*</u> ***	le Met	5. ± .10	42347 <u>e</u> 48), :-ane 31	les Court									

PROVINCE OF ALBERTA

DEPARTMENT OF HIGHWAYS

 FILE:
 IF 76651
 ENGINEER:
 Obset

 DATE:
 Vot. 15/70
 Healt VOT.00

and Transport SOILS INVESTIGATION

REMARKS: 200 Jonal Street any Slover Dor str. 11

من منظنة منظنة. منطقة منطقة

Sample No.	Bag or	Station	Loc.	Depth Below	Sieve	e No.	% Pc	issing	-	PI	PI	Classif	Field	Est.	Est.	Pot. Frost Action	Dennel
10 5 +	No			Grade	4	10	40	200				ication	%	Moist	Dens.	Action	Remarks
67954	ian a	125 490	i IR	5	79 . 7	37.1	95	20			1	 		{	112		ಾಜ ವೆನ್ನ ರ್ಶಿಪ್ರಗ
47955	e1	<u>.</u>	Ŧ.	15	्रे, द	99	-	50	25-3	11-3	U. 7	- 50 - 57	te na star Star la star I		100	· 1439-1	ಲಯಾಗ್ರೆ ಶಸಿಂಧ್
43756	11	4	† *	25	100	77.8	93	- C A3	16.7	Lai	2.6	25	12.0	19 	125	100	rand for ear
43957	12.1	27	÷7	35		100	77 . S		90.0	21.2	(a.1		243	02	97	lar	
409,0	* -	₹\$	51	45		ЬO	99.9	F)	102.5	25.3	02		25.0			lov	• " #. •
										,							
																	······
-38%																	
			1														

بر مدید

		40241-1-1
	(****	
	anne ar anne	
Ĩ		

PROVINCE OF ALBERTA DEPARTMENT OF HIGHWAYS

FILE: <u>76651</u> DATE: <u>ct.</u> 15/70

ENGINEER: <u>A apar</u>

Jover or tra

ari "ruspat

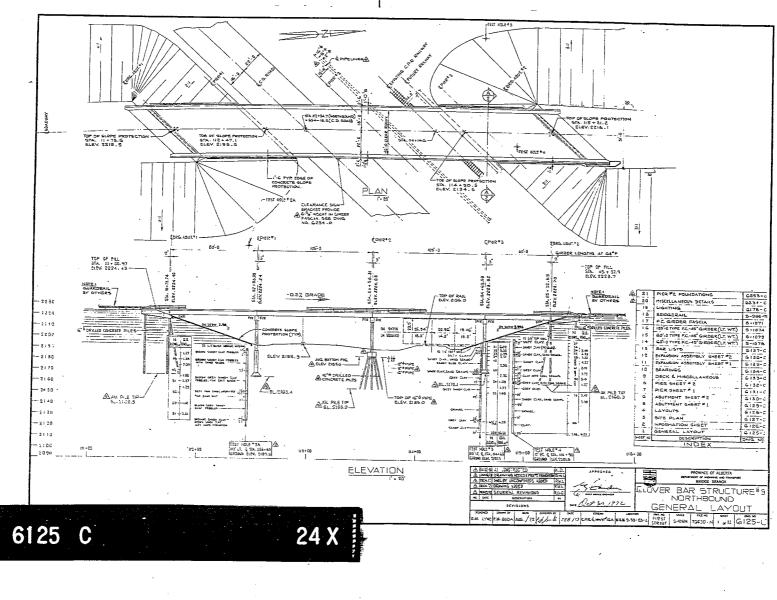
and the second
SOILS INVESTIGATION

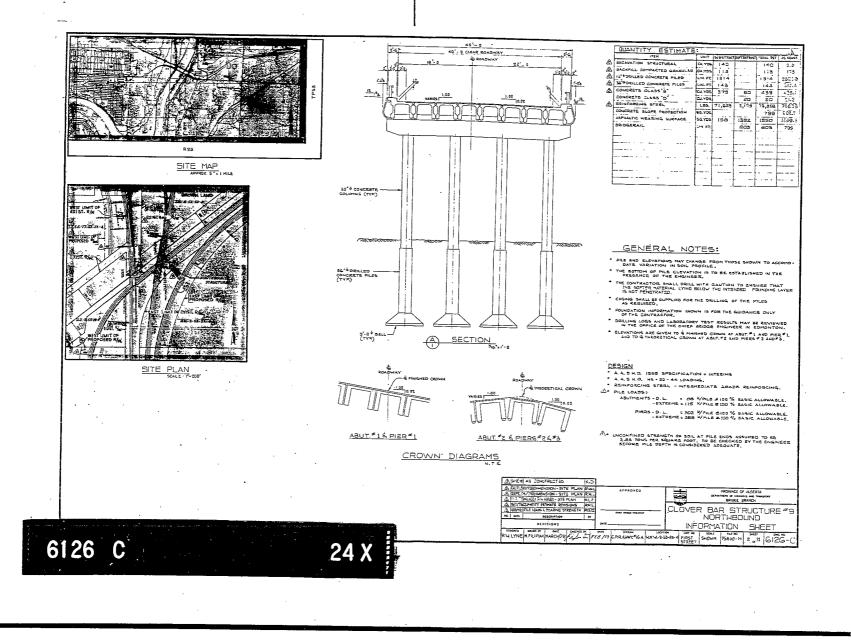
REMARKS: 200 Croct

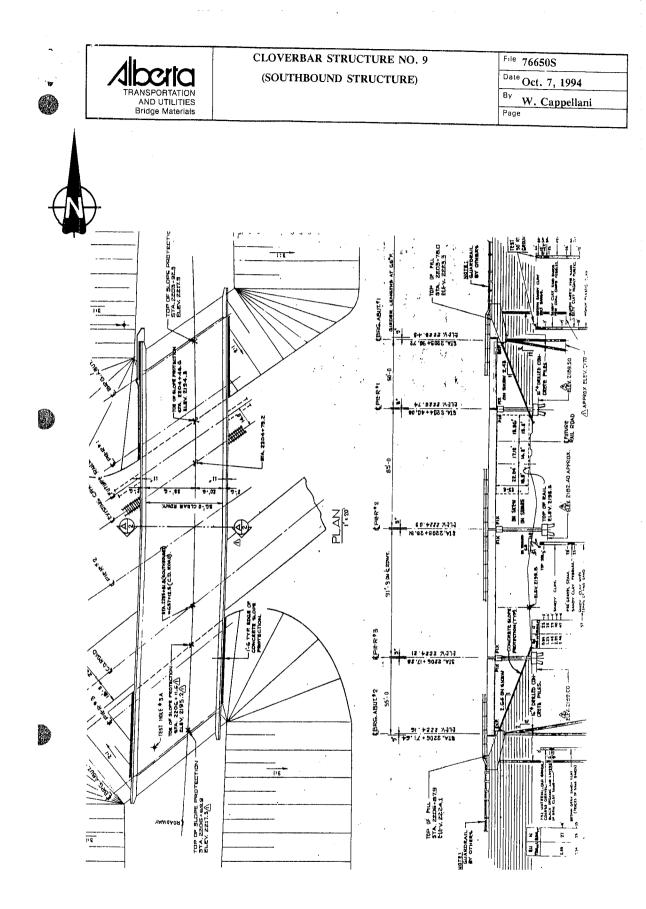
Sample	Bag or			Depth	Siou		0/ D.		1	• 2.* <u>:</u> T	<u> </u>	1	T	1	·····		
No. 10 ³ +	1	Station	Loc.	Below Grade		10	% Pc 40	200	L.L.	P.L.	P.I.	Classi icatior	Field Moist	Ont.	Proct.	Pot. Frost Action	Remarks
13746	2. State	125+80	S IP	10	100	99.9	99.3			25.5			27 . 4	MOISI	23	lor:	
Lee. The j	343	ŶŢ	2	T. Frank	99.5	<u>9</u> 29	91	60	1	12.4			20.j				e kay
47713	1947 - S.	7 2	A L	21-5	3.0	97.9	95				îru c e					nol.	ord, dlay
439129	502	a	n	(A)									ن <u>م</u> ذ			يەتھە ئەتھە ئەمىرىمەتھە	ally also gast
43950		•9				10.)	99.9		93.5	22.7	Tool to	200 2.1	1.7	25	୍ର	1o:/	
<i>وبر ر د</i> چه	111		ېږ 	iD		100	99.9		93 -4	5 . 4	66.0		26	2.	90	10-	elay

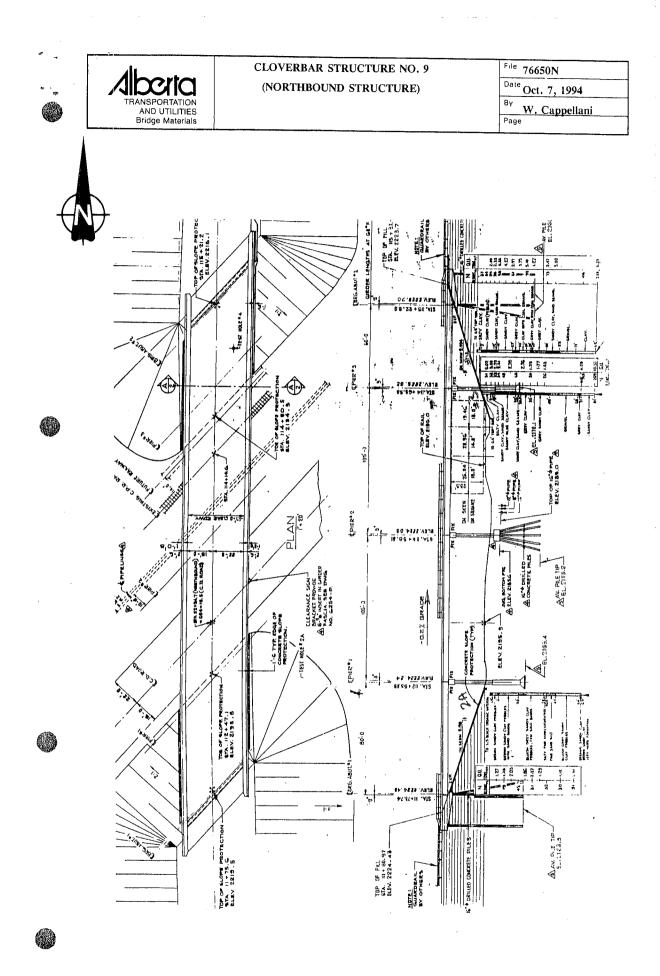
SUMMARY OF UNCONFINED COMPRESSION TESTS

HRBF 957-65	PRO	/INCE OF A	LBERTA		T: 76651.			LOCA	TION: Top Level Clover	Arost Carro hr Structure (11
	DEPART TEST	FMENT OF I	LBERTA HIGHWAYS RATORY	DE DATES	ort. 15.	/70		REMA	RKS: 💪 🏟 🖛 🗢	Shelb- Samles
		1		Specif:	ie Gravit	y istinated	for Per	vertage	aturation	
SAMPLE NOSS 103+	HOLE No.	DEPTH feet	MOISTURE BEFORE %	MOISTURE AFTER %	SATURATION BEFORE %	SATURATION AFTER %	0 ₁ Kg≓sq.cm	POCKET PENET- RATION T'sq ft.	TYPE OF Failure	REMARKS
L8951	Ip	5	No Unex	fina - D	sturical (anle		4.5+		
40955		15	tio Uncor	fine - M	sturbed :	apla		4.0		Varie John - 1.75 T.P
48956		25	Ro Uncer	Cine - de	ext			0.75		
43957		35	24.8	243-44	94.6	93.2	3.06	4.50	1 ⁰ thear	Satural ractures 1 Slide lanes
48758		45	25.0	24.6	95.7	94.2	3.80	4-5+	52° doar	Slide Flane
····										
										, , , , , , , , , , , , , , , , , , , ,
C										
	LI									IA

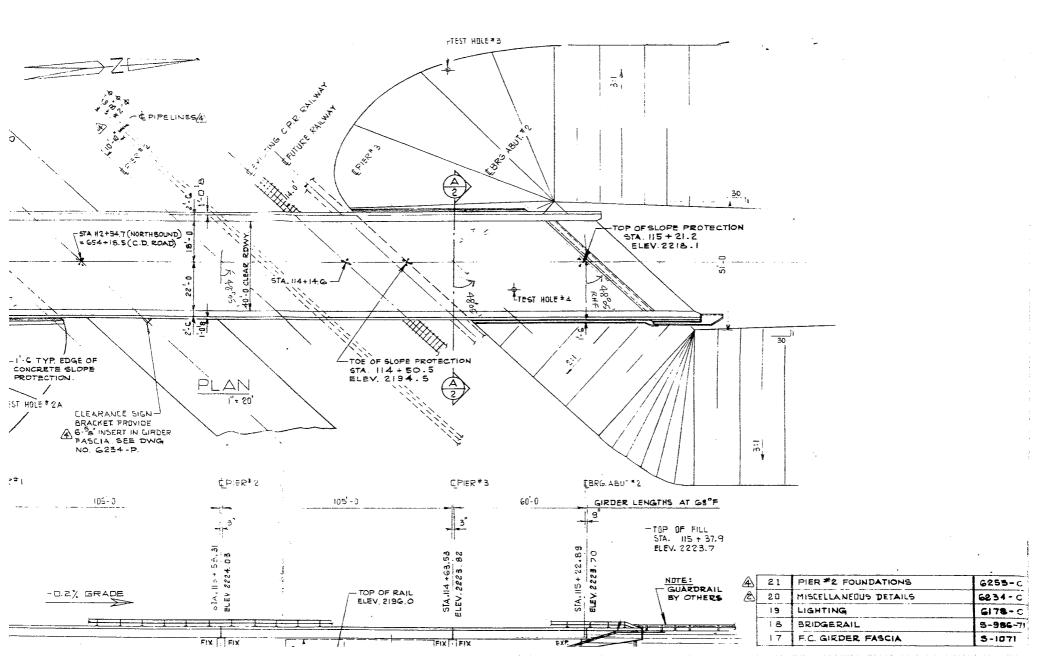

SUMMARY OF UNCONFINED COMPRESSION TESTS

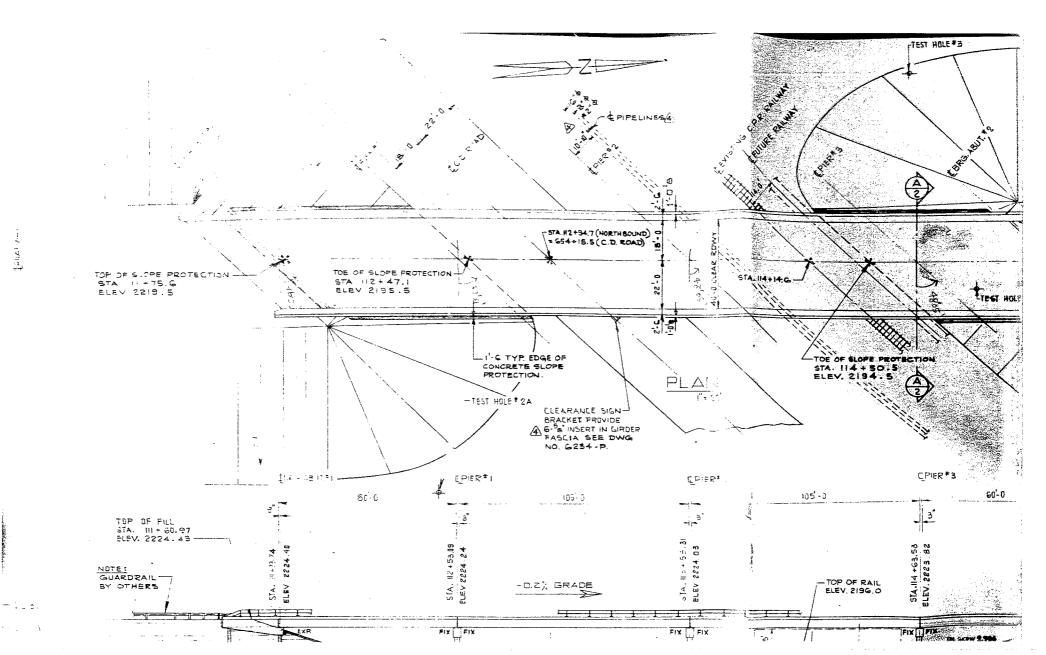

	HRBF 957-65	PROV	INCE OF A	LBERTA	1	T: 76651			LOCA	TION: Top Level	lipest lang ar Structure # 11
	William	DEPART	MENT OF I	HIGHWAYS	DATE	2007 15/7X)		REMA		anationeter variolos
			T	1	Specif	le (fravit)	n Stinated	for Per	contage	aturation	
	SAMPLE No.	HOLE No.	DEPTH feet	MOISTURE BEFORE %	MOISTURE AFTER %	SATURATION BEFORE	SATURATION AFTER %	0 Kg sq cm	POCKET PENET- RATION T/sq ft.	TYPE OF FAILURE	REMARKS
	48946	IA	20	29.1	29.1	97.6	96.7	3.78	4.0	52°:mor	7ane
	43947		20,5	10.3	10.2	72.5	71.4	6.53	4.5+	St ² hear	Cairline Fracture
	46948		21-5	No Uncon	Mire - J	sturbed .	auple				
	43949		3ù	31.7	31.4	95.6	24.8	2.65	2,10	Flow & thear	tase har - 1.37 TF
	48950		40	26.6	26.3	94 8	73.8	2.2	4.5	53°511de lare	Varie linear - 2.5 TUF
-											
_			· ·								
_											
			······································								
$\left \right $	·										
L											
											/)//-

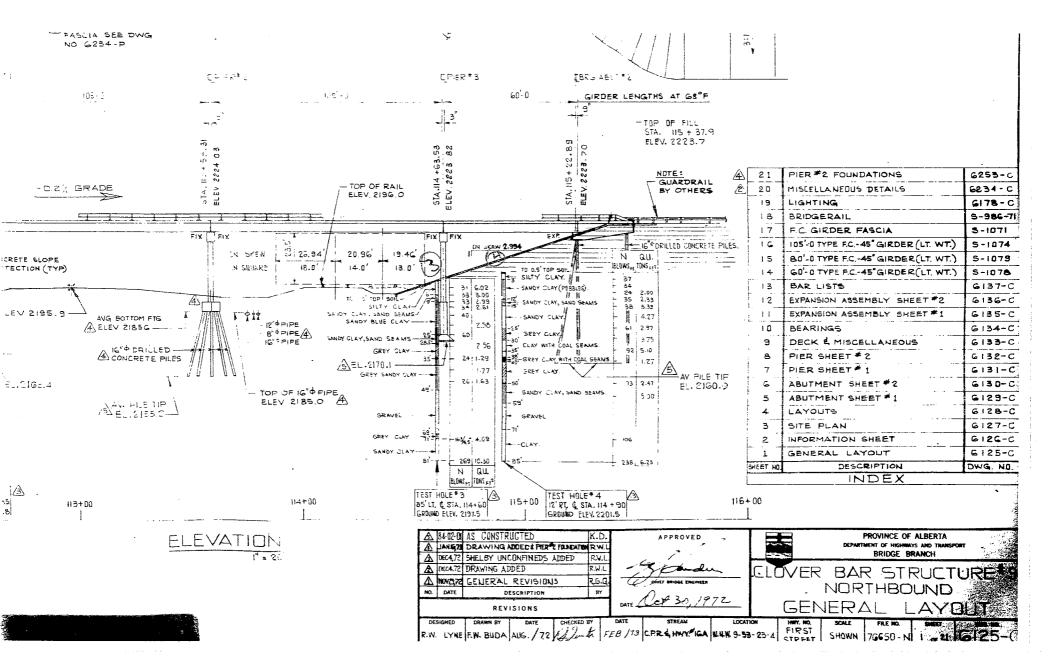

		025-65 PROVINCE OF ALBERTA DEPARTMENT OF HIGHWAYS TEST HOLE LOG		Project <u>76651</u> Site <u>Top Level</u> , <u>Direct RAMPE CLOVER</u> BAR Sample Location <u>STR 181+00</u> <u>50'17</u> Hole <u>766</u> A Hole <u>766</u> A Technician <u>Kolopychuk</u> Date <u>0072230</u> <u>Ho</u>							
		of Ground Surface (Zero Depth)_ of Water Table	218	<i>4:0</i>							
								1 54			
Ren	mod of	Advancing Hole 284 Autor 103	2. C	WINNED.	WETR	2.50_	Liou	id Lin	GEND		
		LA CAUNG (C. 32', 119), 73 L'D. T.L., CONTINUE					Field	d Moi: tic Lin	sture .	••••	
Blows	Soil Profile	FIELD CLASSIFICATION	σ;	P.P.	мс	DISTU	RE C	ONTE	INT -	.'%	
	11	FILL MATERIAL BRONN CLAY SILT	kg/cm²	T/ft²							
	111	STANESHELED OPT									
_	1.1.	ENE STALE SHELEY EENT.									
-	10 %.	Part Cipi Endina									
- 21	C	PENEIO' PENNO 134 5/6"- "4/12" = 26/18"									
	10.	BROWN CLAY SHIND & TRACES OF ST	- <u>'E</u> S	x1.							1444
-	6.0	SHELP (@ 15'		<u>}</u>							
	K							╍┡┨┝┨┡┩┪ ┇┇╺╛┨╼┥┥			
38	a a	1201 (a 20' PEN Nº 522 13/6- 35/12" - 53/18"									
		EROWN COARSE SAND OPT									
1	1 .	CONESS SARD NITH STONE PEBBLE	· · · ·								
	00	- OPT									
- 92	x 0,	PEN. # 30' PENNE 438									<u>++</u> ±
	-	CEARSE SAILY RETEY NITH GRAVEL E	ANDS								
_		HELEY Cas'									
	220	NO SHELFY SHARE SHELBY								E H	
1,		BENT Real @ AO' PEN. Nº 529									
- 115	25-S	4=/1- = E\$/12 · = 1=1/18"									
	2.5	SHAF AS ABOVE									
4		ALLEY COUNTED BE TAKEN AS OF GENVEL & EAND MILED	· · ·								
ł											
-	12.22	ADDAY SAULY CLAY COUNLANT THEE PEN AS HELE CARED IN							the second second		
		THEE FLAT HE FROZE CHIED IN									
-										alan dan kaka ka	
											臣
1											
										<u>н н</u>	Ħ
1				1-			*****				
]		P									
-											
-				<u> </u>					Eru H	E	
								目睛			
									Hill		H
											tiil-
1											

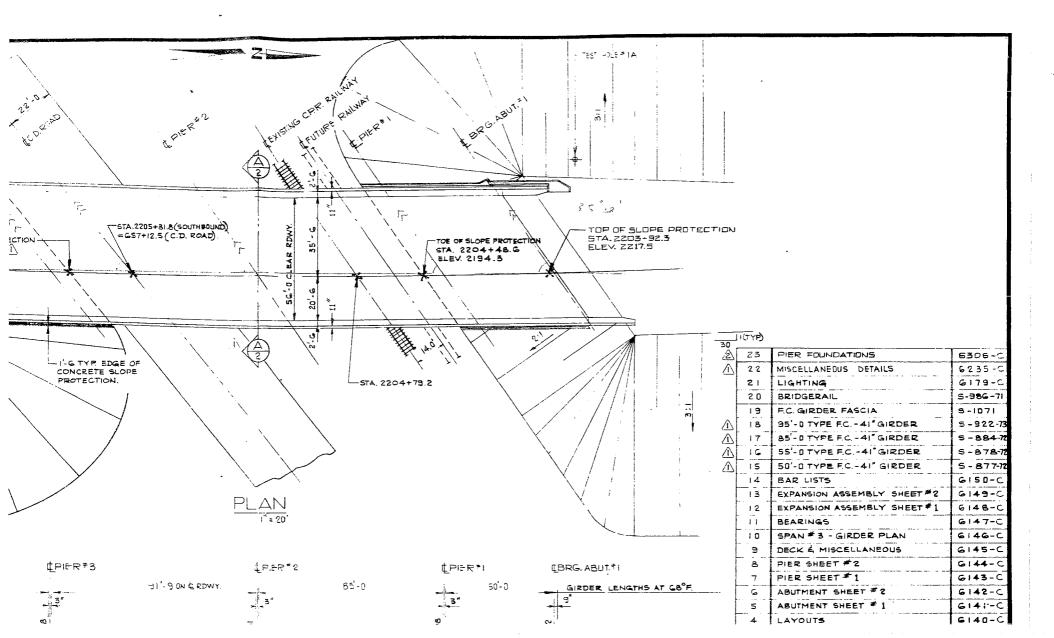

•

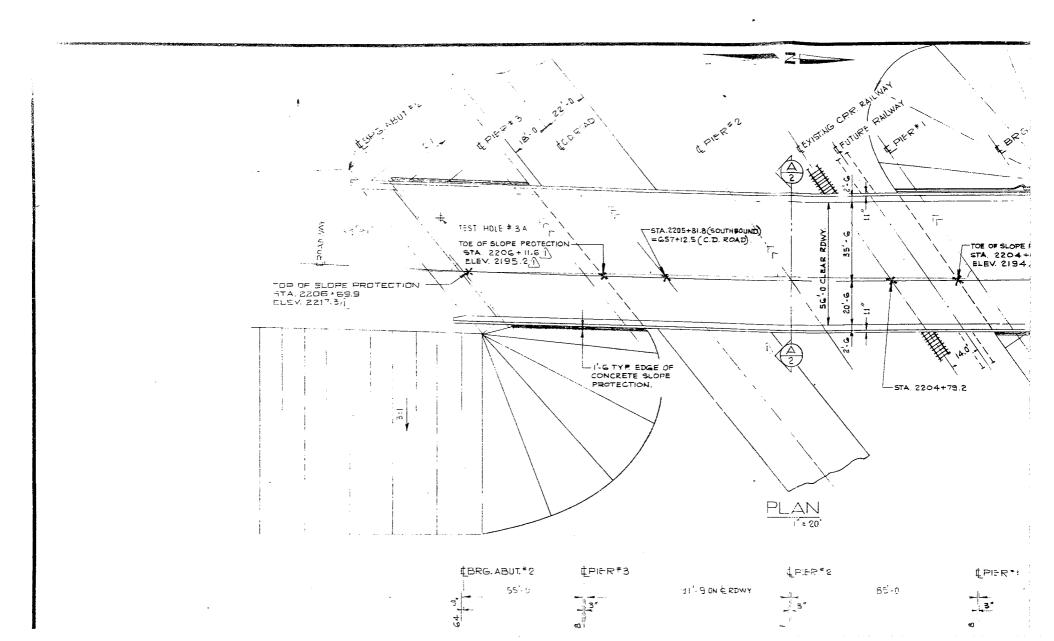
BF76650

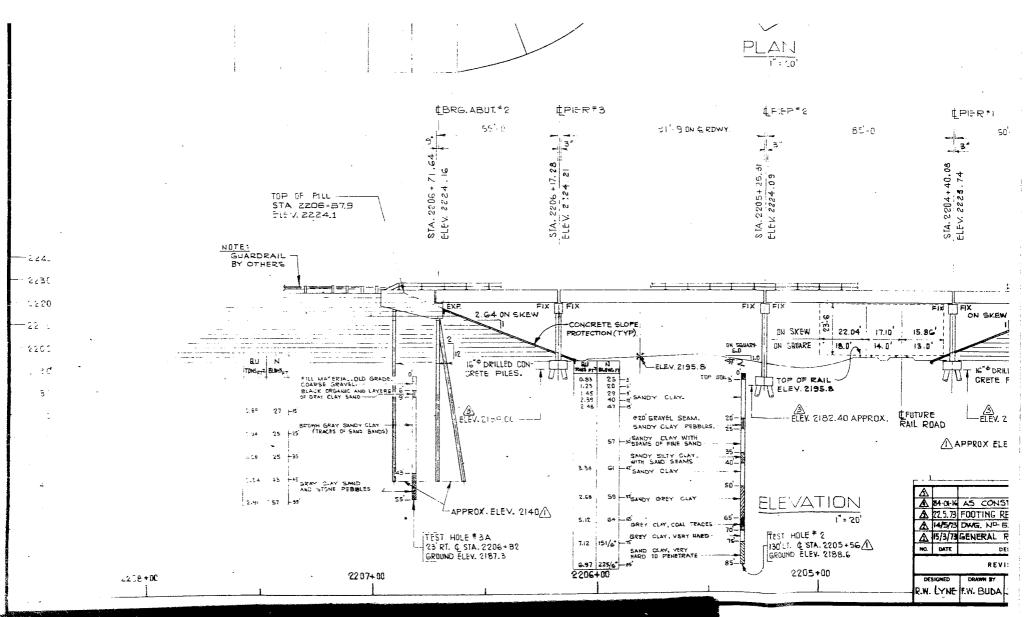


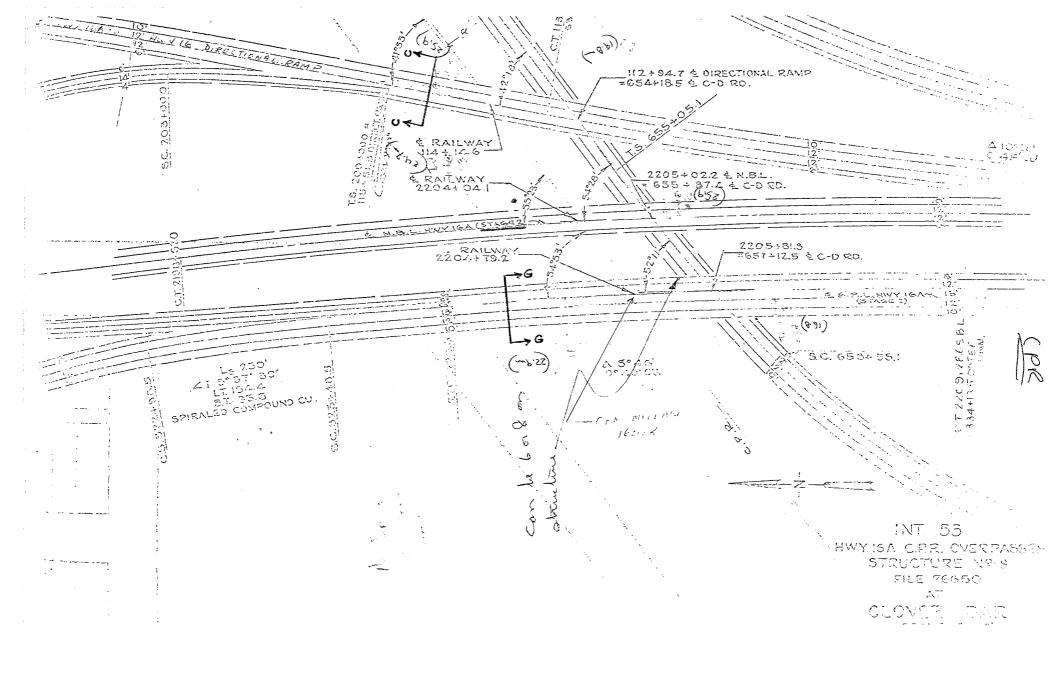


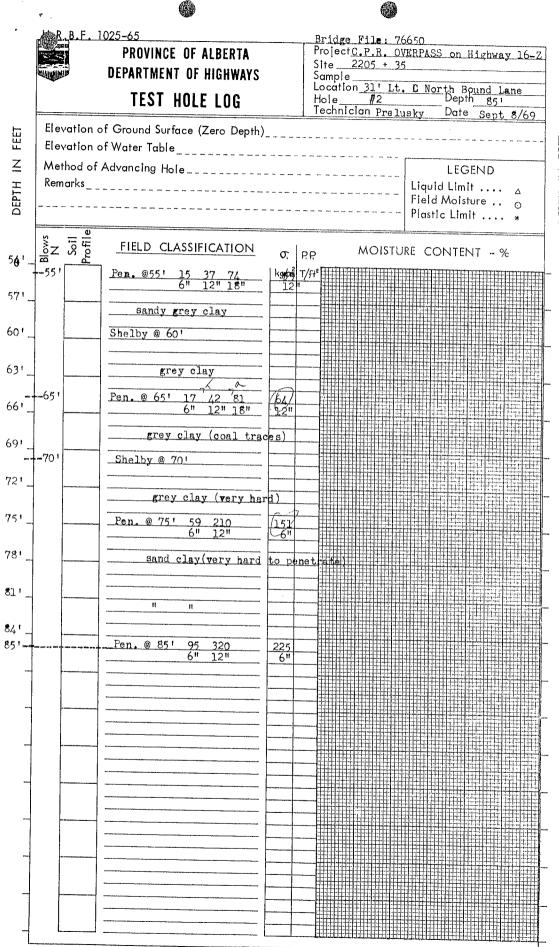

(76650 R. H. Cronkhite Chief Construction Engineer E. J. Sanden November 2, 1970 Chief Construction Engineer Re: Additional Test Holes Intchg. 53 CPR O'Pass @ Clover Bar. Attached, for your information, are logs of additional holes drilled at the subject site as per your request of September 11, 1970. R. H. Cronkhite CHIEF CONSTRUCTION ENGINEER Per: A. W. Weber SOILS ENGINEER AWW:jks Att'd. and the second




8-3062A







₹	н Тар		
٤.	B.F.	1025-65 PROVINCE OF ALBERTA DEPARTMENT OF HIGHWAYS TEST HOLE LOG	Bridge File: 76650 Project C.P.R. OVERPASS on Highway 16-Z Site 2205 + 35 Sample Location <u>31' LT. C North Bound Lane</u> Hole <u>#2</u> Depth <u>85'</u> Technician Prelusky Date Sept. 8/69
DEPTH IN FEET	Elevation Method of	of Ground Surface (Zero Depth) of Water Table Advancing Hole <u>0' - 9' Dry Auger</u> <u>9' - 85 Wet Drill</u> FIELD CLASSIFICATION	LEGEND Z Liquid Limit A Field Molsture O Plastic Limit *
0' 3'_		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	cm ² T/H ²
6'_ 9'		sandy clay with sand seam Pen. @ 6' 7 14 27 20 6" 12" 18" 12 sandy clay 12	5 (bro vní 59)) 2 "
9'_ 12'_		Pen. @ 9' 7 17 36 20 	2 [.]
15'_		sandy clay with sand seams Pen. @ 15' 12 31 59 47 6" 12" 18" 12	3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
18' 21'	-20 '		
24'_	.251	Sandy clay (pebbles)	
27'_ 30'_		sandy clay (seams of sand w Pen. @ 30' 21 49 78 57	
331_		6" 12" 18" 12 Fine sand	
36 '_ 39 '_	.35 '	Shelhy @ 35' @35' sandy clay 	begins th
	40'	<u>sands seams.</u> <u>40'-42' sand seam</u> @42' clay, sandy clay Pen. @ 42' 14 36 75 61 6" 12" 18" 12	
45 <u>'</u>		clay, sandy clay	
48'_ 51'_	501	clay, sandy clay Shelby @ 501	
541_		sandy grey clay	

FEET DEPTH IN

	dimenta ist	Province of Alberta Department of Highways & T 11 Peno.				VISUAL sport	IDENTIF	FICATION	I OF UN	DISTURB	ED SOIL	SAMPL	.ES
_	11 P	eno.		Sample	es	Project:	76650	Hwy. 162	, ,	Tech	nician: W.	W.	
						Site:	C.P.R. O	verpass		Date	: Sept. 8 & 9	, 1969.	
	Sample No.	No	Depth Ft.	Consist- ency	Structur	e Relative Density	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec. Grav- ity
	NO'S 10 ⁵ +			Pocket Penet- ration T/ft. ²	Massive Stratifie Nugget Granular Other	Medium	e Strong Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High			
	39643	2	3	0.75	М	М	N	lt.brown	above	М	silty sandy	CL:CI	2.72
-	39644	2	6	1.1	M	M	N	lt.brown	above	М	clay sandy clay pebbles	CL:CI	
-	39645	2	9	1.2	М	M	N	lt.brown	above	М	11	CL:CI	
	39646	2	12	2.0	M	М	N	lt.brown	above	М	11	CL:CI	
	39647	2	15	1.75- 1.9	M	M	N	dk.brown	above	M	£1	CL:CI	
P _	39648	2	30	0,1	G	L	N	lt.brown	above	L	uniform sand	SU	2.68
-	39649	2	42	2.75	M	M	N	dk.grey	+ to above	М	sandy clay pebbles	CL:CI	
	39650	2	55	2.1	M	M	N	dk.grey	+ to above	M	11	CL:CI	
	39651	2	65	4.1	M	M	N	dk.grey	opt. +	M	11	CI	2.72
	39652	2	75	4.5+	М	D	N	dk.grey	- to below	Н	large pebbles clay	СН	2.75
	39653	2	85	4.5+	М	D		lt.grey	opt	M	fine sandy bentonite	CI	2.72
	mar'			Hc	ole #2 -	2205+35	3'lt_bN	.B. Lane		 			- fr. f - - fr. f -

¢.

1454 La 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			Alberta Highways	s & Trar	VISUAL	IDENTI	FICATION	OF UNI	DISTURB	ED SOIL	SAMPL	.ES
	helb:		_ Sample		Project:	76650 C.P.R. Ove	Hwy.	16Z		nician: W.W.	1. 10/0	
SAMPLE SAMPLES NPO3 +	Hole No.	Depth Ft.	Consist- ency	Structur	Relative		Color	Moisture Content	Plasticity	: September 8t	n, 1969 Cassag- rande Classif- ication	Est. Spec. Grav- ity
			Penet- ration	Massive Stratifie Nugget Granular Other	Medium	Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High			
39632	2	25	4.25	M	M	N	dk.grey	opt.	М	sandy clay pebbles	CI	2.72
39633	2	35	0.8	G	M	N	lt.grey	opt.+	L	clayey sand	SC	2.68
39634	2	50	2.25	M	M	N	dk.grey	above	M	clayey sand pebbles sandy clay sandy clay pebbles	CI	2.72
39635	2	60	3.0	<u>M</u>	M	N	dk.grey	opt,+	M	pebbles	CI	2.72
39636	2	70	no rdg.	M		N	dk.grey	above	M-H	silty clay	CI:CH	2.75
ha rà				Hole	#2 2205	+35	3'lt_of	N.B. Lane				

PROVINCE OF ALBERTA

DEPARTMENT OF HIGHWAYS

FILE: ______

ENGINEER: DATE: September 8 & 9, 1969

Edmonton

A. Weber

& Transport

SOILS INVESTIGATION

REMARKS: C.P.R. Overpass - Clover Bar

Sample No.	Bag or Jar	Station	Loc.	Depth Below	Sieve	∍ No.	% Pc	issing				Classif	Field	Est.	Est.	Pot.	
10 ⁵ +	No		r	Grade	4	10	40	200] L.L.	P.L.	F.I.	ication	Moist	Opt.	Proct.	Frost Action	Remarks
39643	I I I	8 1 1 1 1	1	31	100	99.9	92	67	47.5	17.9	29.6	CI	23.7	19		low	sandy clay
39644	1 1 1 1 1	I I I I	2 1 2 2 2 2	61	99.4	99	93	59	31.6	12.8	18.8	CL	18.4	13			sand, clay
39645	1	1	2 2 2	91	100	99	93	61		12.9			17.6				sand, clay
39646	I I I I	1 1 1	LANE	12'	99.9	98.7	92	58	33.5	13.3	20.2	CL	16.2	13			sand, clay
39647	TUBES	1		15 '	93	92	86	57	33.5	13.0	20.5		1	1		:	sand, clay
39648		205+3	of N.I HOLE#2	301	100	99.9	81	4	:					;			uniform sand
39649	년 	52	년 년 년 1 	421	99.5	98	92	63	35.0								sandy clay
39650	1	1 1 1 1	τ. 	55'	99	98	94					i i					sandy clay
39651	1 1 1 1	1 1 1	2 1 1	65'	99.9	99.4	95		47.8				17.2				sandy clay
39652	1	1 1 1 1	1 1 1 1	75'	77	76.9	76		65.3	21.5	43.8	СН	19.6	23		low	
39653	I I I I	t t T	9 1 1	851		100	99.5			17.0			15.9				clayey sand bentonite trace
														and the second se		•	
-																	<u>J</u>

PROVINCE OF ALBERTA

FILE: 76650 DATE: September 8th, 1969

h, 1969 ENGINEER: A. Weber Edmonton

DEPARTMENT OF HIGHWAYS & Transport

sport

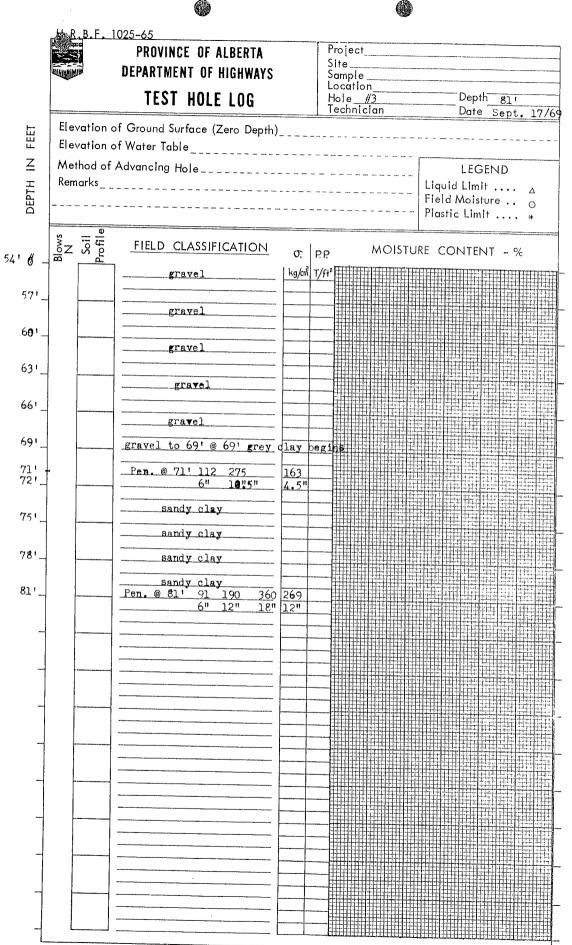
SOILS INVESTIGATION

REMARKS: CPR Overpass - Clover Bar

Sample No.	Bag or Jar	Station	Loc.	Depth Below	Sieve	e No.	% Pa	ssing		D 1		Classif	Field	Est.	Est.	Pot. Frost	
10 ⁵ +	No	Siditon		Grade	4	10	40	200] L.L.	P.L.	P.I.	ication	Moist %	Opt. Moist	Proct. Dens.	Frost Action	Remarks
39632		1 3 1 1	Lane	25'	97.3	97.2	90	61	33.3	14.1	19.2	CL:CI					sand, clay
39633	Tubes	1 ! } }	of NB e #2.	351	100	99.7	99.4	77			trace	ML	17.9				silty fine sand
39634	by	205+35	It b o: Hole	50'	99.7	99	95	70	36.1	15.5	20.6	CI:CL	15.9	16			sandy clay
39635	She1	- 22(3- I	601	98.3	97.6	95	73	47.4	16.6	30.8	CI	19.4	17			sandy clay
39636	1 1 1 1	1 1 1 1	1 1 1	701	100	99.9	98.4		56.9	26.1	30.8	СН	31.3	27			silt, clay
																	ia M.

	HRBF 957-65	PRO	VINCE OF A	LBERTA	PROJEC	т: 76650			LOCA	TION: C.P.R. Ove	erpass Hwy. 16Z
		DEPAR TES	TMENT OF H	HIGHWAYS RATORY ^{& J}	DATE: ransport	September	8 & 9 , 19	69	REMA	RKS: A. Weber.	Pentrometer Sample
		1	1			Speci	fic Gravit	ies Esti	imated f	or % Saturation	
and the second s	SAMPLE RAMPSE I C ³⁰ +	HOLE No.	DEPTH feet	MOISTURE BEFORE %	MOISTURE AFTER %	SATURATION BEFORE %	SATURATION AFTER %	0 T Kg∕sq cm	POCKET PENET- RATION T/sg ft.	TYPE OF FAILURE	REMARKS
	39643	2	3	24.0	23.7	91.2	90.2	0.83	0.75	Flow and 50 ⁰ shear	Vane shear - 0.35 TSF
	39644	2	6	18,7	18.4	97.3	96.2	1.23	1.1	Flow	
-	39645	2	9	17.8	17.6	93.4	90.8	1.45	1.2	Flow	Vane shear - 0.55 TSF Vane shear - 0.61 TSF
ļ	39646	2	12	16.5	16.2	95.2	93.4	2.39	2.0	Flow	
ļ	39647	2	15	16.5	16.1	94.8	92.8	2.48	1.8	Flow	Vane shear - 1.15 TSF
	39648	2	30	No unc	onfine -	sand			0.1	110W	Vane shear - 1.10 TSF
	39649	2	42	13.8	13.5	92.7	90.8	3,34		Flow	Vane shear - 1.32 TSF
-	39650	2	55	15.3	15.1	96.6	95.2	2.68			Vane shear - 1.17 TSF
	39651	2	65	17.9	17.2	97.1	93.3	5.12	4.1		Vane shear - 2.25 TSF
	39652	2	75	19.9	19.6	91.9	90,3	7.12		0	Vane shear - 2.5 + TSF
-	39653	2	85	16.3	15.9	93.1	90.9	6.97		Cone shear	
-											
-											
F											

÷.


SUMMARY OF UNCONFINED COMPRESSION TESTS

the second s

SUMMARY OF UNCONFINED COMPRESSION TESTS HRBF 957-65 C.P.R. Overpass PROJECT: 76650 LOCATION: PROVINCE OF ALBERTA DEPARTMENT OF HIGHWAYS TESTING LABORATORY September 8th, 1969 DATE: Transport REMARKS: A. Weber. Shelby Samples Specific gravities estimated for % saturation POCKET HOLE DEPTH MOISTURE MOISTURE SATURATION SATURATION 0, TYPE OF PENET-No. REMARKS feet BEFORE AFTER BEFORE AFTER FAILURE RATION 20 07 70 % % Kg/sq cm | T/sq ft. 39632 2 25 no unconfine - pebbly 4.25 vane shear - 2.12 TSF 39633 2 35 69⁰ shear 18.2 17.9 92.6 0.8 90.8 1.04 flow and 47° shear 39634 2 50 16.4 15.9 93.0 90.3 2.25 2.67 vane shear - 1.30 TSF 39635 2 60 19.7 47⁰ shear 19.4 96.8 95.2 3.33 30 vane shear - 1.55 TSF 39636 2 70 no unconfine - disturbed -

~ ,	<u>æ.</u>		
	R.B.F.	1025-65 PROVINCE OF ALBERTA DEPARTMENT OF HIGHWAYS TEST HOLE LOG	Bridge File: 76650 Project C.P.R. OVERPASS on Highway 16-2 Site114 + 60 Sample Location_85' Lt. C North Bound Lame. Hole3Depth_81' Technician S.P. DateSept. 17769
H IN FEET	Hevation Method of	of Water Table Advancing Hole	LEGEND
DEPTH	ω	dry auger 0.01 wet drill30.01	Plastic Limit *
0'-	Blows N Soil Profil		RP MOISTURE CONTENT - %
3' - 6'	-	Pen. @ 3' 10 27 41 31 6" 12" 18" 12" silty clay 9 23 42 33	
9'_		6" 12" 18" 12" sandy clay, sand seams Pen. @ 9' 8 21 41 33	
2'_		6" 12" 18" 12' sandy clay	
5'_	-	sandy clay Pen. @ 15' 11 29 51 40 6" 12" 18" 12'	
8' 0'~		@ 17' sandy clay, cl ₉ y blue in Shelby @ 20' sand clay	
i'_	-	Band clay	
4' 5' 7'		Pen. @ 25' 14 35 74 60 6" 12" 18" 12'	
0'_		sandy clay , sand seams @ 28.5' grey clay Shelby @ 30'	
3'_		grey clay Pen.	
5' 6'		####### @ 35' 8 18 32 6" 12" 18" grey sandy clay	
יץ ס'-	-		
?'		grey sandy clay	
<u>81</u>		Pen. @ 45' 9 19 35 26 6" 12" 18" 12" grey sandy clay to 49	
9'- 1'_		@ 49' gravel begins	
4 ' _		gravel	

DEPTH IN FEET

DEPTH IN FEET

E.

.

.¥

(A) (B)	Million (Aill)			Alberta Highways	& Tra	VISUAL	IDENTI	FICATION	OF UN	DISTURB	ED SOIL	SAMPL	ES.		
	1	0 Per	no.	_ Sample	es	Project:	76650			Technician:					
						Site: CPR (Overpass - 1	Hwy. 16Z	Date: September 17/69						
	Sample No		Depth Ft.	Consist- ency	Structure	e Relative Density		Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec. Grav- ity		
				Penet- ration	Massive Stratifie Nugget Granular Other	Medium	Medium None y	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High					
	39935	3	3	4.5+	M	М	N	lt.brown	opt	M	silty clay pebbles	CL:CI	2.72		
	39936	3	6	3.1	M	M	N	lt.brown	opt.+	M	sandy clay pebbles	CL:CI	2.72		
	39937	3	9	3.0	M	M	N	lt.brown	opt.+	М	11	CL:CI	2.72		
	39938	3	12	2.25	M	M	N	lt.brown	opt.+	M	11	CL:CI	2.72		
	39939	3	15	1.5	М	M	N	lt.brown	opt.+	М	11	CL:CI	2.72		
	39940	3	25	4.5+	M	D	N	lt.b grey	opt.+	Н	silty clay & bentonite	СН	2.75		
	39941	3	35	1.0	М	M	N	dk.grey	above	М	sandy clay pebbles	CI	2.72		
	39942	3	45	1.2-1.4	M	M	N	dk.grey	above	М	53	СТ	2.72		
	39943	3	71	4.5+	S	D	N	dk.grey black	below	M-H	silty clay & coal	COal & Cl:CH	2.75		
	39944	3	81	4.5+	M	D	N	lt.grey	below	H	silty clay bentonite & c	oal CH	1		
						Hole #3	114+60	85'1t	Ŀ_N,_Bound	_Land					

ś

				Alberta Highways	s & Trar	V	ISUAL II	DENTIF	ICATION	OF UNI	DISTURBI	ED SOIL	SAMPL	.ES	
	7 Sh	elby		_ Sample	es	Project: 76650 Technician: W.W.									
				····		Site	e: C.P.R. (Overpass	- Hwy. 162	7	Date:	September 18	th, 1969		
SAN	APLE DS V +		Depth Ft.	ency		Structur	e	Relative Density	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec. Grav- ity
				Pocket Penet- ration T/ft. ²	Massive Stratifie Nugget Granular Other	d I	Very Loose Loose Medium Dense Extremely Dense	Strong Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High				
	39924	3	20	2.25	M		D	N	lt.grey	opt.	M-H	sandy clay & bentonite	CI:CH	2.75	
	39925	3	30	4.5+	М		D	N	dk.grey	below	Н	silty clay	СН	2.75	
	39926	3	40	1.25- 1.6	M		М	N	dk.grey	above	М	sandy clay pebbles	CI	2.72	
	39927	4	20	4.5+	M		D	N	lt.brown	opt.	M-H	silty clay	CI:CH	2.75	
	39928	4	30	4.2	M		D	N	dk.grey	- to belo	w H	silty clay	СН	2.75	
<u></u>	39929	4	40	4.5+	M		D	N	dk.grey	- to belo	w H	silty clay	СН	2.75	
	39930	4	55	4.5+	M		D	N	dk.grey	opt. +	М	sandy clay pebbles	CI	2.72	
Remark				H	ple #3	1	14+60	85'1tb N	. Bound La	ne					
				<u>H</u> (DLE <u>#4</u>	<u>1</u> 	14+90	<u>12'rtb N</u>	Bound La	ne	~			 	
											10-19-19-19-1	•			

pl

PROVINCE OF ALBERTA

DEPARTMENT OF HIGHWAYS & Transport

FILE: 76650 ____ ENGINEER: DATE: September 17th, 1969

Edmonton

A. Weber

SOILS INVESTIGATION

REMARKS: C.P.R. Overpass - Hwy. 16Z

Sample No.		Station	Loc.	Depth Below	Sieve	e No.	% Pa	ssing	L.L.	D 1	DI	Class if ication	Field	Est.	Est.	Pot.	
$10^{5} +$	No	Junion	LOC .	Grade	4	10	40	200	L.L.	P.L.	P.I.	ication	Moist %	Opt. Moist	Procf. Dens.	Frost Action	Remarks
39935		3 1 1	1 1 1 1	31	96	95	93		52.8	18.3	34.5	СН	17.2	19			clay
39936	1 1 1	1	, , , , , , , , , , , , , , , , , , ,	61	96.7	96.2	91	62	33.8	13.2	20.6	CL:CI	14.1	14			sand, clay
39937	I I I	1 2 2 2	1 1 1	91	99.5	99	93	59	31.1	12.6	18.5	CL	15.0	12			sand, clay
39938	1 L I 1	1 3 2 1	LANE	12'	99	97	90	57	32.2	13.2	19.0	CL	15.9	13		<u> </u>	sand, clay
39939	TUBES	- 09	N•B. ∦3	15 '	99.9	99.7	99.4		38.9	14.6	24.3	CI	17.1	15			sand, clay
39940	ENO.	114+60	LT. L	25 '		100	99.9	80	62.5	21.7	40.8	СН	22.5	23			clay
9 941	- Bl	2]]]]	851	351	99.9	99.8	98	76	43.0	14.3	28.7	CI	20.0				sandy clay
39942	1 1 1 1	1 F I I I	1 1 1 1	451	99.5	99	<u>.95</u>	74	42.8	13.6	29.2	CI	19.1	15			sandy clay
39943	1 1 1	1 1 1 1	1 1 1	711		100	96		58.9	26.1	32.8	СН	19.9	27			silty clay,coal
39944	1 1 1 1 1 1	1 1 1 2	1	81'		100	99.9	78	57.4	19.3			18.6				clay
~																	IMTS

PROVINCE OF ALBERTA

DEPARTMENT OF HIGHWAYS

FILE: 76650 DATE: September 18th, 1969

A. Weber Edmonton

ENGINEER:

& Transport SOILS INVESTIGATION

REMARKS: C.P.R. Overpass - Hwy. 16Z

Sample No.	Bag or Jar	Station	1	Depth Below	Sieve	e No.	% Pa	ssing				Class if ication	Field	Est.	Est.	Pot.	
$10^{5} +$	No	Sidiion	Loc.	Grade	4	10	40	200	L.L.	P.L.	P.1.	ication	Moist %	Opt. Moist	Proct. Dens.	Frost Action	Remarks
39924			E#3	201	100	99.9	99.7	42	40.5	18.0	22,5	CI	17.6	18			sand, clay
39925	1 3 1 1	¢++60	ITE N	301	100	99.9	99.7	86	72.7	22.8	49.9	СН	26.6	24			clay
39926	ES		85'I LAN	401	99.5	98.8	94	70	41.2	13.3	27.9	CI	17.7	15			sandy clay
39927	TUBI	1 1 1 1	LANE	201	100	100	99.8	74	49.8	19.4	30.4	CI:CH	19.4	20			sandy clay
39928	SHELBY	1 06+	В. #4	30'	100	100	99.9	98	56.9				20.8				silty clay
39929		114+	RTE N HOLE	40 '	99.9	99.9	99.8	87	67.0	24.2	42.8	СН	23.6	25			clay
29930	1		12	55'	97.2	96.5	91	68	42.2	16.6	25.6	CI	14.6	17			sandy clay
														<u></u>			
· 6	}																
-																	12000

1	HRBF 957-65	PROV	INCE OF A	IRERTA	PROJEC	т. 7	6650		LOCA		verpass - Hwy 16Z					
		DEPART	MENT OF H	HIGHWAYS	DATE: <u>x Transpo</u>	Sep	tember 17t	h , 1969	REMA	RKS: A. Weber -	Penetrometer Samples					
					Specific gravities estimated for % saturation.											
	SAMPLE No	HOLE No.	DEPTH feet	MOISTURE BEFORE %	MOISTURE AFTER 5	SATURATION BEFORE %	SATURATION AFTER %	0 ₁ Kg∕sq cm	POCKET PENET- RATION T/sq ft.	TYPE OF FAILURE	REMARKS					
2	39935	3	3	17.5	17.2	83.8	82.7	6.02	4.5+	58° shear	vane shear - 2.5+ TSF					
-	39936	3	6	14.4	14.1	90.8	88.9	3.00	3.1	53 ⁰ shear	vane shear - 0.63 TSF					
	39937	3	9	15.5	15.0	93.7	91.2	2.99	3.0	shear	vane shear - 1.45 TSF					
	39938	3	12	16.2	15.9	98.0	96.2	2.61	2.25	47 ⁰ shear	Vane shear - 1.32 TSF					
_	39939	3	15	no unc	onfine -	short sam	ple		1.5		Vane shear - 0.87 TSF					
	39940	3	25	22.9	22.5	95.4	93.5		4.5+	48 shear	Vane shear - 2.5+TSF					
	39941	3	35	20.3	20.0	93.8	92.1	1.29	1.0	flow	Vane shear - 0.58 TSF					
ļ	39942	3	45	19.5	19.1	95.6	93.8	1.63	1.3	flow	Vane shear - 0.72 TSF					
	39943	3	71	20.2	19.9	74.7	73.4	4.09	4.5+	shear	Partially disturbed					
	39944	3	81	19.1	18.6	89.4	87.3	10.30	4.5+	52 ⁰ shear						
ļ																
-																
·	e															

SUMMARY OF UNCONFINED COMPRESSION TESTS

HRBF 957-65		INCE OF A		PROJEC	T: 76650)		LOCA	TION:C.P.R. Over	P.R. Overpass-Hwy. 16Z				
	DEPART	MENT OF H	HIGHWAYS	DATE: ransport	Septe	RKS: A. Weber -	- Shelby Samples							
-					Specific Gravities Estimated for % Saturation.									
SAMPLE 105 +	HOLE No.	DEPTH feet	MOISTURE BEFORE %	MOISTURE AFTER %	SATURATION BEFORE %	SATURATION AFTER %	0 Kg∕sq cm	POCKET PENET- RATION T/sq ft.	TYPE OF FAILURE	REMARKS				
39924	3	20	17.9	17.6	90.8	. 89.5	2.58	2.25	50 [°] shear	Vane shear - 1.25 TSH				
39925	3	30	26.9	26.6	91.5	90,5	2.56	4.5+	48 ⁰ shear	Dist. sample				
39926	3	40	18.1	17.7	94.9	92.9	1.77	1.25- 1.6	Flow	Vane shear - 1.12 TSH				
39927	4	20	19.9	19,4	94.3	91.8	4.27	4.5+	57 ⁰ shear	Vane shear - 2.5+TSF				
39928	4	30	21.2	20.8	94.4	92.6	3.75	4.2	55 [°] shear	Vane shear - 2.0 TSF				
39929	4	40	23.6	23,6	93.3	93.0	1.27	4.5+	55 ⁰ slide plane					
39930	4	55	14.9	14.6	93.8	91.9	5.00		51 [°] sh ear	Vane shear - 2.5+ TSF				
, 29%36										· / / /				

SUMMARY OF UNCONFINED COMPRESSION TESTS

- May			<i>(</i>)
	PROVINCE OF ALBERTA DEPARTMENT OF HIGHWAYS TEST HOLE LOG		Bridge File: 76650 ProjectC.P.R. OVERPASS on Highway 16-2 Site 114 + 90 Sample Location 12' Rt. C North Bound Lane Hole #4 Depth 85' Technician S.P. Date Sept. 18/69
Elevation of Control Control	of Ground Surface (Zero Depth) of Water Table Advancing Hole 0' - 30' dry auger 30' - 85' wet dr11		201.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FIELD CLASSIFICATION 0.0' - 0.5' top-soil 0.5' - 3.0' silty clay Pen. @ 3' 10 27 47 6" 12" 18" sandy clay (pebbles) Pen. @ 6' 14 28 48 6" 12" 18" sandy clay (pebbles) Pen. @ 6' 14 28 48 6" 12" 18" sandy clay (pebbles) Pen. @ 9' 9 16 31 6" 12" 18" sandy clay (pebbles) Pen. @ 12' 11 24 46 6" 12" 18" sandy clay, sand seams Pen. @ 15' 9 21 47 6" 12" 18" sandy clay, sand seams Pen. @ 15' 9 21 47 6" 12" 18" sandy clay, materia clay Pen. @ 25' 17 44 78 6" 12" 18"	kg/cm ² 1 37 12" 34 12" 24 12" 35 12" (wa te 38 12"	T/A ^ρ
30'	grey clay Shelby @ 30' clay , with coal Sean Pan. @ 35' 25 60 117 6" 12" 18" grey clay with coal sean 38'-40' coal sean. Shelby @ 40' grey clay grey clay Pan. @ 50' 30 65 103 6" 12" 18" Sandy clay, sand seans	92 12"	

		<u>B.F.</u> 1	025-65 PROVINCE OF ALBERTA DEPARTMENT OF HIGHWAY TEST HOLE LOG	S	Project Site Sample Location Hole #/	Depth						
					Hole#4 Technician	Date						
DEPTH IN FEET	Elev Met Rem	ration a hod of arks	f Ground Surface (Zero Dept f Water Table Advancing Hole			LEGEND						
6 _	Blows N	Soil Profile	FIELD CLASSIFICATION	- 0, kg/cm²		TURE CONTENT - %						
571			sandy clay									
5 †! -			gravel begins @ 59'									
6 ●!_												
53 L			gra v el									
561												
	-		gravel									
59' <u> </u>				-								
714 721			gravel ends @ 71' clay	begins								
751_			Pen. @ 75' 13 42 119 6" 12" 18") 106 12"								
781	-		clay	-								
31 -			clay									
34 <u> </u> 5 ' -	ŀ		clay Pen. @ 85' 48 125 286	238								
-			<u> </u>	12"								
	ĺ			-								
-	ŀ			_								
-	-											
-	-			_								
_	F			-								

DEPTH IN FEET

à

			Alberta Highways	5 & Tre	nsp	VISUAL I	DENTIF	ICATION	OF UNI	DISTURB	ED SOIL	SAMPL	.ES						
9	Peno	•	_ Sample	es	Project: 76650 Technician: W.W.														
			· · · · · · · · · · · · · · · · · · ·		Si	te: C.P.R. C	Overpass	- Hwy. 162	7	Date	: September 1	8th,1969							
SSMPLE NCS 100+		Depth Ft.	Consist- ency	Structur	e	Relative Density	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec Grav ity						
		*	Pocket Penet- ration T/ft. ²	Massive Stratifie Nugget Granular Other		Very Loose Loose Medium Dense Extremely Dense	Strong Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High									
39945	4	3	2.25- 3.7	<u>M</u>		D	N	lt.brown	В	М	roots sandy clay	CL:CI	2.7						
39946	4	6	4.2	M		D	N	lt.brown	opt	М	sandy clay	CL	2.70						
39947	4	9	1.9	М		M		M		М		М	N	lt.brown	opt.+	М	sandy clay	CL:CI	2.7
39948	4	12	2.5	М		М	N	lt.brown	opt.+	М	sandy clay	CL:CI	2.7						
39949	4	15	3.0	M		М	N	lt.brown	opt.+	М	sandy clay & sandstone	CL:CI	2.7						
39950	4	25	4.5+	M		D	N	dk.grey	- to below	M-H	silty clay	CI:CH	2.7.						
39951	4	35	4.5+	М		D	N	dk.grey	- to below	M-H	silty clay	CI:CH	2.7						
39952	4	50	³ .25- 4.0	M		D	N	dk.grey	opt. to -	M-H	silty clay	CI:CH	2.7						
39953	4	85	4.5+	M		D	N	dk.grey	below	M-H	silty clay	CI:CH	2.75						
emar					Hol	e #4]	14+90	12'rt	b N. Bour	nd Lane									
	·							· · · · · · · · · · · · · · · · · · ·					/i /i						

				Alberta Highways	s & Tran	VISUA sport	L IDEN		ICATION	OF UN	DISTURB	ED SOIL	SAMPL	
	7 Sh	ielby		Sampl	es	Project:	76	650			Tech	nician: W.W	¢	
					1	Site: C.P	.R. Overp	ass	- Hwy. 162	2	Date	September 18	th, 1969	
Lowennen	SAMPLE	£	Depth Ft.	Consist- ency	Structure	e Relati Densi		Dr	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec. Grav- ity
l La companya da sera a sera a sera a sera a sera da sera La companya da sera da				Pocket Penet- ration T/ft_2	Massive Stratifie Nugget Granular Other	Medium	Mec Nor ely	dium	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt Opt Optimum Opt. + Above Opt Wet	Medium High			
	39924	3	20	2.25	M	D	N		lt.grey	opt.	M-H	sandy clay & bentonite	CI:CH	2.75
	39925	3	30	4.5+	М	D	N		dk.grey	below	Н	silty clay	CH	2.75
	39926	3	40	1.25-	М	М	N		dk.grey	above	М	sandy clay pebbles	CI	2.72
	39927	4	20	4.5+	М	. D	N		lt.brown	opt.	M-H	silty clay	CI:CH	2.75
e aud	39928	4	30	4,2	М	D	N		dk.grey	- to be	low H	silty clay	СН	2.75
	39929	4	40	4.5+	М	D	N		dk.grey	- to be	low H	silty clay	СН	2.75
	39930	4	55	4.5÷	М	D	N		dk.grey	opt.	+ M	sandy clay pebbles	CI	2.72
A CONTRACTOR CONTRACTOR OF A CO								ասու սուուղափոխը գուցելու շախությունը, մեջ քները։ Նա սու ոք սաս ո						•
 २.न	emarika	۲ سامت میں دیکھ دیکھ	······	Ho	l 51e #3	114+60	<u> </u> 85'1	tb N	, Bound La	ne	: 			:
					DLE #4	114+90			. Bound La					

i.

PROVINCE OF ALBERTA

DEPARTMENT OF HIGHWAYS & Transport FILE: 76650 DATE: September 18th, 1969

ENGINEER: <u>A. Weber</u> Edmonton

SOILS INVESTIGATION

REMARKS: C.P.R. Overpass - Hwy. 16Z

Sample No.	Bag or Jar	Station	1	Depth Below	Sieve	e No.	% Pc	issing	5 8			Class if ication	Field	Est.	Est.	Pot.	
10 ⁵ +	Jar No	Station	Loc.	Grade	4	10	40	200	<u> </u> L.L.	P.L.	P.1.	ication	Moist %	Opt. Moist	Proct. Dens.	Frost Action	Remarks
39945			1	31	99.9	98	93	66	33.7	13.1	20.6	CL:CI	9.1	13			sandy clay
39946		1 1 1 1	1	61	98.3	97.5	91		32.8	12.5	20.3	CL	9.7	13			sandy clay
39947		1 1 1	LANE	91	98.4	97.9	93	61	32.7	13.1	19.6	CL	16.5	13			sand, clay
39948	TUBES		44	12'	100	99.5	96	61	47.5	16.4	31.1	CI	26.1	17			sand, clay
39949		6 +	E N.B. HOLE A	15 '	99.9	99.8	99	68	39.1	14.7	24.4	CI	20.5	15			sandy clay
39950	- PENO	- 114	t Rt.	25 '	100	100	99.9	92	55.6	19.3	36.3	CH	19.6	21			clay
951			12	351	100	100	99.9	98	63.5	21.4	42.1	СН	19.8	22			clay
39952		1 9 1 1 2	1 1 1 1	50 '	100	99.9	99.9		117.4	28.4	89.0	СН	30.0	28			clay
39953		1 1 1 1 1	I 1 2 2	851	100	99.9	99.5	97	65.2	21.1	44.1	СН	17.7	22			clay
·																	
-																	linto:

PROVINCE OF ALBERTA

DEPARTMENT OF HIGHWAYS

FILE: 76650 ENGINEER: A. Weber DATE: September 18th, 1969

Edmonton

& Transport SOILS INVESTIGATION

REMARKS: C.P.R. Overpass - Hwy. 16Z

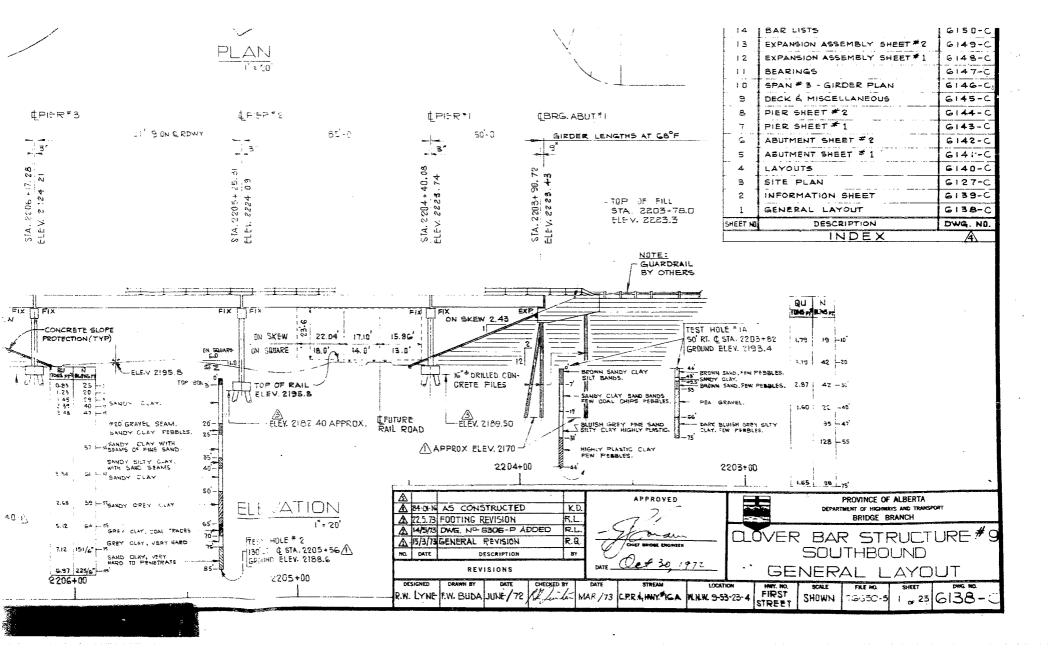
Sample No.	Bag or Jar	Station	Loc.	Depth Below	Sieve	e No.	% Pa	ssing	4 8	ופ	ופ	Class if ication	Field	Est.	Est.	Pot.	
10 5 +	No			Grade	4	10	40	200	L.L.	T.L.	۲.I.	ication	Moist %	Opt. Moist	Dens.	Action	Remarks
39924	1	а ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч	· B · 三#3	201	100	99.9	99,7	42	40,5	18.0	22,5	C1	17.6	18	source and the second		sand, clay
39925	1	+	LTE N.B. E.HOLE#3	301	100	99.9	99.7	86	72.7	22.8	49.9	СН	26.6	24			clay
39926	I S S		85' LAN	401	99.5	98.8	94	70	41.2	13.3	27.9	CI	17.7	15			sandy clay
39927	r'UB	l f j	LANE	201	100	100	99.8	74	49.8	19.4	30.4	CI:CH					sandy clay
39928	SHELBY	- 06-	.B. #4	301	100	100	99.9	98	56.9				20.8				silty clay
39929	1 1 1	- 711	RTE N. HOLE	40'	99.9	99.9	99.8	87	67.0	24.2	42.8	СН	23.6	25			clay
20930	1	4	1 7 1	55'	97.2	96.5	91	68	42.2	16.6	25.6	CI	14.6	17		1	sandy clay
										andora and and and and and and and and and an							
																	the second s

	HRBF 957-65	PROV	INCE OF A		PROJEC						rpass - Hwy, 16Z
		DEPART	MENT OF H	IGHWAYS .	DATE: Transpo:	Septemb rt	ver 18, 196	9			Penetrometer Samples
-		L	1			Speci	fic gravit	ies esti	imated f	or % saturation	¢ .
Å	SAMPLE No.	HOLE No.	DEPTH feet	MOISTURE BEFORE %	MOISTURE AFTER %	SATURATION BEFORE %	SATURATION AFTER %	0 j Kg∕sq cm	POCKET PENET- RATION T/sq ft.	TYPE OF FAILURE	REMARKS
1936	39945	4	3	no unc	onfine -	disturbed			2.25-3.7		
	39946	4	6	no unc	onfine -	disturbed			4.2		
	39947	4	9	16.9	16.5	93.3	91.5	2.00	1.9	o 50 cone shear	vane shear - 0.95 TSF
	39948	4	12	26.5	26.1	96.8	95.3	2.33	2.5	52 [°] shear	vane shear - 1.20 TSF
	39949	4	15	21.0	20.5	97.0	94,8	3,33	3.0	50 ⁰ shear	vane shear - 1.50 TSF
	39950	4	25	19.9	19,6	90.4	88.9	2.97	4.5+	3 5 ° shear	disturbed sample
	39951	4	35	20.0	19.8	91.2	90.1	5.10	4.5+	55 ⁰ shear	allocarbed sample
	39952	4	50	31.0	30.0	93.8	91.1	2.47	3.25 -4.0	56 [°] shear	Vane shear - 1.50 TSF
J'SAR.	39953	4	85	18.1	17.7	93.6	91.6	6.23	4.5+	60 [°] shear	
ŀ											
											[
											(1)

2. Such a base of a manufacture second and a second states and a such as a such as a particular second s

ſ	HRBF 957-65	PROV	INCE OF A	IREDTA	PROJEC	T: 7665()		LOCA	TION:C.P.R. Over	pass-Hwy. 16Z
		DEPART	MENT OF I	HGHWAYS	DATE: ransport	Septe	ember 18/69			RKS: A. Weber -	
		1	[Speci	fic Gravit	ies Esti	lmated f	or % Saturacion	6
Lerry announced	SAMPLE	HOLE No	DEPTH 'eer	MOISTURE	MOISTURE AFTER	SATURATION	SATURATION AFTER	O, Kgisqicm		FAILURE	REMARKS
-	39924	3	20	17.9	17,6	90.8	89,5	2,58	;	0	Vane shear - 1.25 TSF
	39925	3	30	26.9	26.6	91.5	90.5	2,56	4.5+		Dist. sample
-	39926	3	40	L8.1	17.7	94.9	92,9	1.77	1,25- 1.6		Vane shear - 1.12 TSF
	39927	۲ ₄	20	19.9	19,4	94.3	91,8	4,27	4,5+	0	Vane shear - 2.5+TSF
	39928	<u></u>	30	21.2	20.8	94,4	92.6	3.75	4.2	0	Vane shear - 2,0 TSF
	39929	<u></u>	40	23.6	23,6	93.3	93.0	1.27	4,5+	55° slide plane	
	39930	4	55	14,9	14.6	93.8	91.9	5,00	4.5+	51 ^{°°} sh ear	Vane shear - 2.5+ TSF
		-									
-											
	Alian I.										

SUMMARY OF UNCONFINED COMPRESSION TESTS



and an end of the second se

۰.

1

	1 K			
	H. B.F. 10	25-65	· · · · · · · · · · · · · · · · · · ·	
		PROVINCE OF ALBERTA	P	Troject 73650 INT. BR
		DEPARTMENT OF HIGHWAYS	Š	Site HWY IGA CFR OVERLAGGES Sample 2203+82 50' RT &
	•	TEST HOLE LOG		Hole IA Depth 75'
		ILJI HULL LUQ	1	Technician M.K Date OCT. 14/-
FEET		Ground Surface (Zero Depth)		
				AND BANDS No FREE WATER IN HOLE
Z		Advancing Hole DRY_AUGER_2:50		
H		UKT RECOVERY IN SHELBY @ 45' SHE		I Field Moisture
DEPTH	1	ан вери сочет <u>р 41' Due то -</u> Тмеен 53'- 66'	FEBR	EG Plastic Limit *
	Profile			, MOISTURE CONTENT - %
0		•	km² T/fi	
		SILT BANDS		
-		·····		
		SHELBY @ 5'		
7 -		BANDY CLAY SAND BANDS		
	Surger	FEW COAL CHIPS PEBBLES	_	
		PEN: 490 2 10		
		<u> </u>		
-	1			
_		SHELBY @ 15'		
-				
S -		FEN 206 @ 20'		
-		<u>- 3' 12' 18'</u> 9 26 51		
		7 26 31		
-	-	SHELSY & 25'		
		Englan Star Fixe Stor		
		FUTTY CLEY HIGHLY		
		FFIL EL C. EL		
1		A E H C C C		
-	-			
		Fox Cress to		
	-			
÷• •	-			
. : '				
	-			
		and the second second and the second se		
r.				

H.R.B.F. 1025-65 Project 76650 **PROVINCE OF ALBERTA** Site_ WWW INTE DEPARTMENT OF HIGHWAYS Sample Location TEST HOLE LOG Hole____ Technician Depth 1PG Date Elevation of Ground Surface (Zero Depth) FEET Elevation of Water Table_____ Ζ Method of Advancing Hole_____ LEGEND Remarks PEN @ 701 DISTURBED . DEPTH Liquid Limit A Field Moisture ... o Plastic Limit * Blows N Soll Profile FIELD CLASSIFICATION MOISTURE CONTENT - % O: P.P. 54 0 -kg/cm T/ft 1 Ħ PEN. 22 @ 55 6" 12" 18 37 97 16 18 0.0.0 165 -----0 DENSE 0.000 PEA GRAVEL 000 111 000 000 1 111 ------11 000 66. :11: 111 ---------17 ----17 PEN. 448 @ 70 6 12" " 16' ----44 166 200 DARK CEEN SILTY CLAY FEW PERBLES. ------75 ai i PEN. 183 @ 75' -----_6'' 10" 18 11 83 41 139 11:1 THE ---------Ţ. 11,1 ::::‡ 111 -1-: Ξ ------E E | E ----..... 100 :::::::: *****

FEET Ζ DEPTH

، مَ

And and Descend summery	and a second		ar ang		es	Project: 31	76650			Tanh	nician: 🏋 & .	Ţ.	
			· · · · · · · · · · · · · · · · · · ·		F	Site:Int. 53,			aas Clover				
	Sample SAMPLE NOS 10° +		Depth	Consist- ency		Relative	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec Grav
				Penet- ration	Massive Stratified Nugget Granular Other	Very Loose Loose Medium Dense Extremely Dense	Strong Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High			
_	43738	1		2.70	Hassivo	Zeci.	None	Lt. Brown	Opt. to +	hal.	Saniy clay		2.75
	قوادر قرافتها	<u> </u>	1	2.30	0	्द्	17	Ť+	\$	5	5 5	17	11
			25	4.5+	-ru got	anae	3 2	the stage		11.31	Jay		**
			35	1.70	ີເວລໂທອ	i si	13	4t	bove	eat.	Sandy clay		53
			45	2.00	aanla		42	.t., 10.m		Inde	Caral		2.67
					· · · · · · · · · · · · · · · · · · ·								
ei	mar		3 s l Miltr		- 02 50*								

-

Samples			•	ISTURBE	D SOIL	SAMPL	.ES
No.No.Ft.encyStructureDensityNo.No.Ft.encyStructureDensityNo.Pocket No.Pocket Penet- ration T/ft.2Massive Stratified Rugget Granular OtherVery Loo. Loose Medium Dense437321102.40Landler Penet- Stratified43733204.00Pocket StratifiedNo.	76650 3, Hug. 16A	, CP: Over	xass - Clove		ician: 77. 8 Oct. 14/70	2 F	
L103.4rationNugget Granular OtherMedium DenseLT/ft.2OtherExtremely DenseL1102.40LessiveL20L.0030	ł	Color	Moisture Content	Plasticity	Description	Cassag– rande Classif– ication	Est. Spec. Grav- ity
437733 20 4.00 3 3	Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High			
		ht.irom	÷	Sec.	Sariy clay	04	2.75
4093% 30 C.50 C (m)	14		07 %	i.elhigh	Silty clay	1	
	24 24	17	int. to sixon	• Egh			17
14.1935 IA 2.00 18 D		uk.irey	igove	l'al.	andy clay	ers State	172
47736 47 4.5+ 3 30	13	Lt. Brown	Lalow	1111	Saxi		2.67
42937 50 11 11 11	1 9	¥3	97	13	51	<u>श्</u> य	19
Remark :: iole # 1 - 22.3 + 32 - 50* 32. 5							
							-

	NAL MARIA SAL	artm	ent of	Alberta Highway:	5	VISUAL	IDENTI	FICATION	I OF UN	DISTURB	ED SOIL	SAMPL	ES
	PSV	6.82 85 .3	îrue	_ Sampl	es	Project: 🖅 🎵	650			Tech	nician: 🏦 & .	J .	
l						Site: 53,	4 7. 164	CAR Overp	ass - Clover	• Be r Date	: ⁰ ct. 14-15/	N	
	6.100	1	Depth Ft.	Consist- ency	Structur	Relative e Density	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec. Grav- ity
1800 States and the second			1		Massive Stratifie Nugget Granular Other	Medium	Strong Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Medium High			
	43751	1	55		4	في	2014 1	Dic. Drown	ipt.+	MI	Gravel		2.67
	12952		7C)	4+5+	0	52	12	13	upt.	High	Joal day	T	2.75
	42953		75	4 . 54	4 7 X 1 I X	15	52	N. rey	Opt.	£2	Clay	f#	17
													<u> </u>
I_ ⁻Re	emark		20 ¢	1, 203	* 32 - :	50° -32 8							
					** *** *** *** <u>***</u>								

PROVINCE OF ALBERTA

DEPARTMENT OF HIGHWAYS

SOILS INVESTIGATION

 FILE:
 FILE:
 FILE:
 A.
 Obser

 DATE:
 Oct.
 M/70
 Gend
 REMARKS: Lit. 53, By. 16 1, CPR Overses Slover ar

| Bag or | Station | |
 | Sieve | e No. | % Pc | issing

 |
 | D I | DI
 | Classif | Field | Est.
 | Est. | Pot. | |
|------------------|--------------|----
--
--|--|--|---
--

--
---|--

--|---|--|---|--|---|
| No | | | 1
 | 4 | 10 | 40 | 200

 | L.L.
 | F.L. | F,I.
 | ication | Moist
% | Opt.
Moist
 | Proct.
Dens. | +rost
Action | Remarks |
| | 2203 +
02 | | 5
 | 79. 8 | <i>?</i> ? | 93 | 64

 |
 | |
 | | |
 | | | Fine sand, clay |
| | 57 | 73 | 125
 | 97.8 | 59 | 95 | 64

 | R. 5
 | 1.3 | 24.
 | 14 | 19.5 |
 | 118 | sel. | 17 |
| | Ê: | 덕 | 25
 | 1:43 | 93.) | ·?9 . 8 | 90

 | 6.5
 | 3.1 | 35 * 4
 | <u>* 1</u> | 3.1 | 26
 | 9] | | Slay |
| | 5 4 | t | 35
 | ?? . 8 | 99 . 2 | 95 | 72

 | J.
 | 12.8 | 24 . 6
 | II. | 29.5 | 13
 | 119 | oci. | andy clay |
| in oile
Liebe | 43 | #2 | 45
 | 32 | 85 | 40 | 6

 |
 | | 1.17×00
 | жź | 5.2 | |
 | | lor | ard. |
| | | |
 | | | |

 |
 | |
 | | | |
 | | | |
| | | |
 | | | |

 |
 | |
 | | | |
 | | | |
| | | |
 | | | |

 |
 | |
 | | | |
 | | | |
| | | |
 | | | |

 |
 | |
 | | | |
 | | | |
| | | |
 | | | |

 |
 | |
 | | | |
 | | | |
| | | |
 | | | |

 |
 | · · · · · · · · · · · · · · · · · · · |
 | | | |
 | | | |
| | | |
 | | | |

 |
 | |
 | | | |
 | | | |
| | | |
 | | | |

 |
 | |
 | | | | | | | | | | | | | | | | | |
 | | | |
| | | | Jar Station Loc. No 2203 + 10 + 1 201 10 13 13 13 13 13 13 13 13 13 14 13 14 15 14 14 16 14 14 17 15 14 18 14 14 19 14 14 10 14 14 10 14 14 10 14 14 11 14 14 12 14 14 13 14 14 14 14 14 15 14 14 16 14 14 17 14 14 18 14 14 19 14 14 19 14 14 10 14 14 11 14 14 12 14 14 14 14 14 15 14 14 16 14 14 17 14 14 18 14 14 <tr< td=""><td>Jar Station Loc. Below No 2203 + 50**** 5 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>Jar Station Loc. Below No 2203 + 50* 12 5 79.8 12 1 1 5 79.8 12 1 1 1 5 79.8 13 1 1 1 1 7 9 8 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>Jar Station Loc. Below Grade 4 10 22:3 + 50* 1 5 79-8 79 1 1 5 79-8 79 1 1 1 5 79-8 79 1 1 1 5 79-8 79 1 1 1 15 79-8 99 1 1 15 79-8 99 1 1 15 79-8 99-2 1 1 35 79-8 79-2 1 1 35 79-8 79-2 1 1 1 15 88 95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<</td><td>Jar Station Loc. Below 4 10 40 2203 + 50*32 5 79+8 79 93 n n 1 25 79+8 79 95 n n 125 97+8 79 95 n n 125 97+8 79 95 n n 125 97+8 79 95 n n 135 79-8 79 95 n n 35 79-8 79-2 95 n n 35 38 35 40 n n 15 38 35 40 n n 1 1 1 1 1 n n 1 1 1 1 1 1 n n 1 1 1 1 1 1 1 n n 1 1 1 1 1 1 1 1 1 1 1 1<td>Jar Station Loc. Below Grade 4 10 40 200 2203 + 50**12 5 79+8 79 93 64 1 1 1 5 79+8 79 93 64 1 1 1 5 79+8 79 93 64 1 1 1 5 79+8 79 95 64 1 1 25 140 97+7 79+8 90 1 1 25 140 97+7 79+8 90 1 1 35 79+8 79+2 95 72 1 1 35 38 35 40 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<td>Jar Station Loc. Below 4 10 40 200 L.L. 223 + 50*12 5 79-8 79 93 64 .12.9 1 1 15 79-8 79 93 64 .12.9 1 1 15 79-8 99 95 64 .12.9 1 1 15 97-8 99 95 64 .12.9 1 1 25 1.09 97+9 95 64 .12.9 1 1 25 1.09 97+9 95 64 .12.9 1 1 25 1.09 97+2 95 72 .7.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <</td><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. $2203 + 0.5$ $50^{+0.6}$ 5 $79 \cdot 8$ 79 93 64 $32 \cdot 9$ $1 > 6$ 9 $9 \cdot 1$ 5 $79 \cdot 8$ 99 93 64 $32 \cdot 9$ $1 > 6$ 9 $9 \cdot 1$ 5 $99 \cdot 8$ 99 95 64 $33 \cdot 5$ $1 > 9$ 9 $9 \cdot 8$ 99 95 64 $33 \cdot 5$ $1 > 9$ 9 $9 \cdot 8$ 99 95 64 $33 \cdot 5$ $1 > 9$ 9 $9 \cdot 8$ 99 $95 \cdot 9 \cdot 8$ $99 \cdot 9 \cdot 8$ 90 $6 \cdot -5$ $25 \cdot 1$ $9 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $90 \cdot 6$ $6 \cdot -5$ $25 \cdot 1$ $9 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $90 \cdot 6$ $6 \cdot -5$ $12 \cdot 8$ $9 \cdot 9 \cdot 8$ $9 \cdot 8$ $95 \cdot 40$ $6 \cdot -5$ $5 \cdot 16$ $12 \cdot 8$ $12 \cdot 8$ $12 \cdot 8$ <t< td=""><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.I. 2203 + 30^{+1} L 5 79.8 79 93 64 31.9 10.6 10.3 1 1 5 79.8 79 93 64 31.9 10.6 10.3 1 1 15 97.8 97 95 64 38.5 10.9 24.6 1 1 25 10.0 97.9 97.8 90 6.5 25.1 35.4 1 1 35 97.8 79.2 95 72 37.6 12.8 24.6 1 1 35 99.8 99.2 95 72 37.6 12.8 24.6 1 1 35 68 85 40 6 10 10.6 lt;</td><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.I. ication $2203 + \frac{10}{12}$ 50^{11} is 1 5 $79-8$ 79 93 64 $31-9$ $1>.6$ $13-3$ $1=$ n n 25 $79-8$ 79 95 64 $31-9$ $1>.6$ $13-3$ $1=$ n n 25 $97-8$ 79 95 64 $38-5$ $1>.9$ $24-6$ 1 n n 25 $1>.0$ $97-9$ $97-8$ 90 $0-5$ $25-1$ $35-4$ 11 n n 35 $97-8$ $97-7$ $97-8$ 90 $0-5.5$ $25-1$ $35-4$ 11 n n 35 $97-8$ $97-7$ 72 $37-4$ $12-8$ $24-6$ 11 n n 15 08 $95-4$ 15 $12-8$ $24-6$ 11 n n 15 08</td><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. ication Moist $\frac{96}{96}$ $\frac{122}{32}$ $\frac{50^{11}}{1.91}$ 5 79-8 99 93 64 $\beta2.9$ 13.3 12.5 17.5 n n 15 99-8 99 95 64 $\beta2.9$ 13.6 12.9 12.6 13.3 12.5 17.5 n n 15 99-8 99 95 64 32.9 12.6 13.3 12.5 12.6 13.3 12.5 12.6 11 19.5 12.6 11 19.5 n n 25 97.6 99.2 95.7 72.3 37.6 12.6 21.6 11 21.6 12.9 21.6 11 21.6 12.9 21.6 12.9 21.6 11 21.6 12.9 21.6 12.9 21.6 12.9 21.6 12.9 21.6 12.9 21.6 12.9 21.6<td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist ication Moist Moist Moist Moist Opt. Moist $2203 + 10 \times 12$ 50% 12×12 5 79-8 79 93 64 $32 \cdot 9$ 12.6 12.3 12 17.7 13 n n 125 79-8 99 95 64 $32 \cdot 9$ 12.6 12 17.75 13 n n 25 12.0 99+2 95 64 $32 \cdot 9$ 12.6 12 19.5 14 n n 25 12.0 99+2 95 72 37.4 12.8 12 24.6 12 19.5 13 n n 35 99-8 99-2 95 72 37.4 12.8 24.6 12 19.5 13 n n 35 99-8 99-2 95 72 37.4 12.8 24.6 19.5 13 n n 35 99</td><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist Cation Moist Dens. Moist Dens. $2233 + 522$ $50^{11}3 + 51$ 5 79-8 79 93 64 32.9 12.6 12.3 12.6 12.3 12.5 13.5 13.9 n n 15 97.8 99 95 64 32.9 12.6 13.3 12.7 13.8 13.9 n n 15 97.8 99 95 64 32.9 12.6 13.3 $13.9.5$ 14 13.8 n n 25 20.0 97.7 97.8 90 6.5 25.1 57.4 11 36.4 11 26.9 91 n n 35 97.8 99.2 97.7 37.4 12.8 24.6 11 29.2 13.9 119 n n 35 99.2 97.2 87.4 87.4 <td< td=""><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist faction Moist Dens. Action $2203 + \frac{50}{12}$ 53 59.48 99 93 64 32.9 10.3 10.73 13 112 rest. Action n 15 99.48 99 95 64 32.9 10.64 17.5 13 112 rest. n n 15 99.48 99 95 64 32.9 24.66 11 19.5 14 113 ned. n n 25 10.9 99.9 99.8 90 6_{-5} 25.1 39.4 11 24.8 26 93 106 n n 35 99.8 99.2 97.8 97.8 25.4 12.8 24.6 11 19.5 13 106 n n 35 99.8 99.2 97.8 97.8</td></td<></td></td></t<></td></td></td></tr<> | Jar Station Loc. Below No 2203 + 50**** 5 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Jar Station Loc. Below No 2203 + 50* 12 5 79.8 12 1 1 5 79.8 12 1 1 1 5 79.8 13 1 1 1 1 7 9 8 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Jar Station Loc. Below Grade 4 10 22:3 + 50* 1 5 79-8 79 1 1 5 79-8 79 1 1 1 5 79-8 79 1 1 1 5 79-8 79 1 1 1 15 79-8 99 1 1 15 79-8 99 1 1 15 79-8 99-2 1 1 35 79-8 79-2 1 1 35 79-8 79-2 1 1 1 15 88 95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1< | Jar Station Loc. Below 4 10 40 2203 + 50*32 5 79+8 79 93 n n 1 25 79+8 79 95 n n 125 97+8 79 95 n n 125 97+8 79 95 n n 125 97+8 79 95 n n 135 79-8 79 95 n n 35 79-8 79-2 95 n n 35 38 35 40 n n 15 38 35 40 n n 1 1 1 1 1 n n 1 1 1 1 1 1 n n 1 1 1 1 1 1 1 n n 1 1 1 1 1 1 1 1 1 1 1 1 <td>Jar Station Loc. Below Grade 4 10 40 200 2203 + 50**12 5 79+8 79 93 64 1 1 1 5 79+8 79 93 64 1 1 1 5 79+8 79 93 64 1 1 1 5 79+8 79 95 64 1 1 25 140 97+7 79+8 90 1 1 25 140 97+7 79+8 90 1 1 35 79+8 79+2 95 72 1 1 35 38 35 40 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<td>Jar Station Loc. Below 4 10 40 200 L.L. 223 + 50*12 5 79-8 79 93 64 .12.9 1 1 15 79-8 79 93 64 .12.9 1 1 15 79-8 99 95 64 .12.9 1 1 15 97-8 99 95 64 .12.9 1 1 25 1.09 97+9 95 64 .12.9 1 1 25 1.09 97+9 95 64 .12.9 1 1 25 1.09 97+2 95 72 .7.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <</td><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. $2203 + 0.5$ $50^{+0.6}$ 5 $79 \cdot 8$ 79 93 64 $32 \cdot 9$ $1 > 6$ 9 $9 \cdot 1$ 5 $79 \cdot 8$ 99 93 64 $32 \cdot 9$ $1 > 6$ 9 $9 \cdot 1$ 5 $99 \cdot 8$ 99 95 64 $33 \cdot 5$ $1 > 9$ 9 $9 \cdot 8$ 99 95 64 $33 \cdot 5$ $1 > 9$ 9 $9 \cdot 8$ 99 95 64 $33 \cdot 5$ $1 > 9$ 9 $9 \cdot 8$ 99 $95 \cdot 9 \cdot 8$ $99 \cdot 9 \cdot 8$ 90 $6 \cdot -5$ $25 \cdot 1$ $9 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $90 \cdot 6$ $6 \cdot -5$ $25 \cdot 1$ $9 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $90 \cdot 6$ $6 \cdot -5$ $12 \cdot 8$ $9 \cdot 9 \cdot 8$ $9 \cdot 8$ $95 \cdot 40$ $6 \cdot -5$ $5 \cdot 16$ $12 \cdot 8$ $12 \cdot 8$ $12 \cdot 8$ <t< td=""><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.I. 2203 + 30^{+1} L 5 79.8 79 93 64 31.9 10.6 10.3 1 1 5 79.8 79 93 64 31.9 10.6 10.3 1 1 15 97.8 97 95 64 38.5 10.9 24.6 1 1 25 10.0 97.9 97.8 90 6.5 25.1 35.4 1 1 35 97.8 79.2 95 72 37.6 12.8 24.6 1 1 35 99.8 99.2 95 72 37.6 12.8 24.6 1 1 35 68 85 40 6 10 10.6 lt;</td><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.I. ication $2203 + \frac{10}{12}$ 50^{11} is 1 5 $79-8$ 79 93 64 $31-9$ $1>.6$ $13-3$ $1=$ n n 25 $79-8$ 79 95 64 $31-9$ $1>.6$ $13-3$ $1=$ n n 25 $97-8$ 79 95 64 $38-5$ $1>.9$ $24-6$ 1 n n 25 $1>.0$ $97-9$ $97-8$ 90 $0-5$ $25-1$ $35-4$ 11 n n 35 $97-8$ $97-7$ $97-8$ 90 $0-5.5$ $25-1$ $35-4$ 11 n n 35 $97-8$ $97-7$ 72 $37-4$ $12-8$ $24-6$ 11 n n 15 08 $95-4$ 15 $12-8$ $24-6$ 11 n n 15 08</td><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. ication Moist $\frac{96}{96}$ $\frac{122}{32}$ $\frac{50^{11}}{1.91}$ 5 79-8 99 93 64 $\beta2.9$ 13.3 12.5 17.5 n n 15 99-8 99 95 64 $\beta2.9$ 13.6 12.9 12.6 13.3 12.5 17.5 n n 15 99-8 99 95 64 32.9 12.6 13.3 12.5 12.6 13.3 12.5 12.6 11 19.5 12.6 11 19.5 n n 25 97.6 99.2 95.7 72.3 37.6 12.6 21.6 11 21.6 12.9 21.6 11 21.6 12.9 21.6 12.9 21.6 11 21.6 12.9 21.6 12.9 21.6 12.9 21.6 12.9 21.6 12.9 21.6 12.9 21.6<td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist ication Moist Moist Moist Moist Opt. Moist $2203 + 10 \times 12$ 50% 12×12 5 79-8 79 93 64 $32 \cdot 9$ 12.6 12.3 12 17.7 13 n n 125 79-8 99 95 64 $32 \cdot 9$ 12.6 12 17.75 13 n n 25 12.0 99+2 95 64 $32 \cdot 9$ 12.6 12 19.5 14 n n 25 12.0 99+2 95 72 37.4 12.8 12 24.6 12 19.5 13 n n 35 99-8 99-2 95 72 37.4 12.8 24.6 12 19.5 13 n n 35 99-8 99-2 95 72 37.4 12.8 24.6 19.5 13 n n 35 99</td><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist Cation Moist Dens. Moist Dens. $2233 + 522$ $50^{11}3 + 51$ 5 79-8 79 93 64 32.9 12.6 12.3 12.6 12.3 12.5 13.5 13.9 n n 15 97.8 99 95 64 32.9 12.6 13.3 12.7 13.8 13.9 n n 15 97.8 99 95 64 32.9 12.6 13.3 $13.9.5$ 14 13.8 n n 25 20.0 97.7 97.8 90 6.5 25.1 57.4 11 36.4 11 26.9 91 n n 35 97.8 99.2 97.7 37.4 12.8 24.6 11 29.2 13.9 119 n n 35 99.2 97.2 87.4 87.4 <td< td=""><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist faction Moist Dens. Action $2203 + \frac{50}{12}$ 53 59.48 99 93 64 32.9 10.3 10.73 13 112 rest. Action n 15 99.48 99 95 64 32.9 10.64 17.5 13 112 rest. n n 15 99.48 99 95 64 32.9 24.66 11 19.5 14 113 ned. n n 25 10.9 99.9 99.8 90 6_{-5} 25.1 39.4 11 24.8 26 93 106 n n 35 99.8 99.2 97.8 97.8 25.4 12.8 24.6 11 19.5 13 106 n n 35 99.8 99.2 97.8 97.8</td></td<></td></td></t<></td></td> | Jar Station Loc. Below Grade 4 10 40 200 2203 + 50**12 5 79+8 79 93 64 1 1 1 5 79+8 79 93 64 1 1 1 5 79+8 79 93 64 1 1 1 5 79+8 79 95 64 1 1 25 140 97+7 79+8 90 1 1 25 140 97+7 79+8 90 1 1 35 79+8 79+2 95 72 1 1 35 38 35 40 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>Jar Station Loc. Below 4 10 40 200 L.L. 223 + 50*12 5 79-8 79 93 64 .12.9 1 1 15 79-8 79 93 64 .12.9 1 1 15 79-8 99 95 64 .12.9 1 1 15 97-8 99 95 64 .12.9 1 1 25 1.09 97+9 95 64 .12.9 1 1 25 1.09 97+9 95 64 .12.9 1 1 25 1.09 97+2 95 72 .7.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <</td> <td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. $2203 + 0.5$ $50^{+0.6}$ 5 $79 \cdot 8$ 79 93 64 $32 \cdot 9$ $1 > 6$ 9 $9 \cdot 1$ 5 $79 \cdot 8$ 99 93 64 $32 \cdot 9$ $1 > 6$ 9 $9 \cdot 1$ 5 $99 \cdot 8$ 99 95 64 $33 \cdot 5$ $1 > 9$ 9 $9 \cdot 8$ 99 95 64 $33 \cdot 5$ $1 > 9$ 9 $9 \cdot 8$ 99 95 64 $33 \cdot 5$ $1 > 9$ 9 $9 \cdot 8$ 99 $95 \cdot 9 \cdot 8$ $99 \cdot 9 \cdot 8$ 90 $6 \cdot -5$ $25 \cdot 1$ $9 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $90 \cdot 6$ $6 \cdot -5$ $25 \cdot 1$ $9 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $90 \cdot 6$ $6 \cdot -5$ $12 \cdot 8$ $9 \cdot 9 \cdot 8$ $9 \cdot 8$ $95 \cdot 40$ $6 \cdot -5$ $5 \cdot 16$ $12 \cdot 8$ $12 \cdot 8$ $12 \cdot 8$ <t< td=""><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.I. 2203 + 30^{+1} L 5 79.8 79 93 64 31.9 10.6 10.3 1 1 5 79.8 79 93 64 31.9 10.6 10.3 1 1 15 97.8 97 95 64 38.5 10.9 24.6 1 1 25 10.0 97.9 97.8 90 6.5 25.1 35.4 1 1 35 97.8 79.2 95 72 37.6 12.8 24.6 1 1 35 99.8 99.2 95 72 37.6 12.8 24.6 1 1 35 68 85 40 6 10 10.6 lt;</td><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.I. ication $2203 + \frac{10}{12}$ 50^{11} is 1 5 $79-8$ 79 93 64 $31-9$ $1>.6$ $13-3$ $1=$ n n 25 $79-8$ 79 95 64 $31-9$ $1>.6$ $13-3$ $1=$ n n 25 $97-8$ 79 95 64 $38-5$ $1>.9$ $24-6$ 1 n n 25 $1>.0$ $97-9$ $97-8$ 90 $0-5$ $25-1$ $35-4$ 11 n n 35 $97-8$ $97-7$ $97-8$ 90 $0-5.5$ $25-1$ $35-4$ 11 n n 35 $97-8$ $97-7$ 72 $37-4$ $12-8$ $24-6$ 11 n n 15 08 $95-4$ 15 $12-8$ $24-6$ 11 n n 15 08</td><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. ication Moist $\frac{96}{96}$ $\frac{122}{32}$ $\frac{50^{11}}{1.91}$ 5 79-8 99 93 64 $\beta2.9$ 13.3 12.5 17.5 n n 15 99-8 99 95 64 $\beta2.9$ 13.6 12.9 12.6 13.3 12.5 17.5 n n 15 99-8 99 95 64 32.9 12.6 13.3 12.5 12.6 13.3 12.5 12.6 11 19.5 12.6 11 19.5 n n 25 97.6 99.2 95.7 72.3 37.6 12.6 21.6 11 21.6 12.9 21.6 11 21.6 12.9 21.6 12.9 21.6 11 21.6 12.9 21.6 12.9 21.6 12.9 21.6 12.9 21.6 12.9 21.6 12.9 21.6<td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist ication Moist Moist Moist Moist Opt. Moist $2203 + 10 \times 12$ 50% 12×12 5 79-8 79 93 64 $32 \cdot 9$ 12.6 12.3 12 17.7 13 n n 125 79-8 99 95 64 $32 \cdot 9$ 12.6 12 17.75 13 n n 25 12.0 99+2 95 64 $32 \cdot 9$ 12.6 12 19.5 14 n n 25 12.0 99+2 95 72 37.4 12.8 12 24.6 12 19.5 13 n n 35 99-8 99-2 95 72 37.4 12.8 24.6 12 19.5 13 n n 35 99-8 99-2 95 72 37.4 12.8 24.6 19.5 13 n n 35 99</td><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist Cation Moist Dens. Moist Dens. $2233 + 522$ $50^{11}3 + 51$ 5 79-8 79 93 64 32.9 12.6 12.3 12.6 12.3 12.5 13.5 13.9 n n 15 97.8 99 95 64 32.9 12.6 13.3 12.7 13.8 13.9 n n 15 97.8 99 95 64 32.9 12.6 13.3 $13.9.5$ 14 13.8 n n 25 20.0 97.7 97.8 90 6.5 25.1 57.4 11 36.4 11 26.9 91 n n 35 97.8 99.2 97.7 37.4 12.8 24.6 11 29.2 13.9 119 n n 35 99.2 97.2 87.4 87.4 <td< td=""><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist faction Moist Dens. Action $2203 + \frac{50}{12}$ 53 59.48 99 93 64 32.9 10.3 10.73 13 112 rest. Action n 15 99.48 99 95 64 32.9 10.64 17.5 13 112 rest. n n 15 99.48 99 95 64 32.9 24.66 11 19.5 14 113 ned. n n 25 10.9 99.9 99.8 90 6_{-5} 25.1 39.4 11 24.8 26 93 106 n n 35 99.8 99.2 97.8 97.8 25.4 12.8 24.6 11 19.5 13 106 n n 35 99.8 99.2 97.8 97.8</td></td<></td></td></t<></td> | Jar Station Loc. Below 4 10 40 200 L.L. 223 + 50*12 5 79-8 79 93 64 .12.9 1 1 15 79-8 79 93 64 .12.9 1 1 15 79-8 99 95 64 .12.9 1 1 15 97-8 99 95 64 .12.9 1 1 25 1.09 97+9 95 64 .12.9 1 1 25 1.09 97+9 95 64 .12.9 1 1 25 1.09 97+2 95 72 .7.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < | Jar Station Loc. Below 4 10 40 200 L.L. P.L. $2203 + 0.5$ $50^{+0.6}$ 5 $79 \cdot 8$ 79 93 64 $32 \cdot 9$ $1 > 6$ 9 $9 \cdot 1$ 5 $79 \cdot 8$ 99 93 64 $32 \cdot 9$ $1 > 6$ 9 $9 \cdot 1$ 5 $99 \cdot 8$ 99 95 64 $33 \cdot 5$ $1 > 9$ 9 $9 \cdot 8$ 99 95 64 $33 \cdot 5$ $1 > 9$ 9 $9 \cdot 8$ 99 95 64 $33 \cdot 5$ $1 > 9$ 9 $9 \cdot 8$ 99 $95 \cdot 9 \cdot 8$ $99 \cdot 9 \cdot 8$ 90 $6 \cdot -5$ $25 \cdot 1$ $9 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $90 \cdot 6$ $6 \cdot -5$ $25 \cdot 1$ $9 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $99 \cdot 8$ $90 \cdot 6$ $6 \cdot -5$ $12 \cdot 8$ $9 \cdot 9 \cdot 8$ $9 \cdot 8$ $95 \cdot 40$ $6 \cdot -5$ $5 \cdot 16$ $12 \cdot 8$ $12 \cdot 8$ $12 \cdot 8$ <t< td=""><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.I. 2203 + 30^{+1} L 5 79.8 79 93 64 31.9 10.6 10.3 1 1 5 79.8 79 93 64 31.9 10.6 10.3 1 1 15 97.8 97 95 64 38.5 10.9 24.6 1 1 25 10.0 97.9 97.8 90 6.5 25.1 35.4 1 1 35 97.8 79.2 95 72 37.6 12.8 24.6 1 1 35 99.8 99.2 95 72 37.6 12.8 24.6 1 1 35 68 85 40 6 10 10.6 lt;</td><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.I. ication $2203 + \frac{10}{12}$ 50^{11} is 1 5 $79-8$ 79 93 64 $31-9$ $1>.6$ $13-3$ $1=$ n n 25 $79-8$ 79 95 64 $31-9$ $1>.6$ $13-3$ $1=$ n n 25 $97-8$ 79 95 64 $38-5$ $1>.9$ $24-6$ 1 n n 25 $1>.0$ $97-9$ $97-8$ 90 $0-5$ $25-1$ $35-4$ 11 n n 35 $97-8$ $97-7$ $97-8$ 90 $0-5.5$ $25-1$ $35-4$ 11 n n 35 $97-8$ $97-7$ 72 $37-4$ $12-8$ $24-6$ 11 n n 15 08 $95-4$ 15 $12-8$ $24-6$ 11 n n 15 08</td><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. ication Moist $\frac{96}{96}$ $\frac{122}{32}$ $\frac{50^{11}}{1.91}$ 5 79-8 99 93 64 $\beta2.9$ 13.3 12.5 17.5 n n 15 99-8 99 95 64 $\beta2.9$ 13.6 12.9 12.6 13.3 12.5 17.5 n n 15 99-8 99 95 64 32.9 12.6 13.3 12.5 12.6 13.3 12.5 12.6 11 19.5 12.6 11 19.5 n n 25 97.6 99.2 95.7 72.3 37.6 12.6 21.6 11 21.6 12.9 21.6 11 21.6 12.9 21.6 12.9 21.6 11 21.6 12.9 21.6 12.9 21.6 12.9 21.6 12.9 21.6 12.9 21.6 12.9 21.6<td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist ication Moist Moist Moist Moist Opt. Moist $2203 + 10 \times 12$ 50% 12×12 5 79-8 79 93 64 $32 \cdot 9$ 12.6 12.3 12 17.7 13 n n 125 79-8 99 95 64 $32 \cdot 9$ 12.6 12 17.75 13 n n 25 12.0 99+2 95 64 $32 \cdot 9$ 12.6 12 19.5 14 n n 25 12.0 99+2 95 72 37.4 12.8 12 24.6 12 19.5 13 n n 35 99-8 99-2 95 72 37.4 12.8 24.6 12 19.5 13 n n 35 99-8 99-2 95 72 37.4 12.8 24.6 19.5 13 n n 35 99</td><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist Cation Moist Dens. Moist Dens. $2233 + 522$ $50^{11}3 + 51$ 5 79-8 79 93 64 32.9 12.6 12.3 12.6 12.3 12.5 13.5 13.9 n n 15 97.8 99 95 64 32.9 12.6 13.3 12.7 13.8 13.9 n n 15 97.8 99 95 64 32.9 12.6 13.3 $13.9.5$ 14 13.8 n n 25 20.0 97.7 97.8 90 6.5 25.1 57.4 11 36.4 11 26.9 91 n n 35 97.8 99.2 97.7 37.4 12.8 24.6 11 29.2 13.9 119 n n 35 99.2 97.2 87.4 87.4 <td< td=""><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist faction Moist Dens. Action $2203 + \frac{50}{12}$ 53 59.48 99 93 64 32.9 10.3 10.73 13 112 rest. Action n 15 99.48 99 95 64 32.9 10.64 17.5 13 112 rest. n n 15 99.48 99 95 64 32.9 24.66 11 19.5 14 113 ned. n n 25 10.9 99.9 99.8 90 6_{-5} 25.1 39.4 11 24.8 26 93 106 n n 35 99.8 99.2 97.8 97.8 25.4 12.8 24.6 11 19.5 13 106 n n 35 99.8 99.2 97.8 97.8</td></td<></td></td></t<> | Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.I. 2203 + 30^{+1} L 5 79.8 79 93 64 31.9 10.6 10.3 1 1 5 79.8 79 93 64 31.9 10.6 10.3 1 1 15 97.8 97 95 64 38.5 10.9 24.6 1 1 25 10.0 97.9 97.8 90 6.5 25.1 35.4 1 1 35 97.8 79.2 95 72 37.6 12.8 24.6 1 1 35 99.8 99.2 95 72 37.6 12.8 24.6 1 1 35 68 85 40 6 10 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 < | Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.I. ication $2203 + \frac{10}{12}$ 50^{11} is 1 5 $79-8$ 79 93 64 $31-9$ $1>.6$ $13-3$ $1=$ n n 25 $79-8$ 79 95 64 $31-9$ $1>.6$ $13-3$ $1=$ n n 25 $97-8$ 79 95 64 $38-5$ $1>.9$ $24-6$ 1 n n 25 $1>.0$ $97-9$ $97-8$ 90 $0-5$ $25-1$ $35-4$ 11 n n 35 $97-8$ $97-7$ $97-8$ 90 $0-5.5$ $25-1$ $35-4$ 11 n n 35 $97-8$ $97-7$ 72 $37-4$ $12-8$ $24-6$ 11 n n 15 08 $95-4$ 15 $12-8$ $24-6$ 11 n n 15 08 | Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. ication Moist $\frac{96}{96}$ $\frac{122}{32}$ $\frac{50^{11}}{1.91}$ 5 79-8 99 93 64 $\beta2.9$ 13.3 12.5 17.5 n n 15 99-8 99 95 64 $\beta2.9$ 13.6 12.9 12.6 13.3 12.5 17.5 n n 15 99-8 99 95 64 32.9 12.6 13.3 12.5 12.6 13.3 12.5 12.6 11 19.5 12.6 11 19.5 n n 25 97.6 99.2 95.7 72.3 37.6 12.6 21.6 11 21.6 12.9 21.6 11 21.6 12.9 21.6 12.9 21.6 11 21.6 12.9 21.6 12.9 21.6 12.9 21.6 12.9 21.6 12.9 21.6 12.9 21.6 <td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist ication Moist Moist Moist Moist Opt. Moist $2203 + 10 \times 12$ 50% 12×12 5 79-8 79 93 64 $32 \cdot 9$ 12.6 12.3 12 17.7 13 n n 125 79-8 99 95 64 $32 \cdot 9$ 12.6 12 17.75 13 n n 25 12.0 99+2 95 64 $32 \cdot 9$ 12.6 12 19.5 14 n n 25 12.0 99+2 95 72 37.4 12.8 12 24.6 12 19.5 13 n n 35 99-8 99-2 95 72 37.4 12.8 24.6 12 19.5 13 n n 35 99-8 99-2 95 72 37.4 12.8 24.6 19.5 13 n n 35 99</td> <td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist Cation Moist Dens. Moist Dens. $2233 + 522$ $50^{11}3 + 51$ 5 79-8 79 93 64 32.9 12.6 12.3 12.6 12.3 12.5 13.5 13.9 n n 15 97.8 99 95 64 32.9 12.6 13.3 12.7 13.8 13.9 n n 15 97.8 99 95 64 32.9 12.6 13.3 $13.9.5$ 14 13.8 n n 25 20.0 97.7 97.8 90 6.5 25.1 57.4 11 36.4 11 26.9 91 n n 35 97.8 99.2 97.7 37.4 12.8 24.6 11 29.2 13.9 119 n n 35 99.2 97.2 87.4 87.4 <td< td=""><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist faction Moist Dens. Action $2203 + \frac{50}{12}$ 53 59.48 99 93 64 32.9 10.3 10.73 13 112 rest. Action n 15 99.48 99 95 64 32.9 10.64 17.5 13 112 rest. n n 15 99.48 99 95 64 32.9 24.66 11 19.5 14 113 ned. n n 25 10.9 99.9 99.8 90 6_{-5} 25.1 39.4 11 24.8 26 93 106 n n 35 99.8 99.2 97.8 97.8 25.4 12.8 24.6 11 19.5 13 106 n n 35 99.8 99.2 97.8 97.8</td></td<></td> | Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist ication Moist Moist Moist Moist Opt. Moist $2203 + 10 \times 12$ 50% 12×12 5 79-8 79 93 64 $32 \cdot 9$ 12.6 12.3 12 17.7 13 n n 125 79-8 99 95 64 $32 \cdot 9$ 12.6 12 17.75 13 n n 25 12.0 99+2 95 64 $32 \cdot 9$ 12.6 12 19.5 14 n n 25 12.0 99+2 95 72 37.4 12.8 12 24.6 12 19.5 13 n n 35 99-8 99-2 95 72 37.4 12.8 24.6 12 19.5 13 n n 35 99-8 99-2 95 72 37.4 12.8 24.6 19.5 13 n n 35 99 | Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist Cation Moist Dens. Moist Dens. $2233 + 522$ $50^{11}3 + 51$ 5 79-8 79 93 64 32.9 12.6 12.3 12.6 12.3 12.5 13.5 13.9 n n 15 97.8 99 95 64 32.9 12.6 13.3 12.7 13.8 13.9 n n 15 97.8 99 95 64 32.9 12.6 13.3 $13.9.5$ 14 13.8 n n 25 20.0 97.7 97.8 90 6.5 25.1 57.4 11 36.4 11 26.9 91 n n 35 97.8 99.2 97.7 37.4 12.8 24.6 11 29.2 13.9 119 n n 35 99.2 97.2 87.4 87.4 <td< td=""><td>Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist faction Moist Dens. Action $2203 + \frac{50}{12}$ 53 59.48 99 93 64 32.9 10.3 10.73 13 112 rest. Action n 15 99.48 99 95 64 32.9 10.64 17.5 13 112 rest. n n 15 99.48 99 95 64 32.9 24.66 11 19.5 14 113 ned. n n 25 10.9 99.9 99.8 90 6_{-5} 25.1 39.4 11 24.8 26 93 106 n n 35 99.8 99.2 97.8 97.8 25.4 12.8 24.6 11 19.5 13 106 n n 35 99.8 99.2 97.8 97.8</td></td<> | Jar Station Loc. Below 4 10 40 200 L.L. P.L. P.L. P.L. Moist faction Moist Dens. Action $2203 + \frac{50}{12}$ 53 59.48 99 93 64 32.9 10.3 10.73 13 112 rest. Action n 15 99.48 99 95 64 32.9 10.64 17.5 13 112 rest. n n 15 99.48 99 95 64 32.9 24.66 11 19.5 14 113 ned . n n 25 10.9 99.9 99.8 90 6_{-5} 25.1 39.4 11 24.8 26 93 106 n n 35 99.8 99.2 97.8 97.8 25.4 12.8 24.6 11 19.5 13 106 n n 35 99.8 99.2 97.8 97.8 |

-

PROVINCE OF ALBERTA

FILE: 12 76650

lend Office

i. ober

DEPARTMENT OF HIGHWAYS

SOILS INVESTIGATION

REMARKS: ______ 161, 021 warpass Clover dar

ENGINEER:

÷	i.	191	
---	----	-----	--

	·····																
Sample No.	Jar	Station	Loc.	Depth Below	Siev	e No.	% Pa	ssing	L.L.	P.L.	PI	Classif ication	Field	Est.	Est.	Pot. Frost	D. I
10 5 +	No			Grade	4	10	40	200				ication	%	Opr. Moist	Dens.	Action	
439.92	490	2203 H82	SMR. N / I	لنعا	100	99.5	92	62	3.5	12.6	17.9	05	10 . 9		ra	1	Cine sand, clay
43953	2.5	÷?	5 2	20		10,	97.9	76	58.5	1.5	22.0		24.8	2	102	low	cent: clay
489.34	62	¥1	77	ja)		200	% .)	96	74.6	22.1	42.5	CH	347	29	97.	10	clay
45935	يەر ، دىلاك	¢3	¥.	thi	LO	99.4	95	72	43.6	12.7	27.0	GZ -	125	IJ	119	lou	staty clay
43930	4.3	e ;	έ ξ	it i	105	? ?. 9	×.	5			i.race	પ્રંદ	3.3			lor	uniforn filme sami
18977		ff:	Ϋ́Υ	30			81	8			trnee	فكتر.	3			10-	<i>6</i> 5
											······································						
	-																
					4												
-																	

- 17.92		-1998 	545.)
1	3	<	
			-111
CH C		U)	

PROVINCE OF ALBERTA

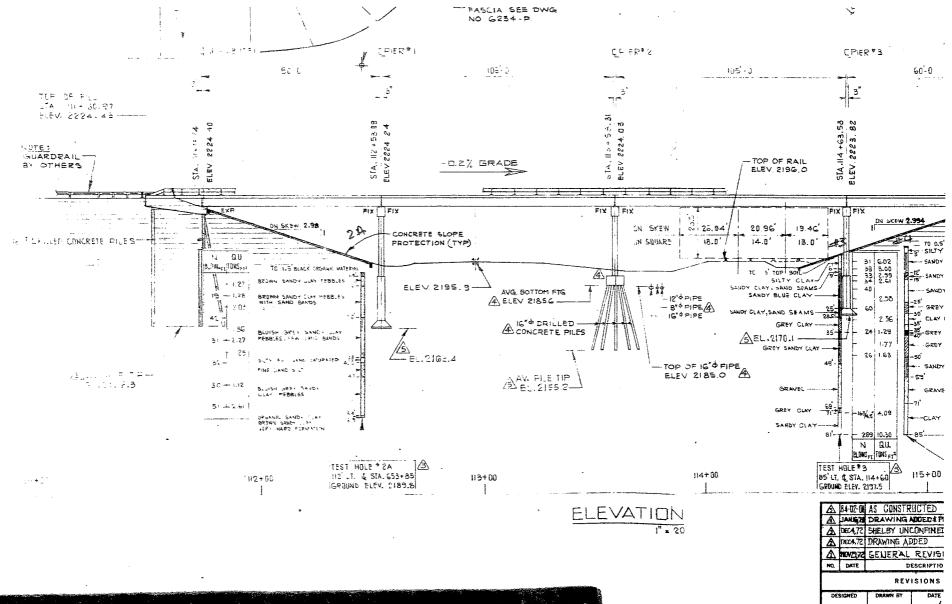
DEPARTMENT OF HIGHWAYS ani Transport

SOILS INVESTIGATION

FILE: 76650 i. doer ENGINEER: Hend UTCLOS

REMARKS: Int. 5), they. 164 OF Ourpass Clover Jar 2015

Sample No. 10 ⁵ +	Bag or Jar	Station	Loc.	Depth Below		e No.			L.L.	P.L.	P.I.	Class if ication	Field Moist	Est. Opt.	Est. Proct.	Pot. Frost	Remarks
<u> 0°+</u>	No			Grade	4	10	40	200				rearion	%	Moist	Dens.	Action	
43751	52	2233 + C2	50*2t H - 1	<u> 75</u>	75	R	34				LTECO	1	1.				sani, graval
43952	1979 - 1979 - 1979 - 1979 - 1979	57	12	TC	au	79. 9	72		52-1	Xal	28.0		25.2	3.A	<i>\$</i> 8	lor	silty clay, coal
43953	12	15	1	75		100	99 . 9		07 . 0	2.9	:5-1	يني على	27.2	3	97	lav	olay
																	· ·
								· · · · · · · · · · · · · · · · · · ·									
								·									


	HRBF 957-65	PROV	/INCE OF A	LBERTA	PROJEC	т. 76650			LOCA	TION: LINE 53,	ley, 164 138 Novor Car
		DEPART	FMENT OF I FING LABOI	HIGHWAYS RATORY		xart 				RKS: A. OCCE-	vhelby endles
		1			spect	lic ravit	y stimic	d for De	ncentes	o diuntlon	
	SAMPLE SNOLS 109 +	HOLE No.	DEPTH feet	MOISTURE BEFORE ್	MOISTURE AFTER	SATURATION BEFORE	SATURATION AFTER %	0_1 Kg≓sq.cm	POCKET PENET- RATION T sq ft.	TYPE OF FAILURE	REMARKS
			5	17.5	27.2	9. Juli	39.1	2.46	2.7	56° Jaar	iano shaar - 1. 7 BF
	43939		15	19.5	19.3	12,-17	93.7	1.72	2.3	-los	Vano chear - 1.15 m
	GEOLE)		25	24.2	23.9	90.0	.¥ 9 .2	0.87	4.5+	67°hear	Slife Lune and Histurasice
L	4.331.2.		35	19-5	19.3	94.9	73.7		· 573 -180 2	Plas	Vane hear - 1.00 7 7
	le Place		-5	Ho Un so r	11.ng - De	nd			2.0		
-											
280 k											
<u></u>										ann - an a sharin - an	
1											-
								·			
											1-1-1-
-	<u>-</u> <u>-</u> <u>-</u>	<u></u>									L/)///

	HRBF 957-65		INCE OF A	LBERTA		T: 75650					as dover lar
			MENT OF I	RATORY		vet. 14/7 Nic Javit		i for Pe		exturation	Cenetrometer auples
	SAMPLE NUPE 10 ¹⁶ +	HOLE No.	DEPTH feet	MOISTURE BEFORE	MOISTURE AFTER ි	SATURATION BEFORE	SATURATION AFTER %	0 Kg sq cm	POCKET PENET- RATION T sq ft.	TYPE OF FAILURE	REMARKS
- CENT	12932	.1_	20	25.9	16.6	93-0		1.79	2.40	Play	Vane Shear
	41733		20	24.8	-24-5	944	93.0	3.79	4.0	56°hear	Same showr - 2.00 7.6
	6934		3O	20.7	30.2	%3. 6	9740	i87	2.5	45 ⁶ Arear	
	489.55		40	19.5	19 .1	94.2	72.7	1.(3)	2.0	-`los	Varie Shear - 1.42 C.T.
	459936		1.7	tio Un co r	ring - ik	z u i			4.5+		
	43937		Ņ	lio Gaern	fina – Se	asd	F		4.54		
		•									
			·····								
											IA

	HRBF 957-65	PROV	INCE OF A	LBERTA		T: 76650			LOCA	TION: Int. 53, H	v 16A ss y Clover Bar
			MENT OF H	HIGHWAYS RATORY	DATE:	vct. 14-1	15/70				Penetrometer Samples
					Specifi	le Gravity	stimated	for Per	rcantage	Saturation	·
Q	SAMPLE SNADES 10 ⁶⁰ +	HOLE No.	DEPTH feet	MOISTURE BEFORE	MOISTURE AFTER %	SATURATION BEFORE	SATURATION AFTER %	0 ₁ Kg∘sq.cm	POCKET PENET- RATION T (sq ft.	TYPE OF FAILURE	REMARKS
	43951	J.	55	No Uncor	fine - G	avel					
	43952		70	No Uncor	fine - Di	sturbed :	anple		4.5+		
	48953		75	27.2	26.9	99.6	98.4	1.65	4.5+	56 ⁰ 3hear	Slightly Dessicated and Disturbed
-											
-											
•											
-											

		PROVINCE OF ALBERTA DEPARTMENT OF HIGHWAYS TEST HOLE LOG		S S H T	atte am oc fol ec	e	on	1	21	٩.		Dat	oth	<u> </u>		
Ele	vation o	f Ground Surface (Zero Depth)			•.	·	·									~ -
Lle	vation o	fWaterTable	·,													
Rem	iarks	Advancing Hole			- -					11	t .	LE LIr	GEN			
										FI	€ld	Mol	stur	е.	. ,	0
	41									Plo	asti	c Li	tim	•••	• +	¥
Blows N	Soll Profile	FIELD CLASSIFICATION		PP			м	015	STU	RE	сс	NT	ent	_	%	
	5	SHELBY @ 55'	kg/cm	T/f+²												
					H	罪										Ì
	8	BLUISH GREY SANDY CLAN DEBRLES	1													Ē
•		PEN . 398 @ 60 6" 12" 18"														
		17 40 68														
	411	ORGANIC SANDY CLAY SHELBY & 65'														
		BROWN SANDY CLAY OPT														
		VERY HARD FORMATION			Ħ											
							5									
																Ē
					Ħ											
		anna di seconda da contra da contra del contr			·	1.1.2										
												-			2.27	
t																
													+			
ļ																
		lanna ann an Aonaichte an ann an Aonaichte ann an Aonaichte an Aonaichte an Aonaichte an Aonaichte an an Aonaic										. :				1
╞										1						E
			····				ļ.,,									
┝																
												+ 				
F		9				1.1.1.1						. 1 : !	1.1.			
Ī							1000	1111	1 · ·							
L													- <u> - </u> -		•	E
								11100		1		1	ļ		 	
-			·					 .				1	t		•••••	
	•											1				

.

2.5 -

1.3

R.W. LYNE F.W. BUDA AUG. /

. •

		artme	ent of	Alberta Highways	5	\$	ISUAL II	DENTIF	ICATION	OF UNI	DISTURB	ED SOIL	SAMPL	.ES
	87 - 1 - 4 - 5 4 - 1 - 4 - 5			p ors _ Sample	es	Pro	oject: 769	0			Techr	nician: 🕮		
						Sit	e: 157. 164) 🗄 (hrer	विका विका	rer Der	Date:	0 et. 14/70		
	Sample No.	No.	Depth Ft.	Consist- ency	Structur	e	Relative Density	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec. Grav- ity
	SAMPLE NOS 10°+			Pocket Penet- ration T/ft. ²	Massive Stratifie Nugget Granular Other	-	Very Loose Loose Medium Dense Extremely Dense	Strong Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High			
	407784,	2	5	2.3	Nicel Y	9	ikal.	None	Lt. Aran	lipte to +	And.	andy clay	Œ	2.75
	1537335	>#	15	2.4	e3		2	29	12	97 2. .	Şş	*	•!	2.73
	LIFE	17	25	2.2	17		1	16	Acd. Dysa	· 72 🖕 💠	Ħ	Ţ	n	2.75
	1.2757	7 9	35	2.2	8		말약	55	ñ	韓	59 59	<i>i</i> t	53	:!
	439KB	ę ę	i jače	heingt.	8		10000	4 5	Hadwires		Los	layay fine	j.	\$±
Ŷ	43939	23	55	1.2	t≠		Ned.	25	8	see and the second seco	Cal.	andy elay		14
	43790	3 8	63	1.7	¥2		Şž	资	Ruiry	ಥೆ	i.	7 V	FR	19 19
and a subscript format of the second s														
Re	magl			tio 122	* * *			. – . –						
· _														
_														

		partm		Alberta Highways		VISUAL	IDENTIF	ICATION	OF UNI	DISTURB	ED SOIL	SAMPL	ES
5	a dia			· · · · · · · · · · · · · · · · · · ·	es	Project: 766	Ŷ			Tech	nician: TE		
				- ·		Site: Hag. 16	C?R 400	rpass : Cla	wer ihr	Date	: .et. 16/70		
Samp No	-	No	Depth Ft.	Consist- ency	Structure	Relative Density	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec. Grav
				Penet-	Massive Stratified Nugget Granular Other	Very Loose Loose Medium Dense Extremely Dense	Strong Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium High			<u>111 y</u>
469	*)	2	30	1.3	-) Net.	None	Li. Broan	'bove	ilai.	Sendy clay	CI I	
489X	£.)	48	20	2.0	18	f3	5	lai.m.	÷	? ?	13	ri	19
ی اندان ا	s-1 Paring	EB	30	2.0	94 5	£\$	7 2	t?	÷ lo alxore	82	<i>8</i> 7	**	19
	≥: > }≠.a	**	50	2.2	17	e e	13	n	i.ove	8	2	17	49
6335	<u>.</u>	• •	60	2.7	7	43	9 <u>4</u>	19	opt. to +	S7	75	हर	15
				-									
		-											
marks			izoat.	ian II2 †	14 . 0		~~~~~	_ ~ ~ ~ ~ ~					

PROVINCE OF ALBERTA

DEPARTMENT OF HIGHWAYS

SOILS INVESTIGATION

 FILE:
 IP 76650
 ENGINEER:
 A. eber

 DATE:
 Vect. 10/70
 Head Office

REMARKS: AV. IOA CHR. Oversee - Clover Bar

C. Deniel .

Sample	Bag or		1	Depth	Sieve	No.	% Pa	ssing				Closeif	Field	Est.	Est.	Pot.	
No.	Jar No	Station		Below Grade	4	10	40	200	L.L.	P.L.	P.I.	Classif ication	Moist %	Opt. Moist	Proct. Dens.	Frost Action	Remarks
10924			112*22 à 11-2	5	:2	96	æ	62	30 .	13.9	22.5	ing in Add Angle			117		sani, clay
1.3985			**	25	39 . 9	99 . 4	573 362	X	27.9	11.9	16.0	; ? ? ≈≠≠≠	16,1	÷	1.3		fine sand, clay
101/86			1	25	M.6	%3₊5	9 <u>0</u>	72	38. 9	13.0	3.9		20.0	14	118		sandy clay
			£1.	35	<u> 7</u> 9.8	76.7	94	72	13.5	14.2	29.5	JI JI	19.6	15	115		sardy alay
640 ISABB			đ	lisko	100	97 . 8		i prati	16. 0		(mce	F	22.5				silty fine and
437339			÷\$	55	100	99	<i>M</i> .;	72	39.3	13.0	26.3	Ω Σ	2.1		115		sandy clay
1			17	45	99 . 5	93	94	74	12.2	14 6	27.6	ar Ge	12.9		115		sandy clay
								-									
· · · · · · · · · · · · · · · · · · ·																	

Contraction of the second
60.000
distant within and
受けにあれば

5

PROVINCE OF ALBERTA

DEPARTMENT OF HIGHWAYS

FILE: _ DATE: 000 16/70

J 76650

Read Office

් වෙස

ani Trasport

SOILS INVESTIGATION

they list City Overpase Clover Jar REMARKS:

ENGINEER:

Sample No. 10 ⁵ +	Bag or	Station		Depth Below	Sieve	No.	% Pc	assing				Classif	Field	Est.	Est.	Pot.	· · · · · · · · · · · · · · · · · · ·
10 ⁵ +	No_	JULION	Loc.	Grade	4	10	40	200	L.L.	P.L.	P.I.	ication	Field Moist %	Opt. Moist	Proct. Dens.	Frost Action	Remarks
1.0979			112* 14 11 / 2	Q1 4	10	99.4	35	71		2.6					119		sandy elay
			33	2)	73.6	73	Ŷ		29.0	11.9	17.1	-3 14.a	14-8	11	122		sand, alay graval
LESSE.			3 0	30	9 9. 9	97 . 4	95	69	32.5	14.0	25.5	C.Z.	13.5	15	lló		surty clay
43792			13	50	100	79.9	97	74	فاجتليا	24.5	27.5	ŰŽ	22.9	15	115		serit ely
43983			1	60	99.4	92 .8	<u>95</u>	70	B. 5	1.546	3 .1). L	16.7	Lis	118		wrft o rdt
			· · ·														
e- 3.										Andre Bergenska, vie ist							

HRBF 95		PROV	INCE OF A	LBERTA	1	т. 7659			LOCA	TION:	uss Clover der
		DEPART	MENT OF I	HIGHWAYS	DATE:	oct. 16/7	0		REMA	RKS: 1. exer-	· hely maples
					Specif	fic dravit	y Estimate	i for de	arcenta -	e sturition	
SAMPI Nope 1 080	Έ	HOLE No.	DEPTH feet	MOISTURE BEFORE %	MOISTURE AFTER %	SATURATION BEFORE %	SATURATION AFTER %	0 ₁ Kg∂sq cm	POCKET PENET- RATION T sq ft.		REMARKS
Li Mai		2	3	3.8.9	10.7	91.0	39.9	1.27	2.3	68 ⁰ her	Slightly Asturbed Vane Shear - 1.07 TSF
48305			25	16.1	15.5	92 . 4	89 . 3	2.03	2.4	Flau	ane linear - 0.92 2 C
439026			3	20.0	19.7	(AL.O	88.6	1.36	2.2	Flor	Vano Alear - L.C. 7 F
WR.			35	19.6	19.5	92.9	92.1	1.39	2.2	Flor	Cane theor - 17 357
13920			isis	Ro Unee	- 24123	st and Dis	sturiosi				
63939			55	the Unice	vîine - S	hort & A	sturioal		1.2		ane chear - 0.50 2%
13970			65	No Uper	Mine - 3	art & A	sturbei		1.7		Vane Shear - S.X. T.T
<u></u>											
m. =			·								
			······								
			· · · · · · · · · · · ·								
											1
											<u>↓ /\ /\</u>

A sur - we set a sur and the set	HRBF 957-65	PROV	/INCE OF A	LBERTA	PROJEC	T: 76655	>		LÓCAT	ION: The 164	ass Clover Car			
			MENT OF H		DATE:	98. 16/7	3		REMARKS: A. ODER - CONSTRUCTOR STOLES					
					i pecifi	ic travity	? stimtel	for Pæ	roenia je	aturation				
and the second	SAMPLE SAGES 100.1	HOLE No.	DEPTH feet	MOISTURE BEFORE	MOISTURE AFTER %	SATURATION BEFORE	SATURATION AFTER %	- 1	POCKET PENET- RATION Tisq ft.	TYPE OF FAILURE	REMARKS			
	639779	2	10	3)*7	19.9	97.0	97.7	1.23	1.3	Plas	Vane Shear - 0.35 7.57			
	48980		20	in the	cizo - 3	art servi	.		2.0		Vene thear - 4.05 Tor			
	40%).		30	18.5	13.1	95.4	93 . 4	a official	2.0	Flow	Vane Glear - 1.05 T.F			
	13982) 		50	22.9	226	97.2	95 . 9	1,12	1.2		Vane char - 0.00 MF			
	427983		60	14.7	¥.3	93.5	91.2	2.62	2.7	Flor	Vane Sheer - 1. 10 11.F			
										······································	-			
-														
ŀ														
•														
											1 1 1			
											/\/S			

ę

	ม	DDE	1005.45															
			1025-65 PROVINCE OF ALBERTA DEPARTMENT OF HIGHWAYS TEST HOLE LOG	SI Se	Project 76650 Site $\frac{M}{LGR} \subseteq PR$ OVER PASS Sample STRUCTURE Nº 9 CLOVER BAR Location STA 2306+83 Hole $\frac{23}{2}$ (A) Depth 23 (RTS)													
					10	chi	nlc	lan	Kör	-01)1	ICHN	Jĸ	Dai	te O	ा - टा नु	55	10	
FEET	Ele	vation	of Ground Surface (Zero Depth) of Water Table <u>2/75.3</u>	- 21	873										~ ~ -			-
DEPTH IN	Me	thod of	Advancing Hole 2 Ky Auber	-/						Lia Fie	eld.	l Lir Moi	GEN nit stur mit	e .	• 6	`	-	
	vs Vs	- e					tinara	-										
0	l ∰Z	Profile	FIELD CLASSIFICATION		PP			M	OIS	TU	RE	со	NTI	ENT	-	%		
			DLY GEADE	kg/cm	T/f+*													-
6 -			ELECTE CEAVEL															
<u>.</u>		ЩШ	Genel Chail Solution CPT+		[I													
10-	1	177	SHELEY & 10' Remin Graf & ANCY CLAY															
/5-	27		(SATURATED)															
5	~/	17.7	Earl & 15 Perl Nº 259 															-
20-		1/4	Bernigery Sand CAYSSAND EANDS															
		11	BOWN GAN CANTYCLASS FRAN STENES BELED. (SATURATED)															+
જ	25	44	PEN. @ 25' PEN Nº 453 1/2" - 14/12" - 31/18"															
		1/	GEAL CIAY SAND WITH STONE PERCLES	Conces	150)日													Γ
6-0		1.1.1	Stelley @ 30'															
	,	14	TRAMES OF SUND BOADS (SATURATE)															
5-	żs	11:1;	Perl. @ 35' PEN. Nº 560 16" - "3/2" - 32/18+															
6-		[]]	GENY SILTY FINE SAND (SATURATE SKELBY (2. 40'	p/														
3			FOR STATISE HOLE CAVING 6 38															
5-	43	4.A	1211. 245' PEN, Nº 571 "16"112" - 56/18" Aunt cunt can's forma provers of 1 SHELEY E 50'															
		/:/./	Gent CLAY STANLY & CTONE PERCES OFT	 							Ħ							-
° –		1.17	Sterey & to'															
	57	:/././	Bul G and D Link							1			1117					
, –	57	·//	PEN. C. 55 PEN. Nº 16										1	1	******			
			Gund Friding chil apt+															
											7.1.1						<u>.</u>	÷
-										E								
						: :											Ī	-
-																		
																	: : :	-
-	ŀ																	
	Ī									::::								-
																	-	-
					-11													

*

					Aberta Highways	and Tr	VISUAL IDENTIFICATION OF UNDISTURBED SOIL SAMPL									
			د مَنْكُمْ مُعْدِهِ	<u>.</u>	_ Sample	es		I 76.	nician: 🏗							
				1	1]	Site: the									
٩	SAM	PLE	No	Depth Ft.	Consist- ency	Structur	e Densi		Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec. Grav- ity	
					Pocket Penet- ration T/ft. ²	Massive Stratifie Nugget &ranular Other	Medium	ely	Medium None	Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt Opt. ~ Optimum Opt. + Above Opt Wet	Medium High				
	491%		3	10	1.4	Hassi v	e Jense	5	-une		-çur Ş	adLigh	Stity cisy		2.75	
	49197			20	1.5	35	22		2	.t. man	e.	nexi.	Sandy clay	• 'F . Fain	42	
	<u> 19198</u>	;		30	4.5+	÷*	25	-	13	Die Josef	alfeet	33	57	63	12	
				40	0.9	48	Hadiur	3	bî	71	Aixere	la ch-ili gh	ally elg	I: 38	23	
	19200			50	<u>0.5</u>	ti 			(2	Lt. Pom	altono-tots	5.ad.	Sonly clay	19 (19 (đ	
n e a ser fe a histor e a sus an the stand for sussame the second second second second second second second se							······································									
a in Marka da ci pi caracitandi a na ti cont																
R	emories:				e_/23_1	22X+102_										
*						~					· · · · · · · · · · · · · · · · · · ·					

÷

	Al Ania A Design A Design			Alberta Highways	s and Tr		VISUAL II	DENTIF	ICATION	OF UN	DISTURBI	ED SOIL	SAMPL	ES
				_ Sample	es		oject: F 766 te: 160-		yass lite	/) . Ilove		nician: TE Oct. 30/70		
699	Sample No.	No	Depth Ft.	Consist- ency	Structur		Relative Density	Odor	Color	Moisture Content	Plasticity	Description	Cassag- rande Classif- ication	Est. Spec. Grav- ity
	NO'S 10° +	a and a set of the set		Penet- ration	Massive Stratifie Nugget Granular Other		Very Loose Loose Medium Dense Extremely Dense		Lt. Brown Dk. Brown Lt. Grey Dk. Grey Black Other	Dry Below Opt. Opt Optimum Opt. + Above Opt. Wet	Low Medium Hìgh			
	.9191	3	15		kussivo		letun	licene	-t. irom	÷	ietus	Sarty city	ب گذر	2.75
and the survey of states in states of	49192		1:5		f) 28		28 	*#		to score	19	10 14-77	85	
	49193		35 45	 é	* n			6) 	29 	Allowe .	Ned.to IL.	alay		2.75
	69195		55	2.3)2163	25	25	कुरू 		unit clay	12	74 F5
······································	emarks:			3 22% -	+- 6223	8	÷							
-														·

-

PROVINCE OF ALBERTA

 FILE:
 31 70050
 ENGINEER:
 32 exce

 DATE:
 0xt. 30/70
 3xed 0rrice

DEPARTMENT OF HIGHWAYS

SOILS INVESTIGATION

REMARKS: Mg. 161 Circl Overges Jur. 9 J Jover ins

فحمشت بالمس

								لجب فالمعمد	هماه وسنة								
Sample No.	Bag or Jar	Station	Loc.	Depth Below	Sieve	No.	% Pc	issing	L.L.	P.I.	PI	Classif ication	Field	Est.	Est.	Pot.	
$10^{5} +$	No			Grade	4	10	40	200				ication	%	Moist	Dens.	Action	Remarks
49196		222.000	23 * 22. 11/3	10	100	99.7	%	72		1	1	- - =08			111		sendy clay
19197		5:	71	33	99.5	B.4	91	38	33.9	12.7	22.	ರ್ಚುದ	17.6	1)	130		sami, chay
491%		• •	52	30	9/2	90 .	97) 1	62	35.8	12.4	. Jak	الفاظ للمان	31.9	ĿĴ	120		ant, day
29199		\$¥	ŝŧ	:n	D.A	ÝĴ	%		32,0	15.3	14.7	Car	22.3	N.S.			silty cury, Mae unui
		έ ş	2	50	99	97	31	ÉRC .	33.0	13.6	20.5	CLECT	32.4	Ÿ	130		eani, clay
C																	

A. ODEP

ikad frice

PROVINCE OF ALBERTA

DEPARTMENT OF HIGHWAYS

SOILS INVESTIGATION

The same the strength of the s

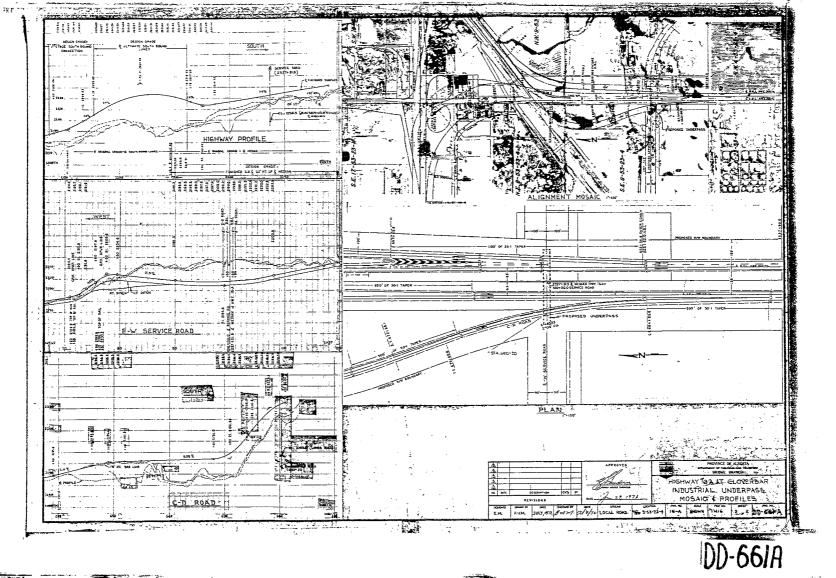
REMARKS: Mg. 164 OPA Overpass Str. 9 Slover Ser

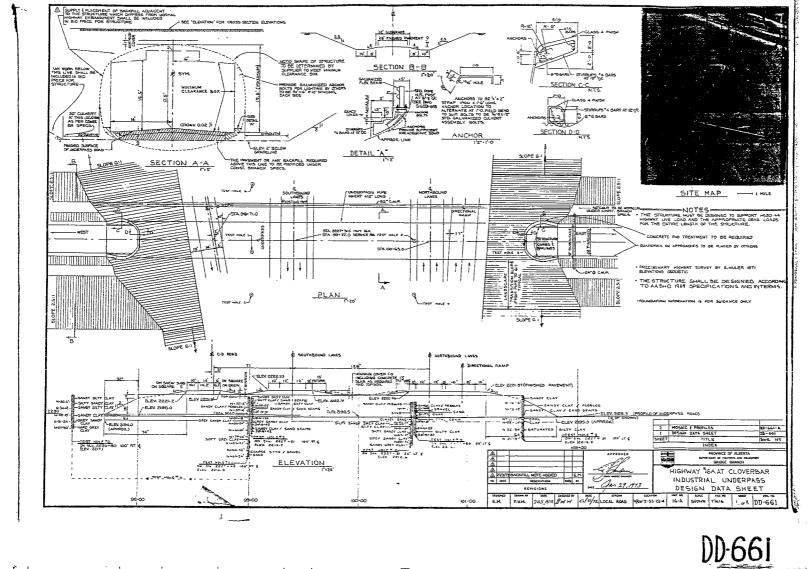
ENGINEER:

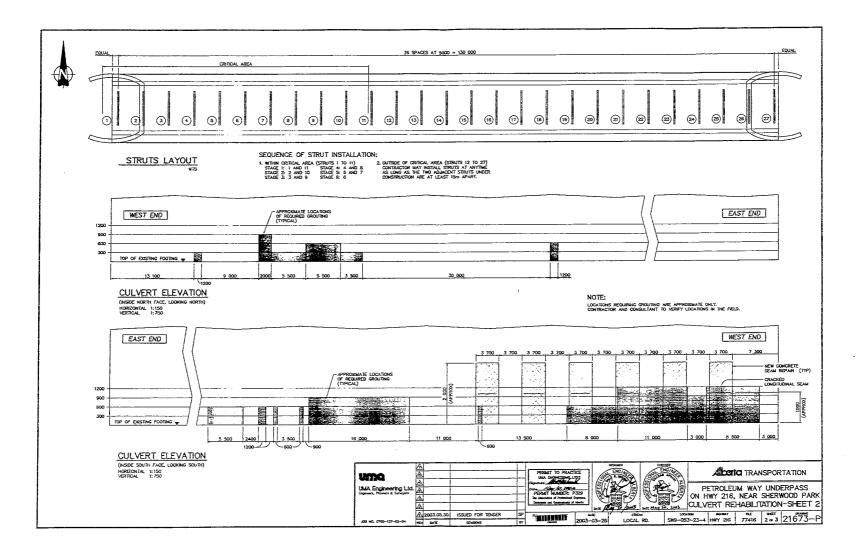
NG KM b

FILE: 76650

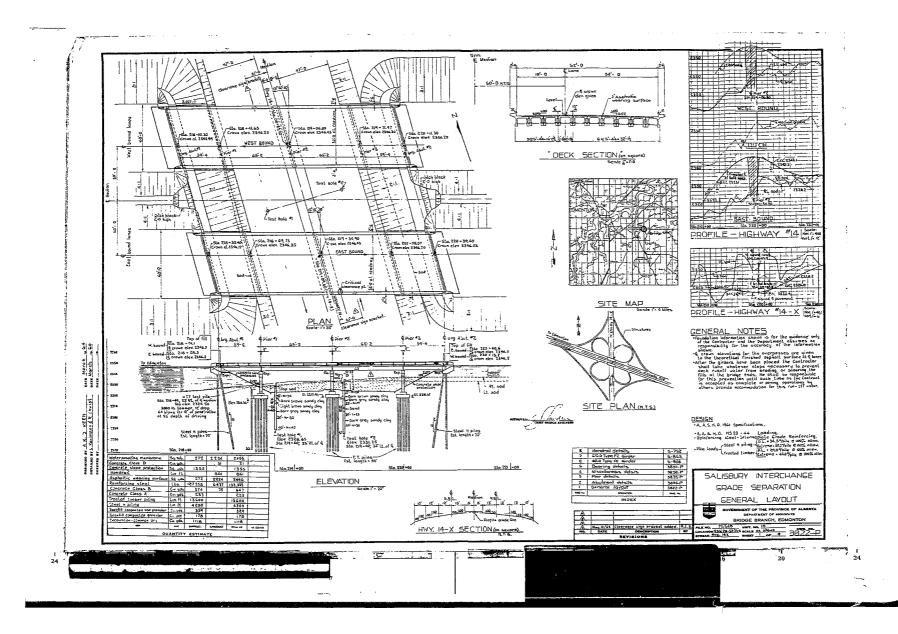
DATE: ______ 30/70


		· · · · · · · · · · · · · · · · · · ·							ž	i sinta							
Sample No. 10 ⁵ +	Bag or Jar	Station	Loc.	Depth Below		1	% Pc	1	- L.L.	P.L.	P.I.	Class if ication	Field Moist	Est. Opt.	Est. Proct.	Pot. Frost	Remarks
<u>+</u> <u>10⁻</u> +	No			Grade	4	10	40	200				rearion	%	Moist	Dens.	Action	itemoriks
49191	259	23.6-02	23° intes 21.3	15_	99.5	99	94	57,	30,7	13,0	17,7	CL	18.5	1	121		fine sand, clay
49192	453	t y	13	25	99 . 5	%. 4	95	63	34.0	107	21.9	CLECI	19.0	13	12		Mose soud, clay
49193	565	- N.	17	35		120	19.9	97	32.6	37.44	15.2	an a	24.5	197	110		all, any also
49194	571		33	45	99 . 9	99.5	96	73	ister 6	13.4	32.2	a	1 2. 7	25	117		sart clar
:.9195	30	F ?	17	55	99.9	99	95 	61	37.5	12.6	24.09	- 74 	17.2		119		fine saxi, clay
<u> <u> </u></u>	ł			<u> </u>						l			[Ar i


	HRBF 957-65	PROV	/INCE OF A	LBFRTA	PROJEC	T: 76650			LOCAT	TION: HUY LAA					
		DEPART	MENT OF H	HIGHWAYS 8	d Drtes	vet. 30/	<u>^</u>		REMAR		nelby Samle				
		1	1		Joecij	-pocific crevity stimuted for Percentage baturation									
	SAMPLE	HOLE No.	DEPTH feet	MOISTURE BEFORE	MOISTURE AFTER ぷ	SATURATION BEFORE	SATURATION AFTER %	0, Kg sq cm	POCKET PENET- RATION T sq fr.	TYPE OF Failure	REMARKS				
	491%	<u> </u>	10	21.1	22.0	Hoale	95.2	1,05	Lai,	Pla:	Vene shear - 0.09 TSF				
	19197		30	17.6	17.3	92	20.0	1.22	1.2		Same Shear - 0.00, 708				
	49193		30	11.9	32.4	G4.9	31.0	0.27	4-5+	Flow					
	49299		ذئية	22.9	22.5	99 . 1	97.3	ويكيون	0.9	Flos	Jame Shear - 0.65 TSF				
	49200		<u>50</u>	32.4	3).3	%9.8	99 . 0	0.35	0.5	81 0 9	.ane shear - 0.35 222				
_															
										·····					
Ļ															
											1				
•	dial dial dial dial dial dial dial dial														


4

	HRBF 957-65	PROV	INCE OF A	LBERTA	PROJEC	T: 76650		LOCATION: 167 164 Ort Oversesson 10 9 Thverbar REMARKS: eler antronster Sortles						
		DEPART	MENT OF H	IGHWAYS	DATE	pert.	0/70							
		F	1		Speci i	le inutit	<u>y stinte</u>	<u>i for p</u>		e acuration				
Langer and the second s	SAMPLE SAMPLE 1055	HOLE No.	DEPTH feet	MOISTURE BEFORE %	MOISTURE AFTER %	SATURATION BEFORE %	SATURATION AFTER %	0 ₁ Kg∙sq cm	POCKET PENET- RATION T sq ft.	TYPE OF Failure	REMARKS			
	49191	3	15	10.5	12.2		5.5	0.88	ja - ad	Phose	ane hear - 0.75 CF			
	4.)192		35	19.0	19.7	2.7	97-2	J . 945	ာနာပါ	100	ans hear - 0.19 74			
	-1.93		قَدْ ف	24.5	24.2	<i>99.7</i>	98. 2		soli	Flou	Vare their - J.M. D.F.			
	19194			13.7	19.3	99.2	%.9		23	flor	Cano Durr - 1.			
	49195		55	17.2	1ú.7	97.3	94.7	2.91	3	Max	Sine her - 1.7 F			
						· · · · · · · · · · · · · · · · · · ·								
-														
Ì														
_														
			°м. 											
											$\left(\right) \left(\right)$			
											·///~			


BF77416

BF75543

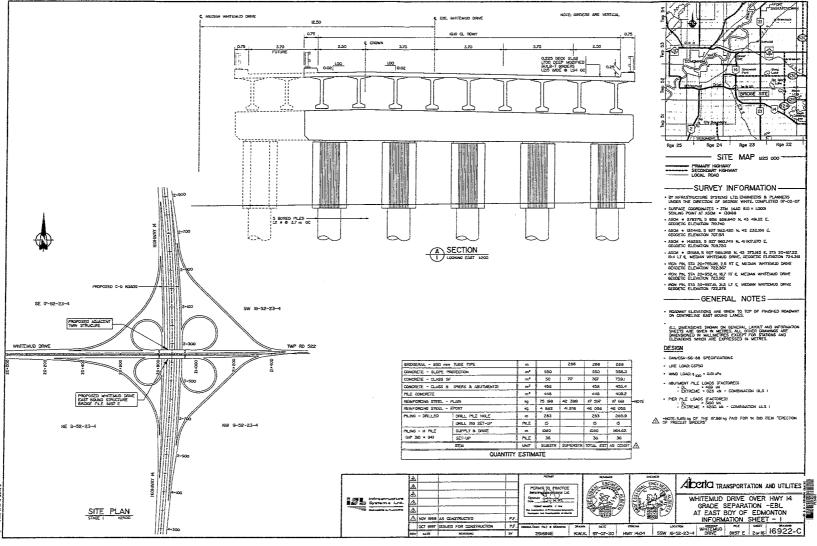
.

		THE PROV												
		ESTING LA				DCA'	LE_	TR'.'E	5.71	in		1 . 1	2	
	TEST	HOLE	LO	3	111			F1	T	555		DED		971/2
					1.1	-OTT	101	CX # 1. C	1.17	68.2	arre	DAT	F 🗇	101
Elovation	of Ground	Surface (Zei	ro Depth	1) <i>2</i>	719140)	·	1 1	2					
	- nator	10016	N	CNE	Par	c. 0	2. 15	6 .	3 ~1					
		· · · · · · · · · · · · · · · · · · ·	16251 14	au	1000	. 7	2	- ·			~			
Remarks		DRULLE	ρD	<u>ey</u>										
and a second								2 taxatara		tirner state or				
Soil Profili	e Field	Classification		Boy	Unconf Comp Strengt	ined								
		2241		Deptr	Strengt	th	۳-1		······		·····	· · · · · · · · · · · · · · · · · · ·		
17							日	╶┼┼┼						\mp
1-7	JARG	21/2 20	9				H	111	##				\pm	
	Bei	NAEPPLIC	DE	·····			H		Π				╧╪┿┨	++
o /	SHELT	NMEPPE 3465'	1751		<u> </u>		H	11	H+	+1		###	╪╪╉	$\pm\pm$
r A					1		B	╆╂╄		-11	╪╪╡	╂┼┤	┽┼╂	
						-	F	H			┥ ╋┥	11	╧╪╪╋	
7.7	JBR 6	11/2 27	70			-	H				11	† ††	╪╪╉	╪╪┽┨
					}	-	廿			\square			╪╪╪	┇┇┇┇
c/	Prive	3E (0 10-11	·····	24		-						111	†††	111
Y.A		"REC				•	日			╈	\Box	++		╆┼┽┽
	1000	1212 2				-				+		\square	111	┼┼┼┼
7.7	Arth Co.	1212 2	21				H				H	\mathbf{H}		+++
							Ħ		+++					F+++
	SHELB	24@15'												
ИП	GARNO	7					F	╈					HF	
	Jac 6	LAYEYSA 17/2 2	ND .					\pm	╈					
	40 70 0	WET HIGH	- hallowed .				F		11					
ИЦИ	HLAST.						H	+++	111					
1174	PETUE	E @ 20La	21'	19				111	##		11			
K. I	~	"REC.				Feet	H	ŦŦŦ	H					
44	JARG	2216 2	7.3									+++	+++	
KIN						L					+++	+++	┼╂┽	╪╪╪┨
	ZAND W	ELL GRADE	P			epth				+++	+++	+++		++++
···	_NOR	9 @ 25' ZEC				Del	 							+++4
2111						i					+++	+++	H	++++
HH41 ·	LAR 6	27/2 21	74						+++	111				+++
	AR -	LAVEY SAL	<u>up</u>				=	F+++	╪╪╡	+++	╪┼╂	╪┿∓	ŧΗ	
	PT: Th	BEQ 30'	2.25r_				#		+++	+++		+++		HH
	2780	5 10" RE(-sil -	<u> </u>			++-	 	+++	 	╞┼╊	μF	H	
Y								+##	+++	 			HF	
	LAR (0	3212 2	75 _			ŀ		╤╂╪	+++	<u> </u>	╞┼╂		HF	++++
/ / -						F	-11	+++	╪╪╪	† ††		μĒ	H	
[SHELR	26 35'				-			+++	##	+++			
//1						F	H	+++	+++-		++			
1 1 -						F	H	+++	+++					H
	LARG S	371/2 269	23			F	Π	+++	$\uparrow \uparrow \uparrow$	111	#		F	H
/. -						F	\mathbb{H}^{\dagger}				++-	╘┼┼┨	18	+11
7	Pr. Tuiz.	E (0 40 -41		-		F	T1+	+++	111-	 	++		\pm	
24.1	2TBES	(0 "REC		30		F	H	+++-	-					<u>++</u>]
1	APW 4	21/21269	4			F	H	11.				<u>++</u> -	$\pm \Box$	
	SHELRY				······	F	FFF		-1.1-	+++	╪╂┥	+++		$\pm\pm$
						F	11	11		+++			++-	$+ \pi$
11-							111							

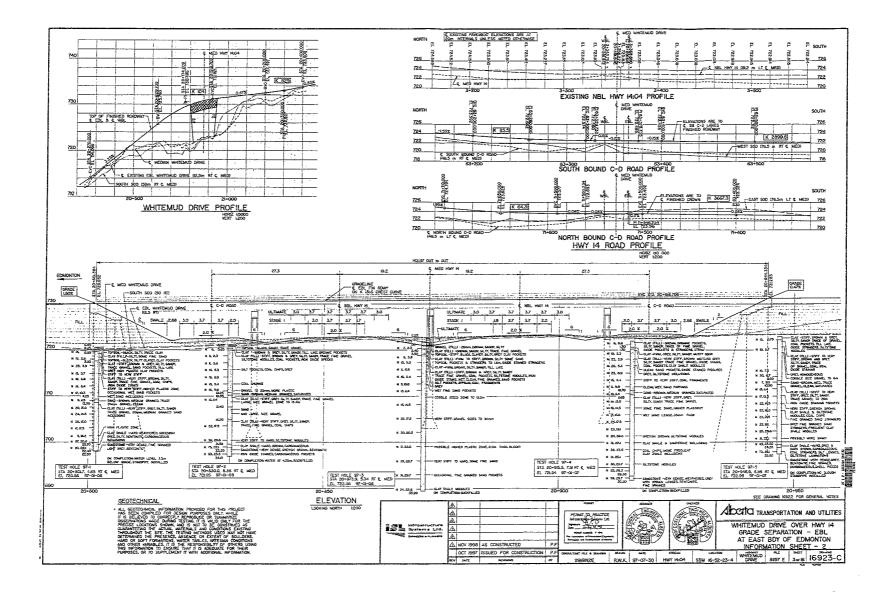
--

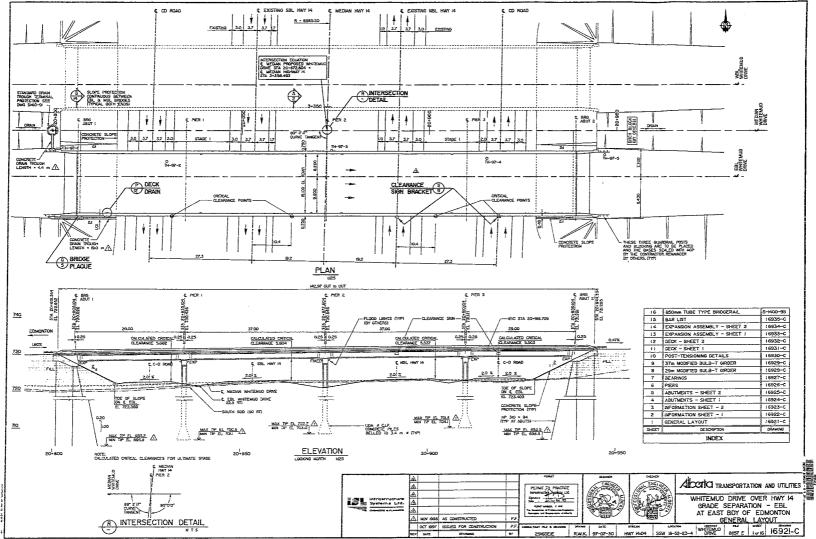
DE	ENT OF THE PROVINCE OF PARTMENT OF HIGHWAY	'S	SITE	SW 28-52-	43 23-4 (SALIST
HIGHW	AYS TESTING LABORAT	OPY	SAMPLE	ANDESTIG	ATIMAL MAN
			HOLE	UN STR 21	<u>9140 30'A</u>
1	EST HOLE LOO	G		CIAN 200	DEPTH
Elevation of	Ground Surface (Zero Dept	1) <u> </u>	2.212	140 35 RT	cR38
Elevation o	f Water Table	"L'			
Method of ,	Advancing Hole <u>Maria</u>	1000	n' Ros	-0724 TO	
Remarks		and the and the states and the second day the		. In the strend and the stand of the	
incinarità	LEPHLED DRY				

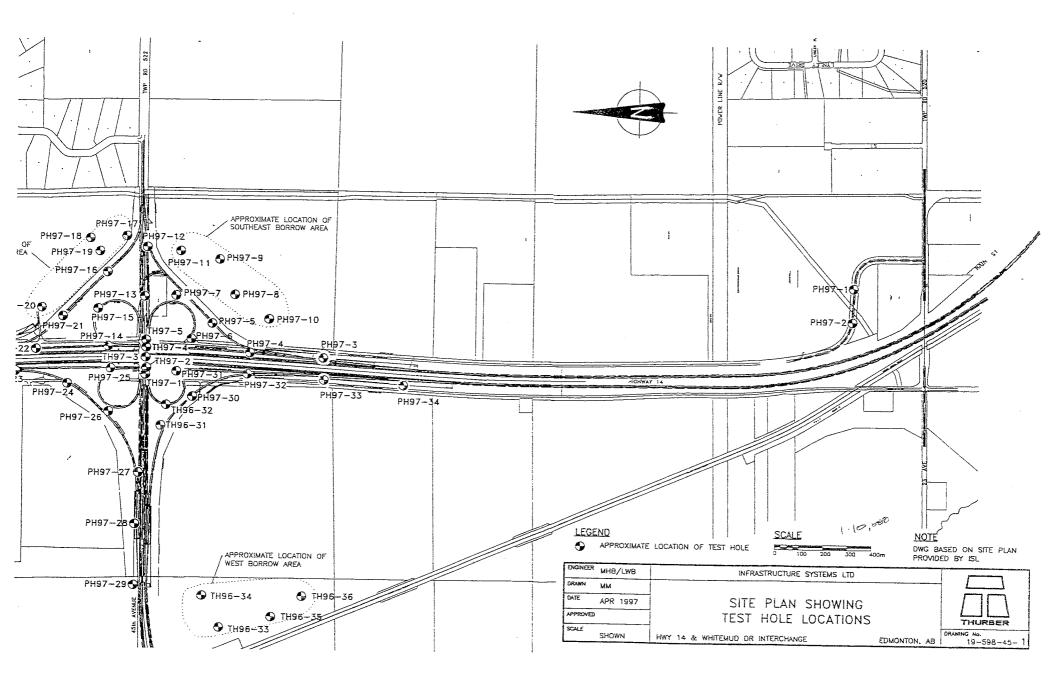
		Unc	contined		
Soil Profile	Field Classification	Bears Con Depth Stre	np enath		
	TOPSOIL		ongen		
					╶╋╞╗┽┥╋┿┥┥
	JAR @ 210' 213				<u>-</u> - - - - - - - - - - - - - - - - - -
	CLAYFY SILT FINESPA	w			
	MINUS LIGHT BROWN				┨┼┼┼┼┼┼┤
54	SHELBOS'			$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	╪╪╪╪╪╋┼┿┿
	HED PLAST				╶┧┼┼┼┼┠╎┼┼┦
	JAR @ 71/2 214				╆┾┿┿┿┿┿
					╁┼┼┟┽┟┽┼
					┫┼┾┧┼┫┤┾┼╡
10	Pr TUBE@ 10-11 .	.34			┲┼┲┽╂┼╆┽╪
	B"REC				┨╎╎╎╎╽╽╎
					╶ <u>╏┼┼┼┼┼┼┼</u> ┼
	JAR @ 1216 RIS				╊╪╪╪╪╋╡┢┊ ┤
					╆┼┿┿┿╋╋┿
1.	SARD C: RY LIGHTRON SHELTRY @ 15!	e!		<u><u><u></u></u></u>	╋╋╋
15	MEDPLAST (- FREE WAR			┢┼┼┼┿┥┥┥┥┥	╆┼┼┼┼┼┼┼
		~~			╃┼┼┼┼┼┼┼ ┤
K.	JAR @ 171/2 216				┰┼┼┼┟┼┼┼
					┇┇┇┇╡╡╋┇╧╧╧╧
					╶╏┼┼┼┼┟┟┼┼┼
20	PETUBE @ 20'-21'	40		┟╪╪╞╪╪╋╧	╁┼╁┼┼┟┼┼┼
Feet	<u> </u>		Feet		╁┼┼┼┟┟┝┼┞╀
e e	JAR@ 2212' 265		ŭ		╂┼┼╅┼┟╄┼┼╀
	LIGHT BLUE CLAY FINE		E		╋┿┟┿┿╋╄┿╇┿
	SAND HIGH PLAST.		Depth		╂┼┼┼╀╂┾┽┞┽
c Depth	SHELBY@ 25'		Õ		╊┽┼┼┼┼┼┼
	CAT-PRUS.				╂┼┼┼┼┼┼┼
					┇╞╡╞┥┫╞┾╽┤
	JAR @ 2712 266				┇┊┊┊┊╡╹╹╵╵╵╵╵╵
1. [21]					
	PT TUBE (W 30'	30	- were also have approx	┝┿╂┾┼╋┼┼┿╀	╁┽┼┼┽┽┽┽┽
30	NOREC FROCK	-30		+ + + + + + + + + + + + + + + + + + +	╊┼┾┽┟╎┼┼┼
					╂╫┼┼┠╎╂┼
K. X	1000 3P12 267				┇┊╡┊┊╡╹╹╹╹╹╹╹╹╹╹
					┇╪╅╪╧╋╞╋╋
					╏╡╡╡┊╏┥┥┥ ╃
35	SMELBY (a) 35				<u>╆╫┽╫</u> ┽╫┼┽
					╆┼┼┼┼┼┼┼
	the state of the s			[+]+++++++++++++++++++++++++++++++++++	╏╎╎╎╎╞╏╞┥╎╎┥
	JAR @ 3712 268			┝┿╋┿┽╋┿┿╪	╏┥╡╡╪┇┊┊┊┊
					<u>╊╡╪╅╪╊╊┾┿┼</u>
10	Pr TUBE @ 40'	47			<u>╆┽╆┽┥</u> ╋┽
	IL" RE 2 TUBES			<u>}+++++++++++</u>	<u>╊</u> ┿┥┥┥┥┥┥
				┝╆┟┼┧╏┽╋┽┽	<u></u> <u></u>
					┟┤┽┼┼┠┼┼┼┼
	· · ·				
				╞╪╉┽┼╂╪╪╧╧	┇┇┇┇┇┇┇┇┇┇

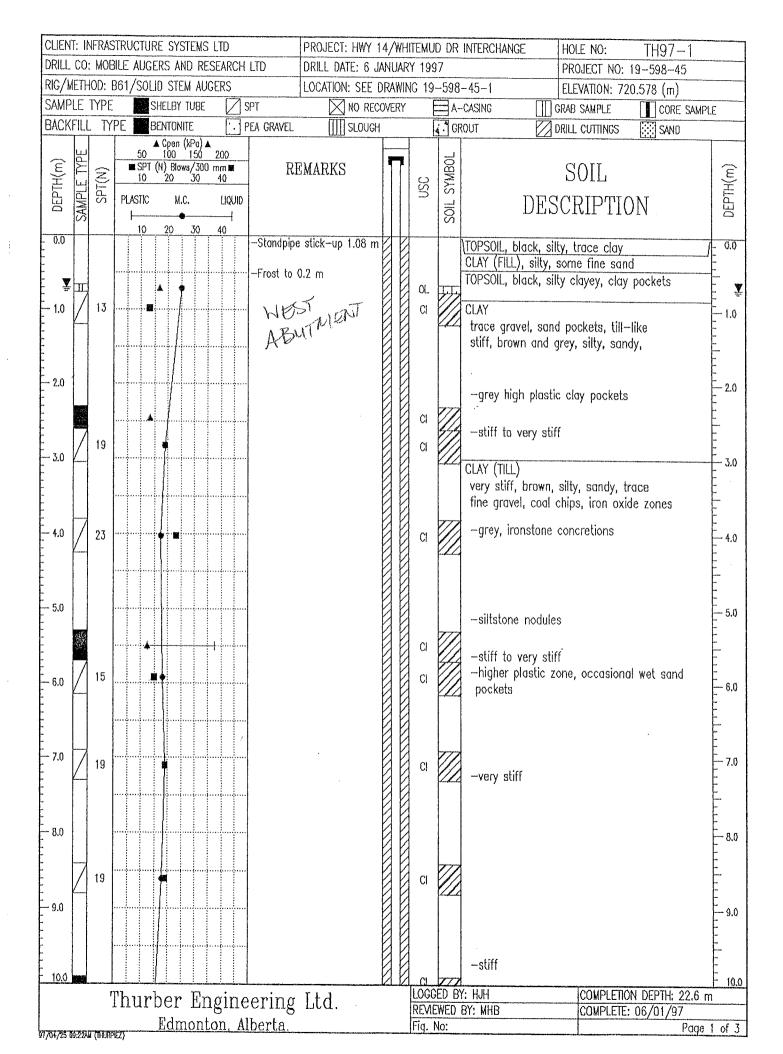

.

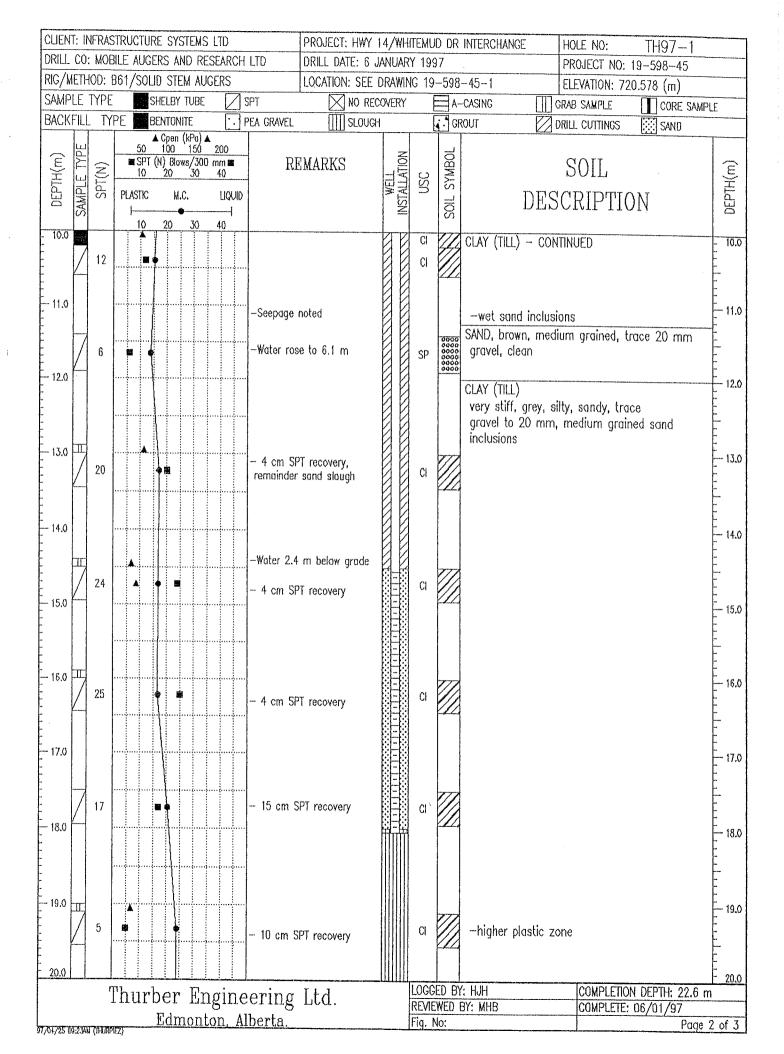
、、

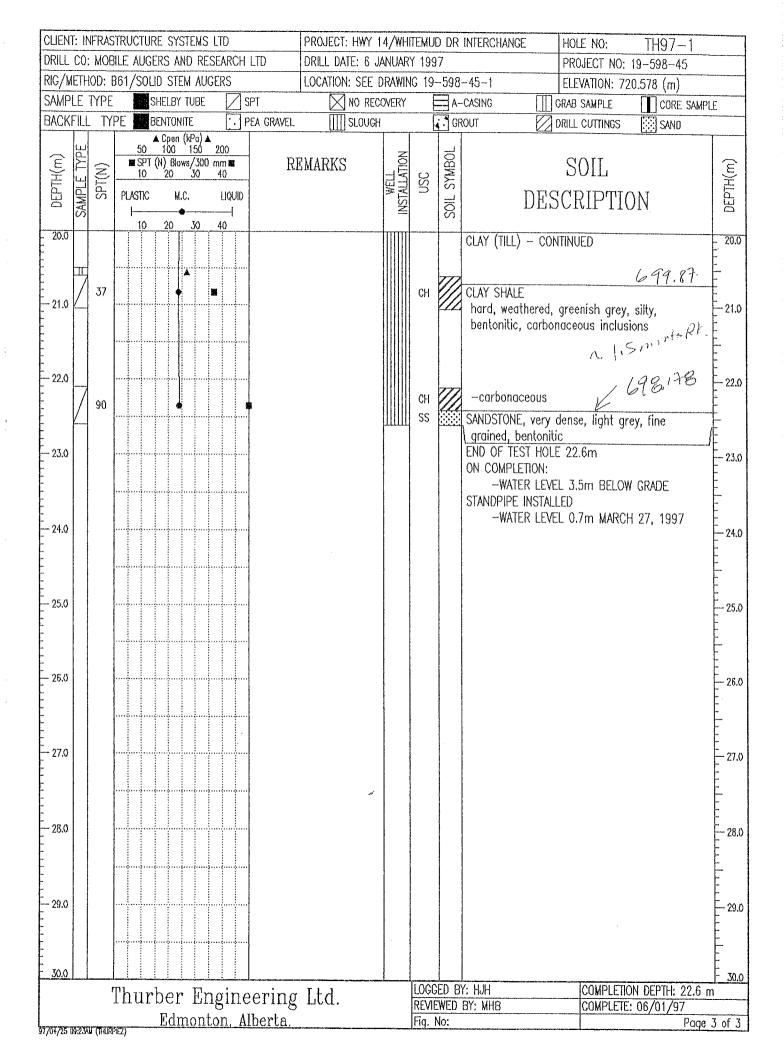

PILE DATA	ť
STREAM Salis bary Comes	FROST DEPTH
FOREMAN	FROST DEPTH
ENGINEER	23. FT. RIGHT/LEFT OF CENTER LINE
PILE NO!	ICE ELEVATION
PILE TYPETT	GROUND ELEVATION
PILE LENGTH SO + 25's plice	WEATHER Sunny Marm + 5 c
WEIGHT OF HAMMER 3 000 Ub1	PIER NOABUT. NO

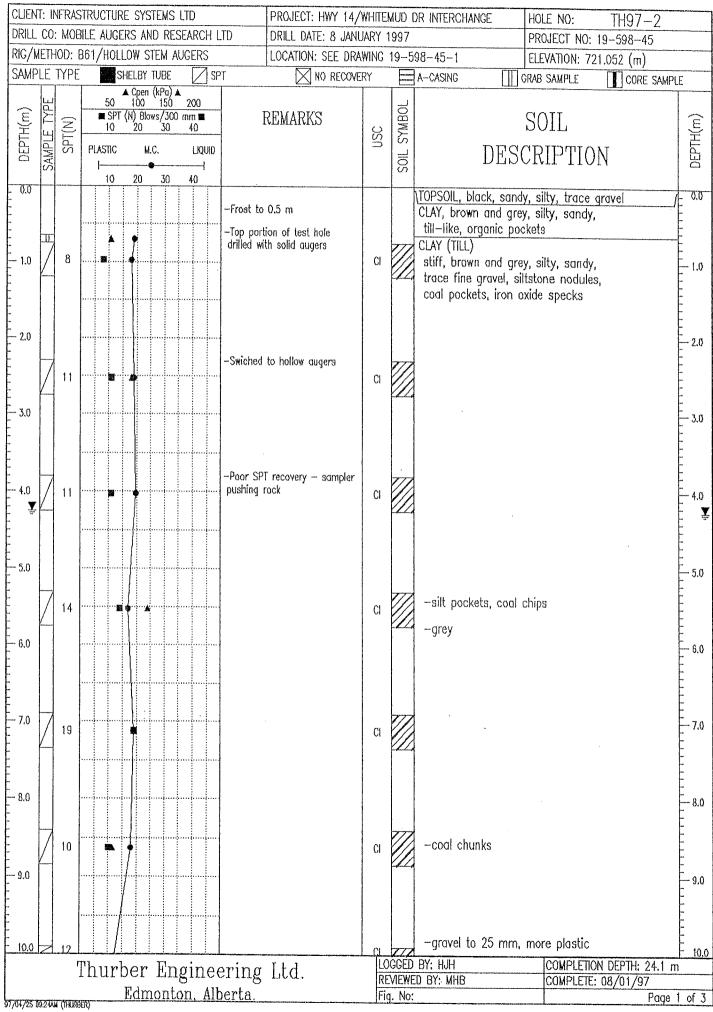

DEPTH OF PILE IN FEET	DROP OF HAMMER IN FEET	NUMBER OF BLOWS	DEPTH OF PILE	DROP OF HAMMER	NUMBER OF	REMARKS
0-1			<u>IN FEET</u> 41-42	IN FLET	BLOWS	
	61	1		8'	23	
1-2		2	42-43		19	
2-3		4	43-44		25	
3-4		31	44-45		3:2	
4-5		2	45-46		30	<u> 2.000 - 0</u>
5-6		3	46-47		41	2 F
6-7		3	47-48		54	
7-8		3	48-49		62	P 2 2 2 2 2 2 1
8-9		4	49-50		43	P
9-10		4	50-51	12'	141	
10-11	,	4	51-52		47	Arto Antonio
11-12		4.	52-53	1	64	5
12-13		5	53-54	20-		- 1,2 -!
-13-14		5	54-55			
14-15		6	55-56		<u> </u>	* C.2 * b
15-16		17	56-57			
16-17		6	57-58			
17-18		<u>6</u> 3	58-59			6
18-19			59-60			. / h /
19-20		<i>7</i> ·	60-61			· 60 b/1
······		<u>9</u> .	6162			
20-21		<u>9</u>				
2122		10 .	62-63			
22-23		10	63-64			
23-24		10	64-65			
24-25		12	65-66			
25-26		13	66-67			
26-27		13	67-68			
27-28		13	68-69			
28-29		16	69-70			
29-30		50	70-71			5 man to walice garde
30-31		0.4	71-72			Jurres
31-32		20	72-73			
32-33		10	73-74			
33-34		20	74-75		1	
34-35		20	75-76			
35-36			76-77			
36-37		21	77-78			
37-38		23	78-79		t	
38-39		23	79-80			
		25				
39-40		29	80-81			
40-41		32-	81-82	•		

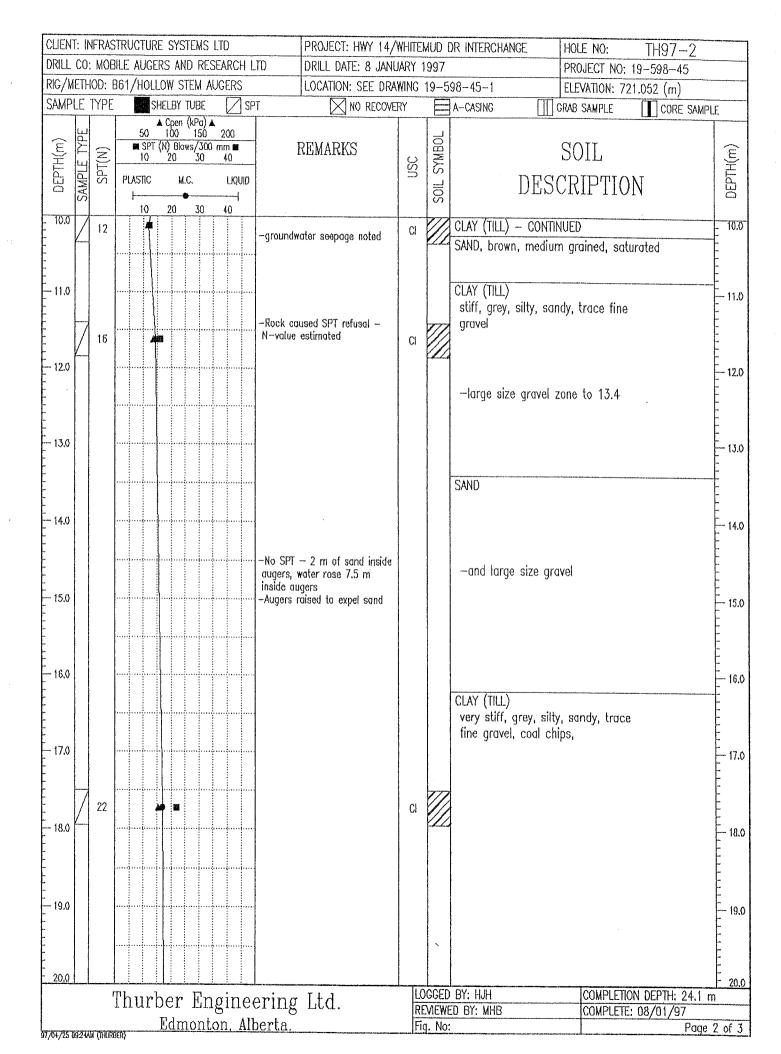

BF81157

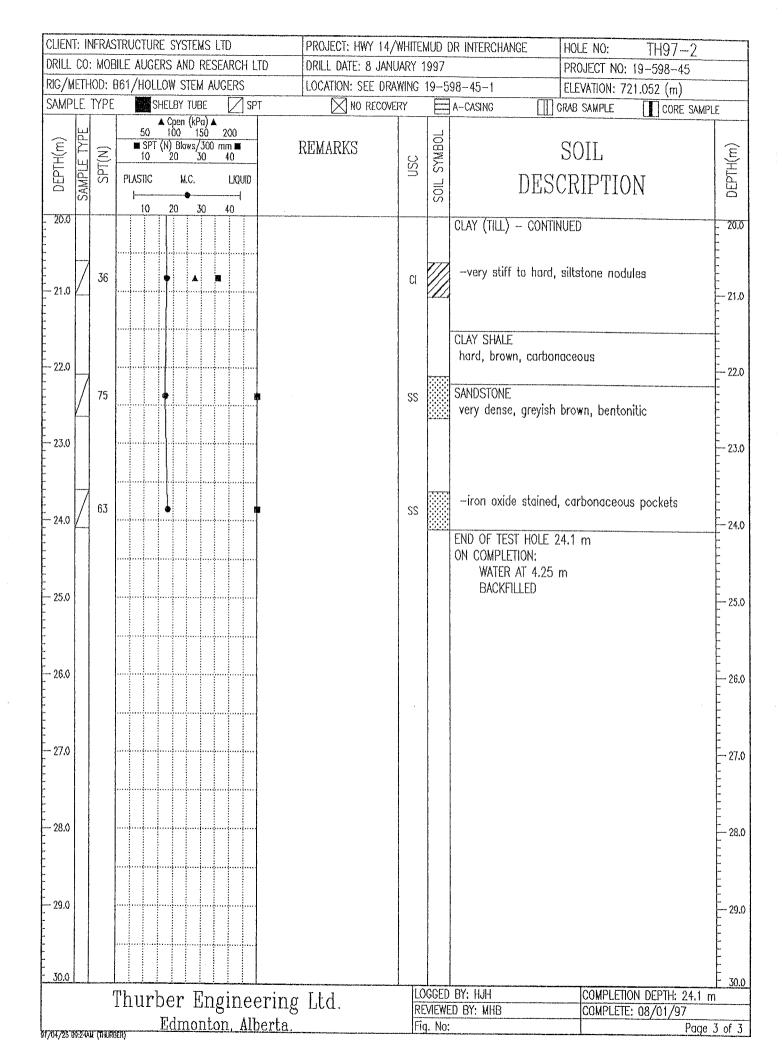


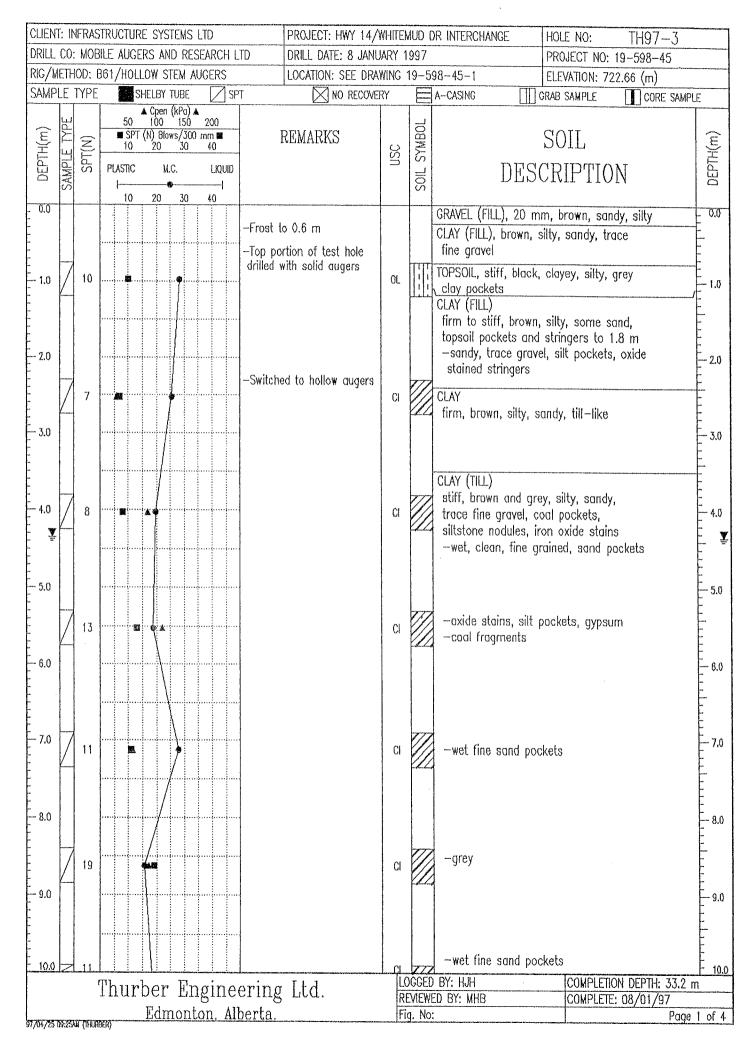


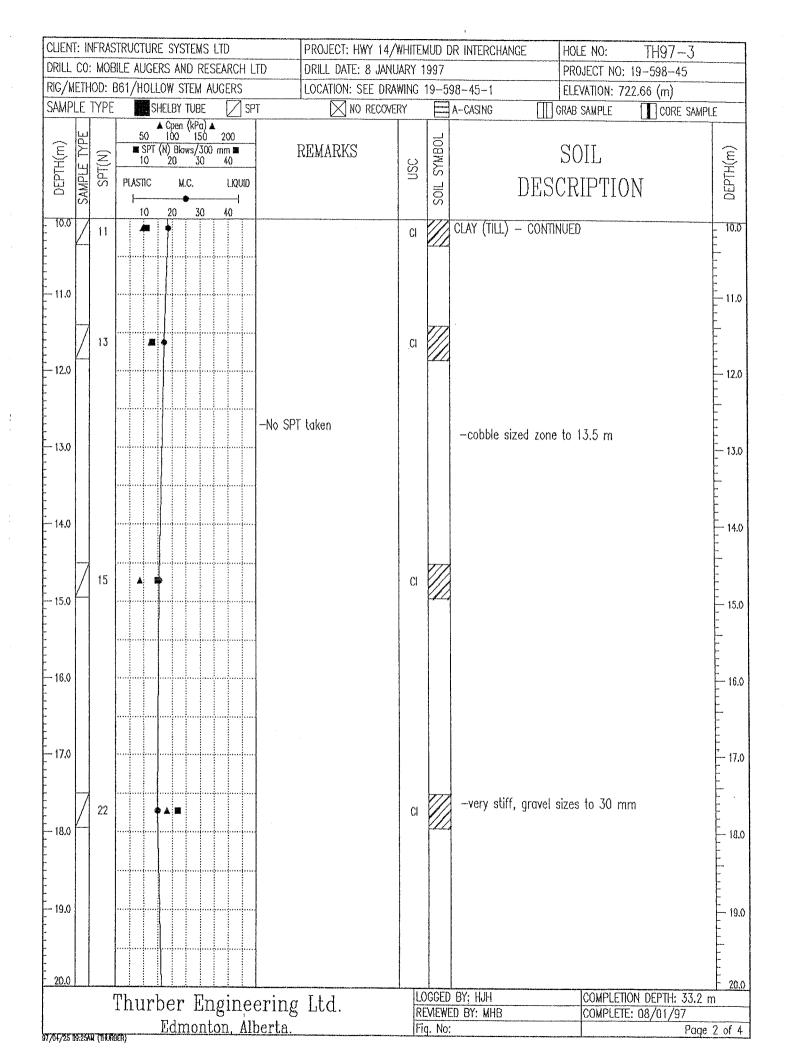


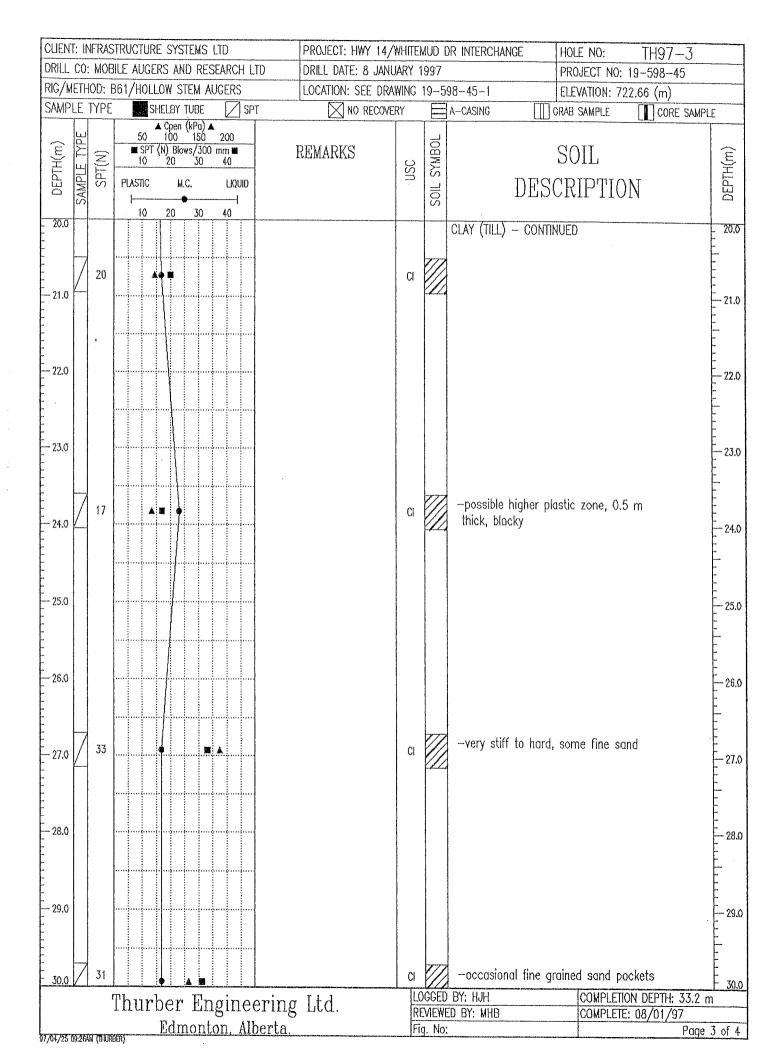


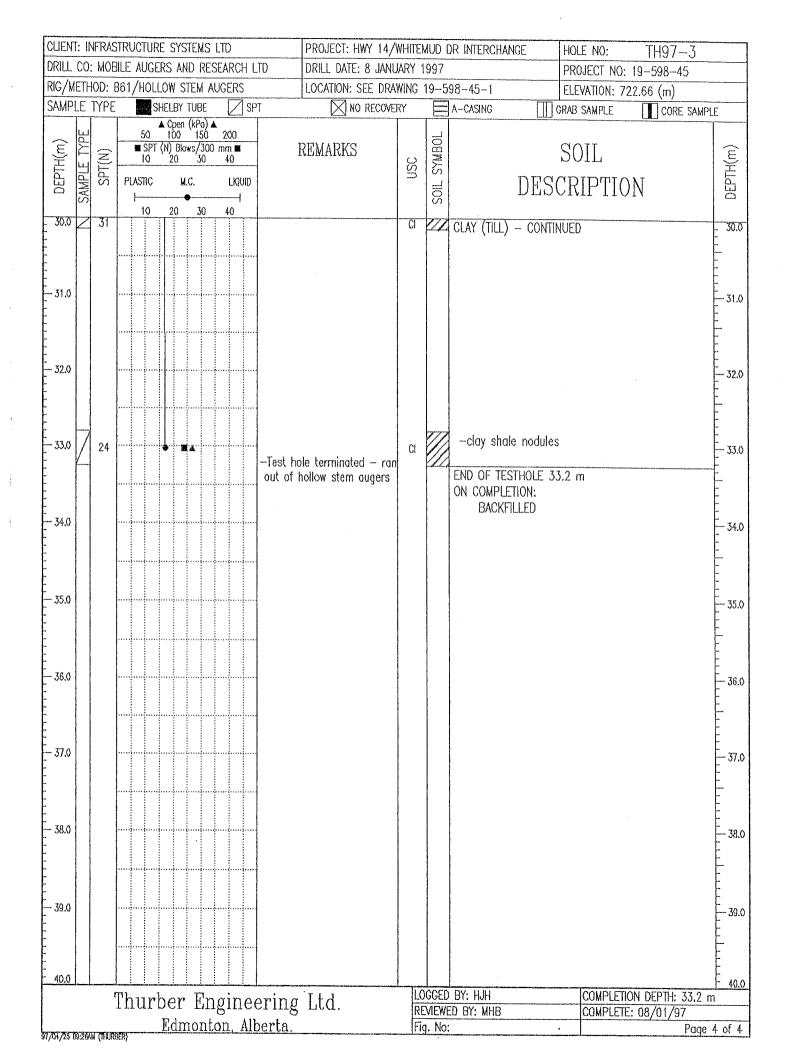


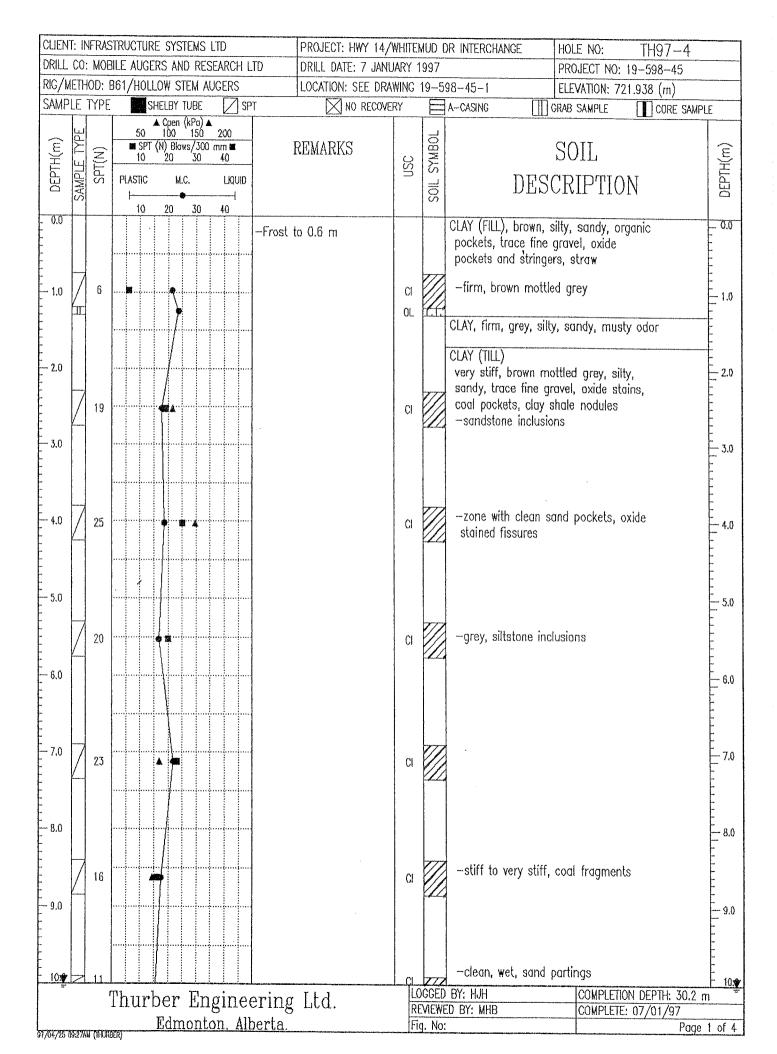


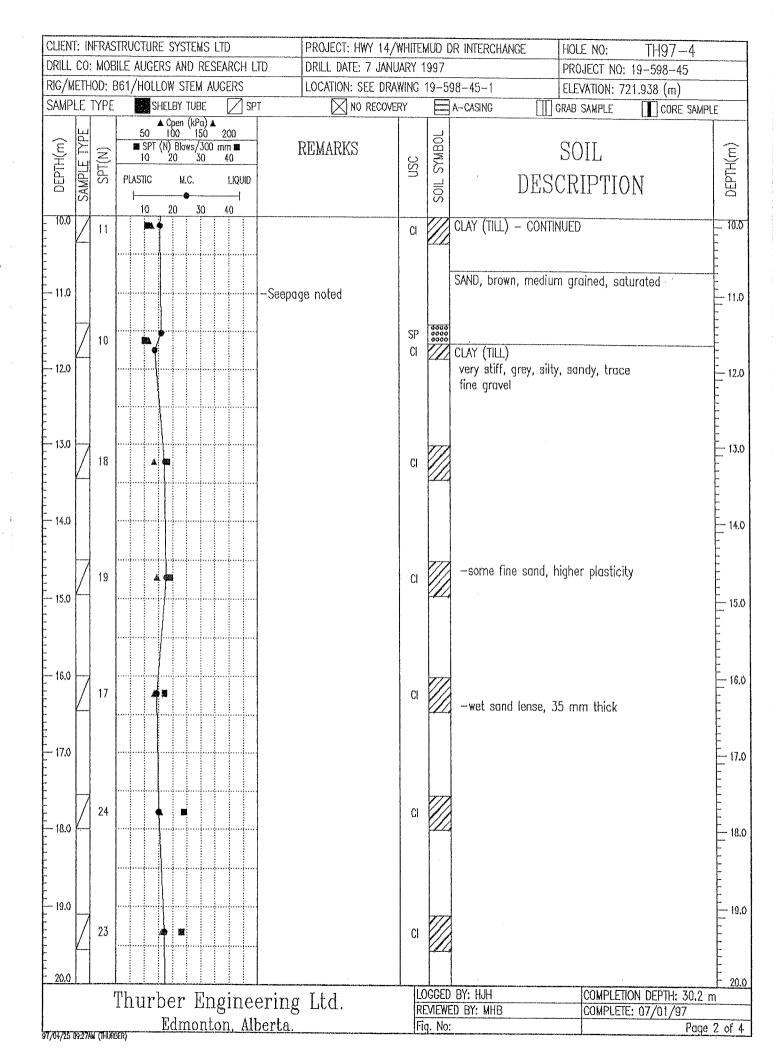


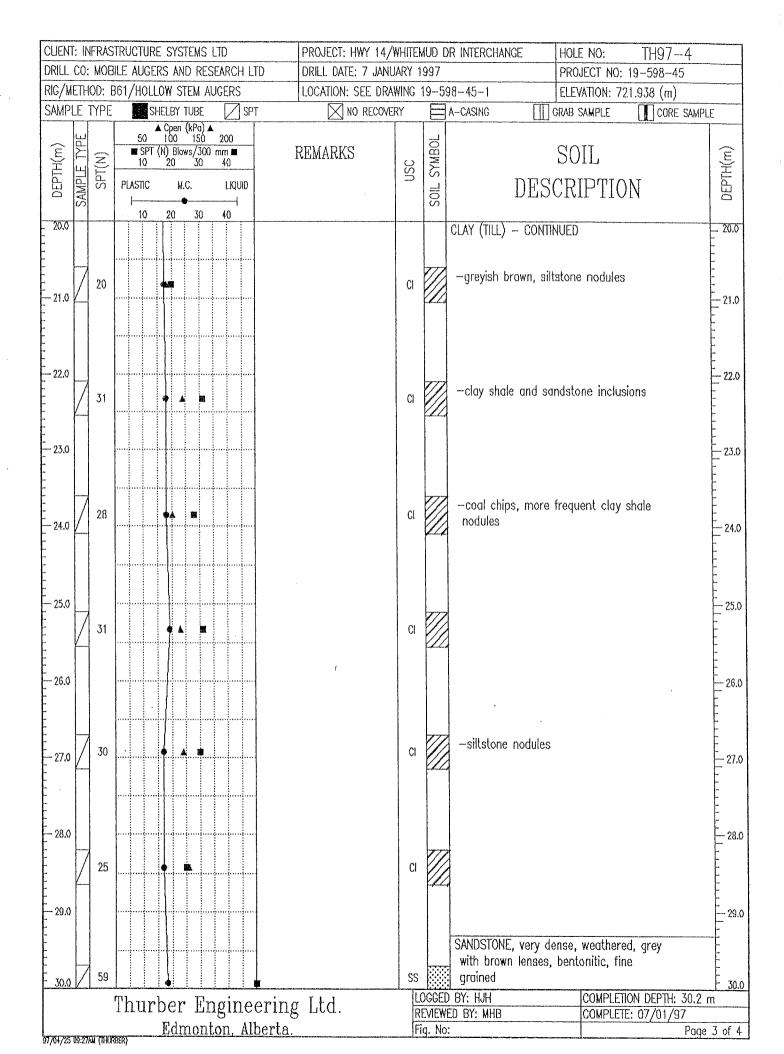


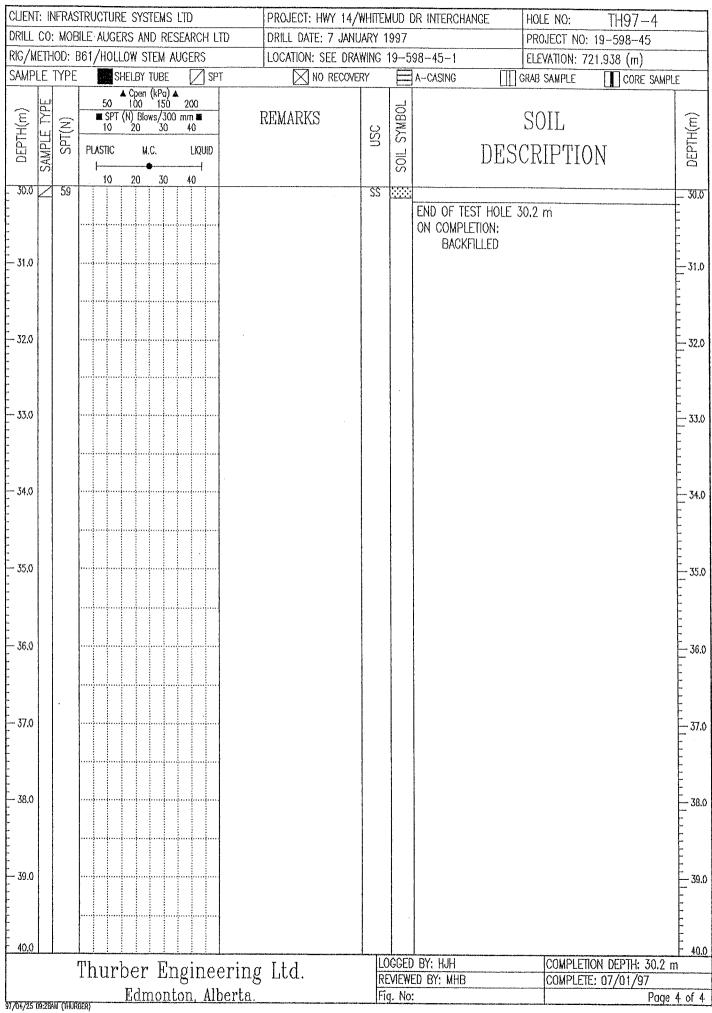


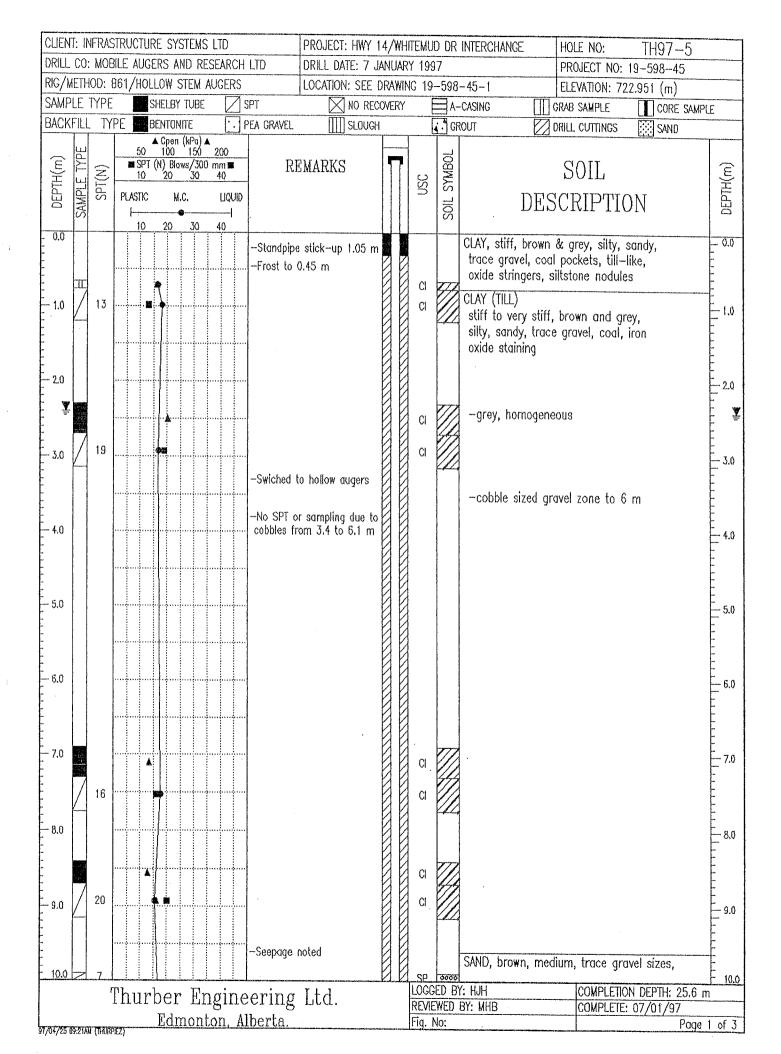


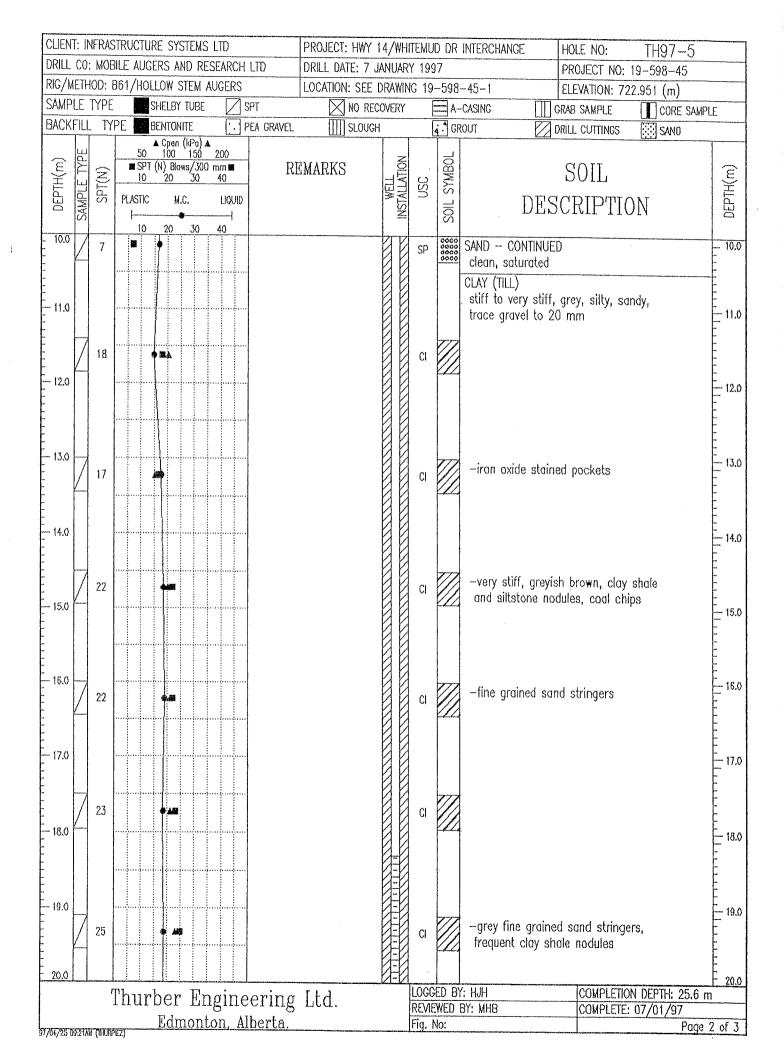


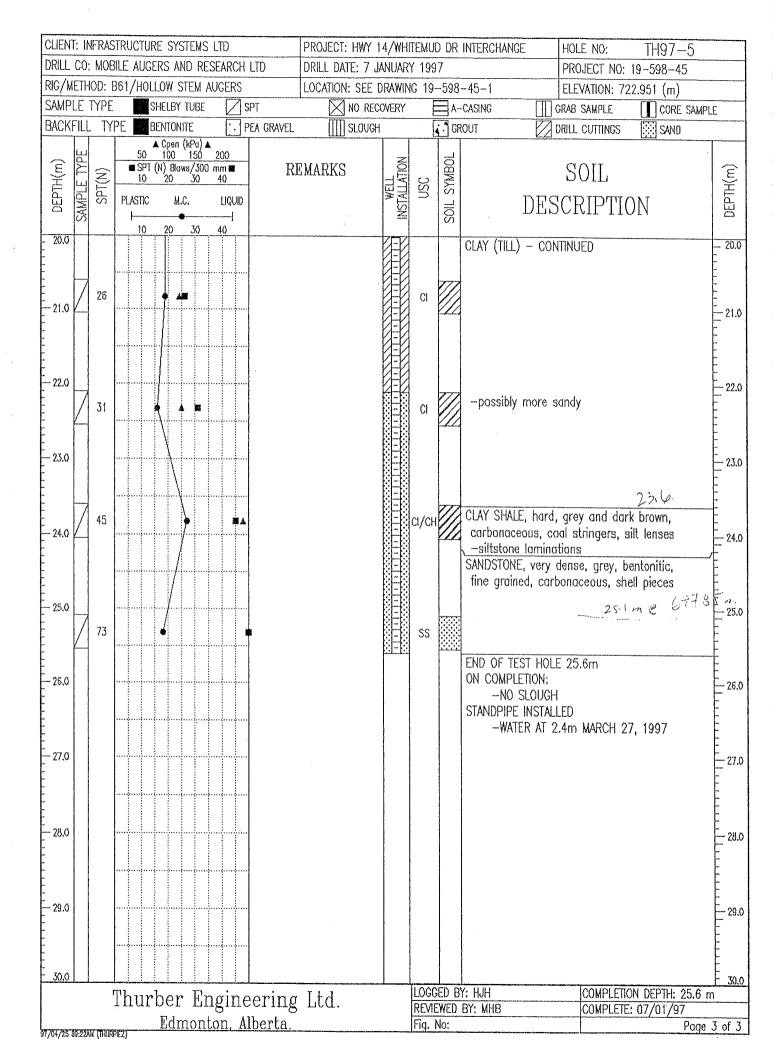

,

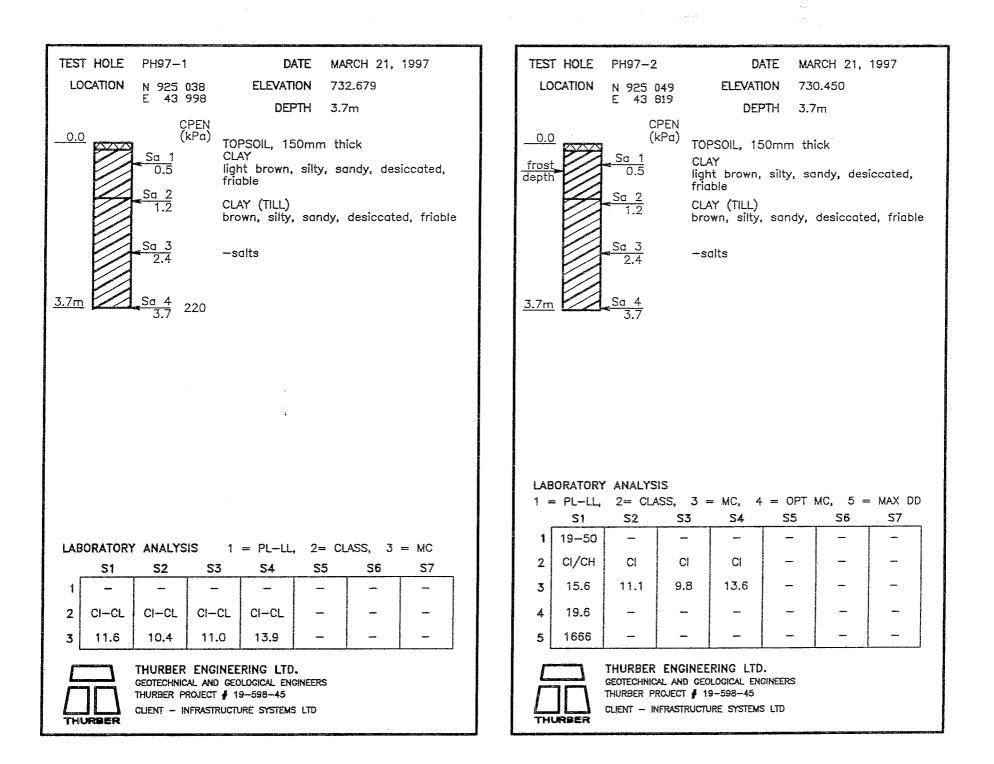


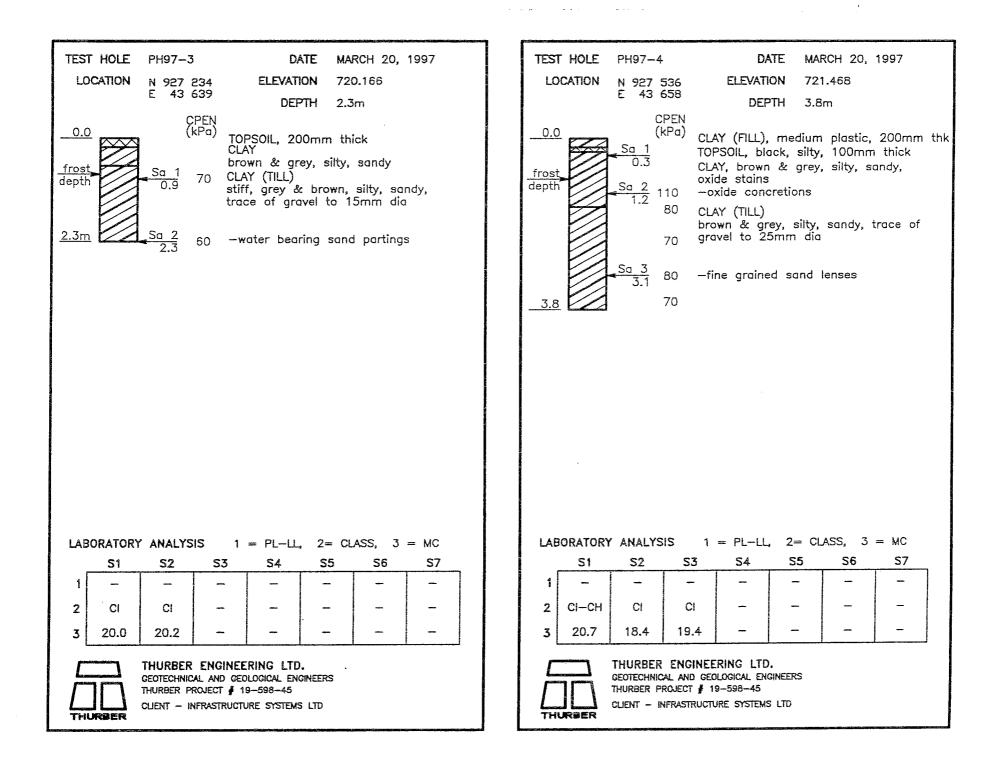


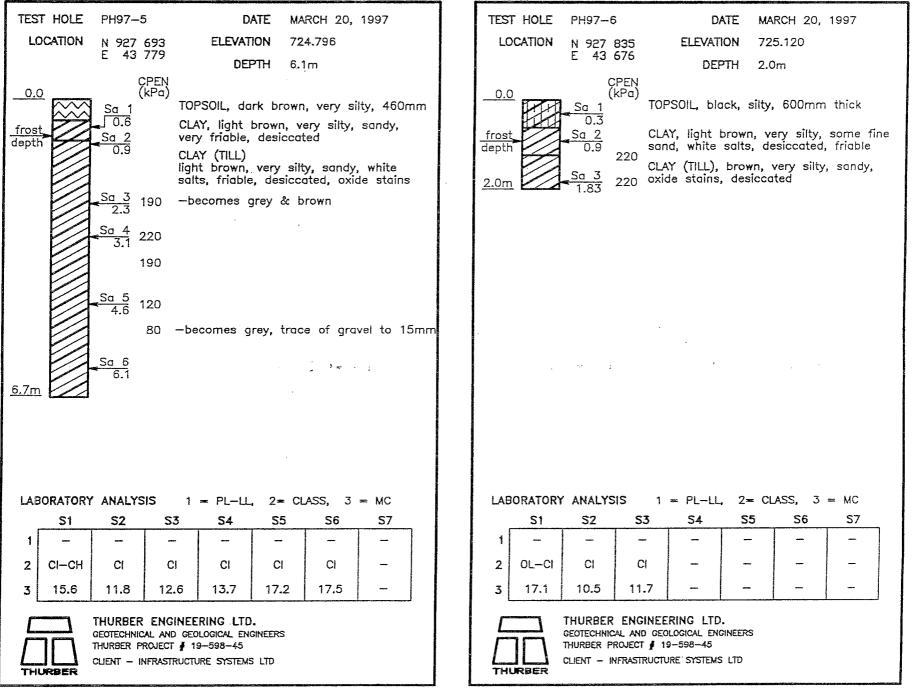


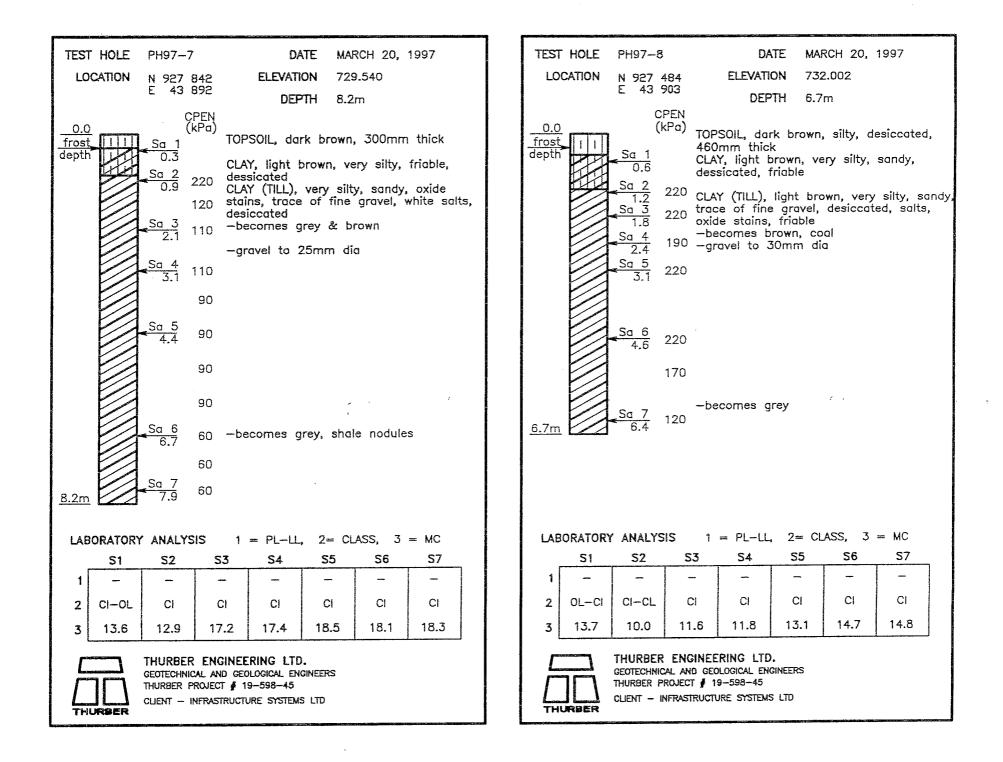


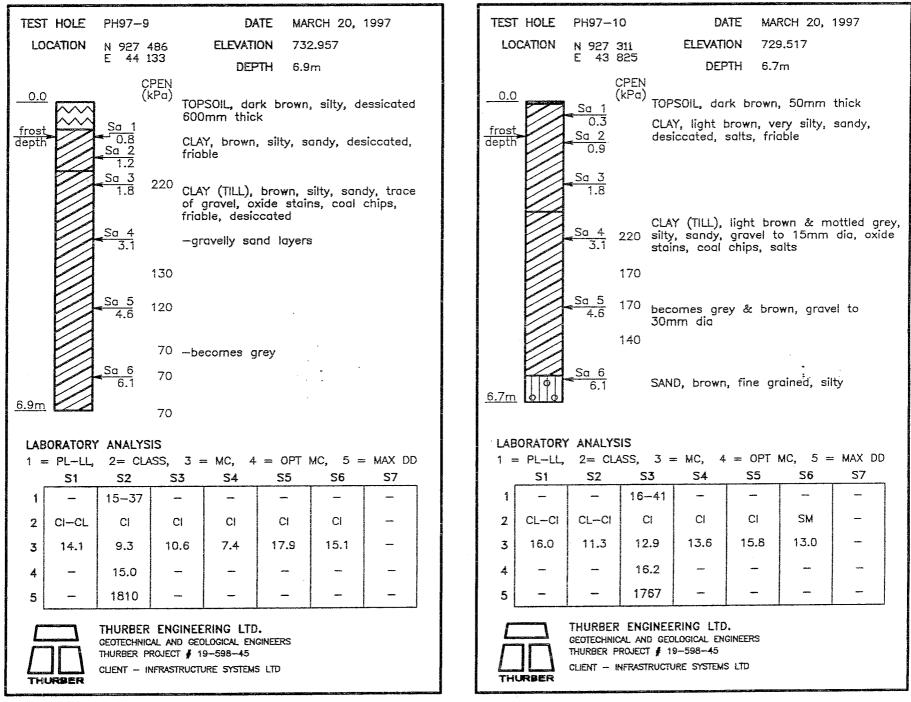




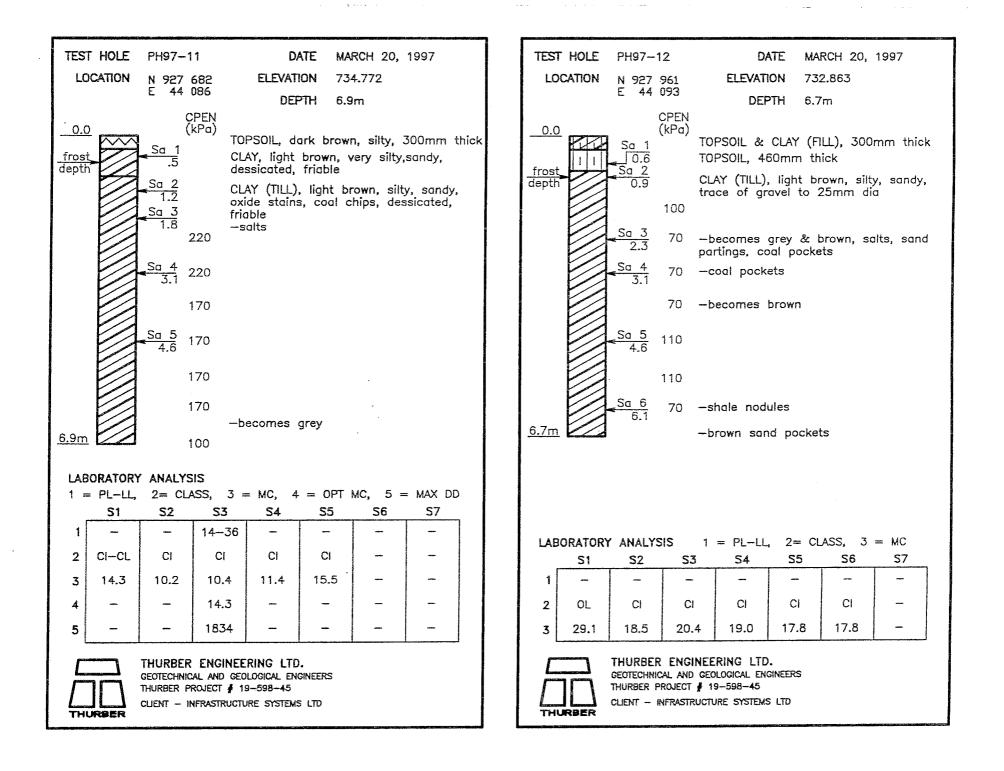


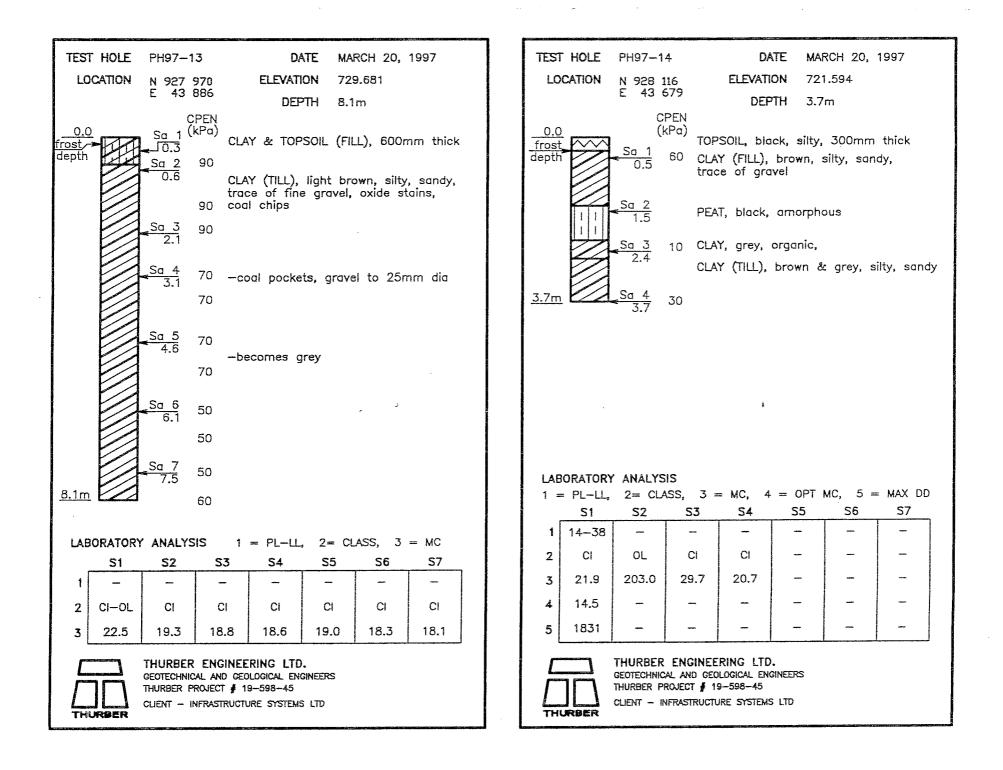


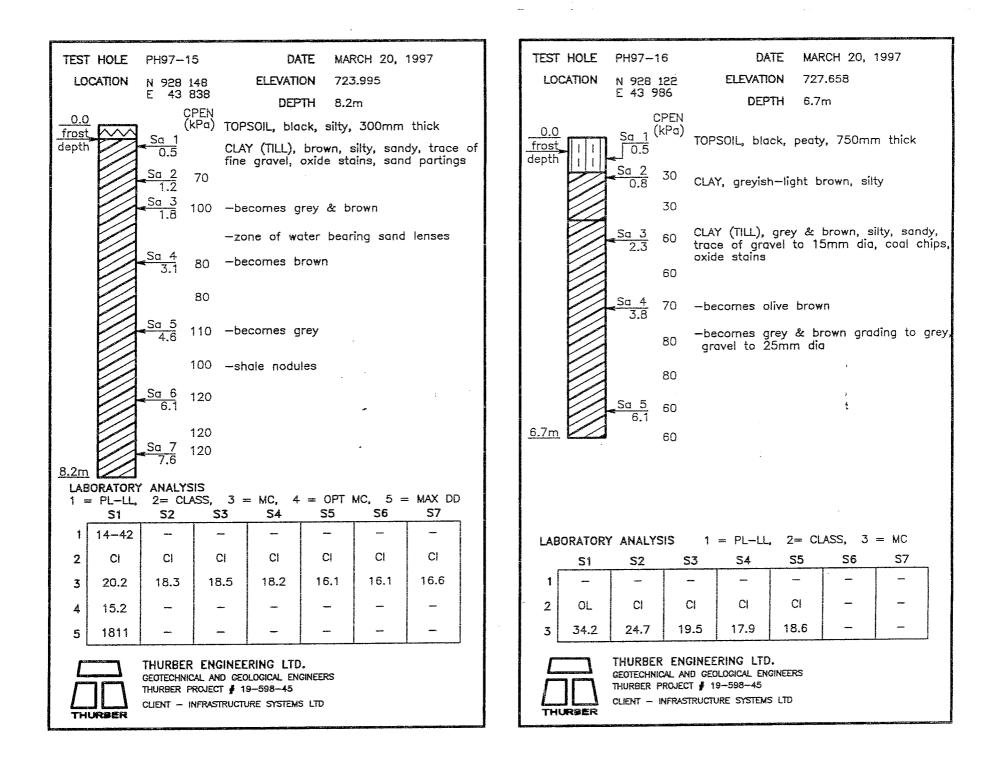


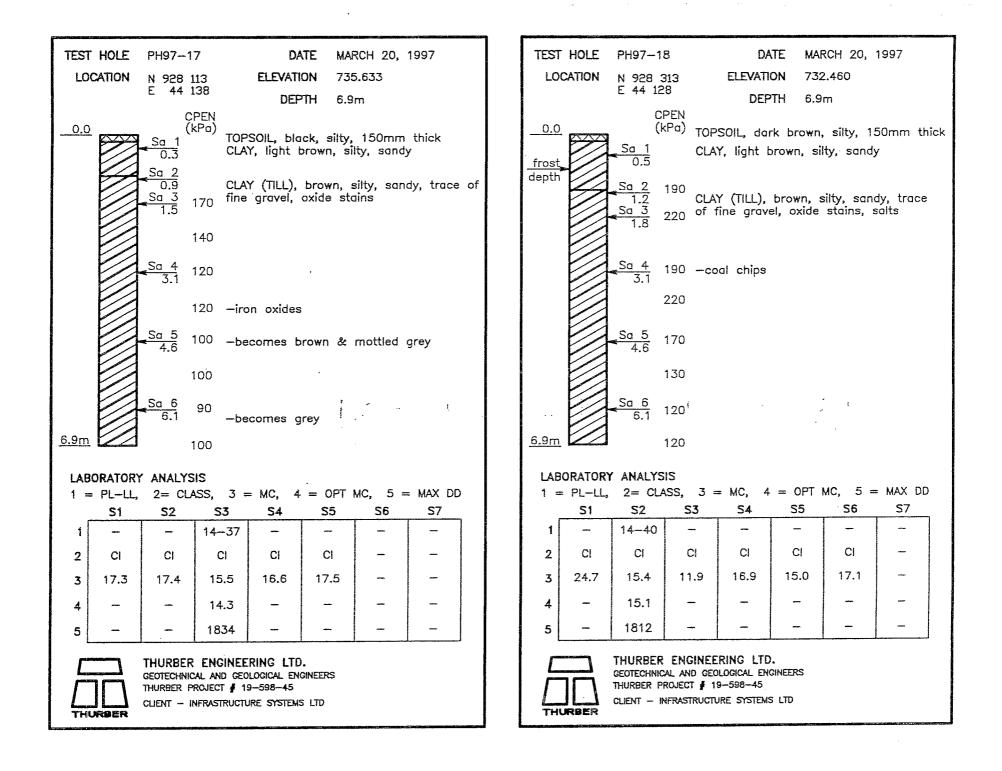

. . . .

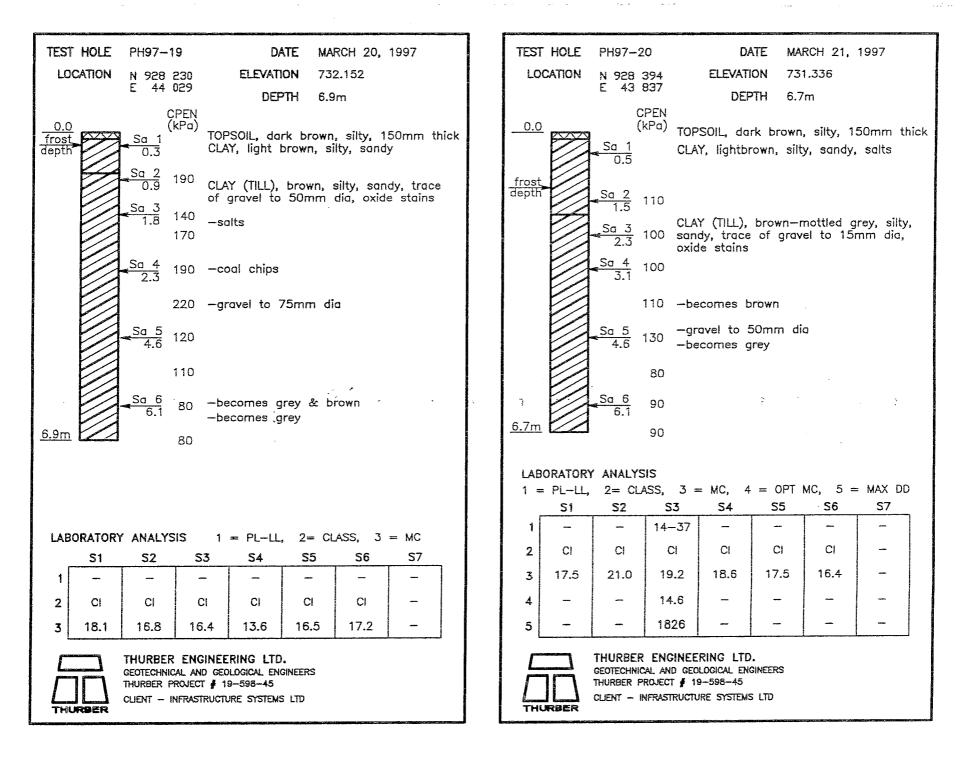
.

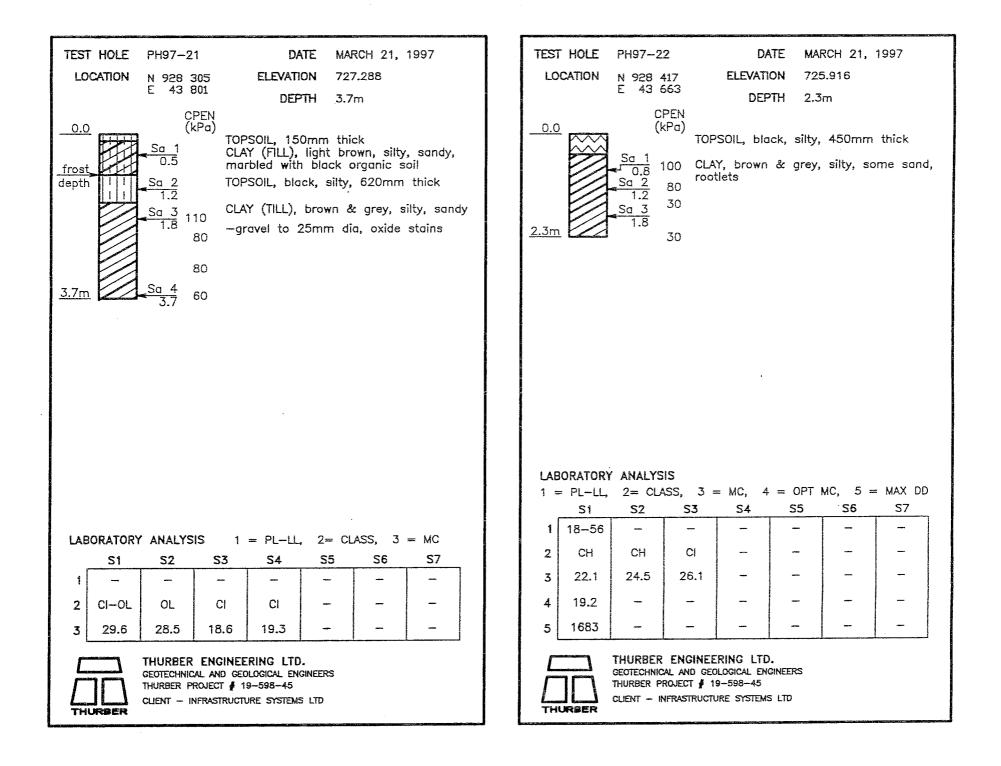


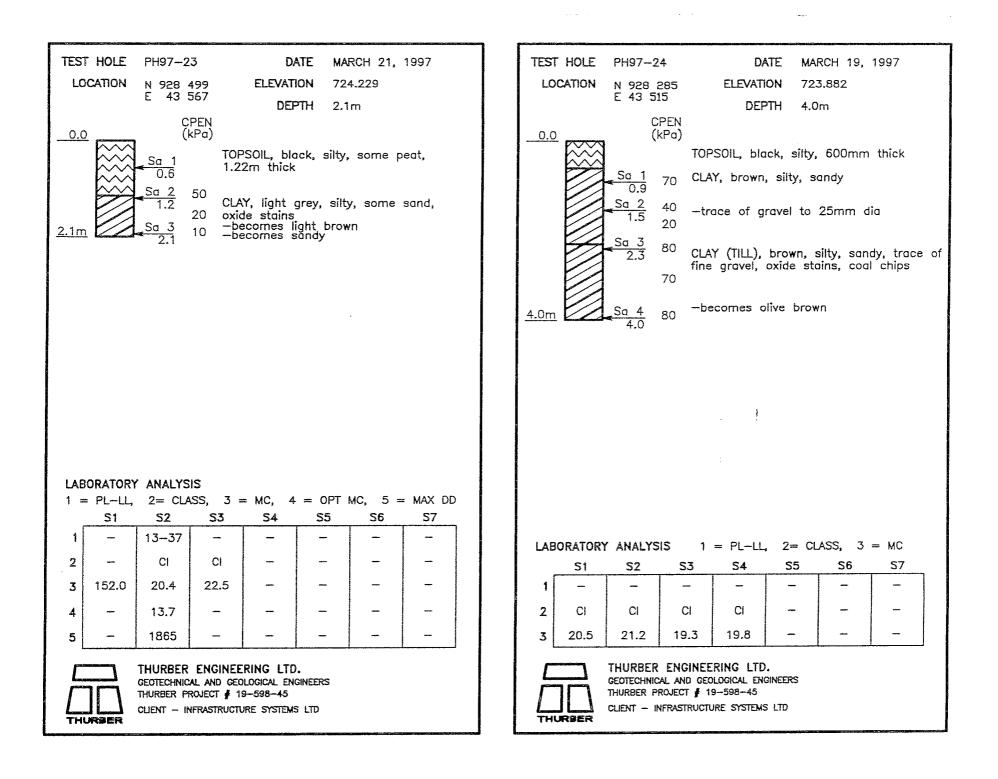


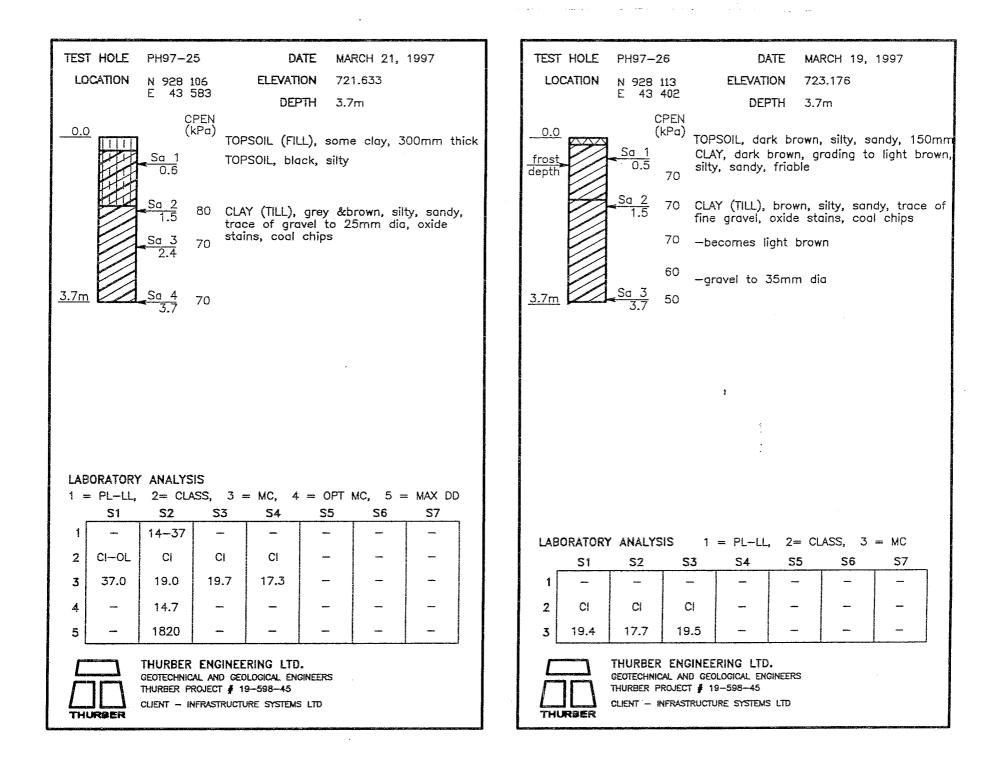


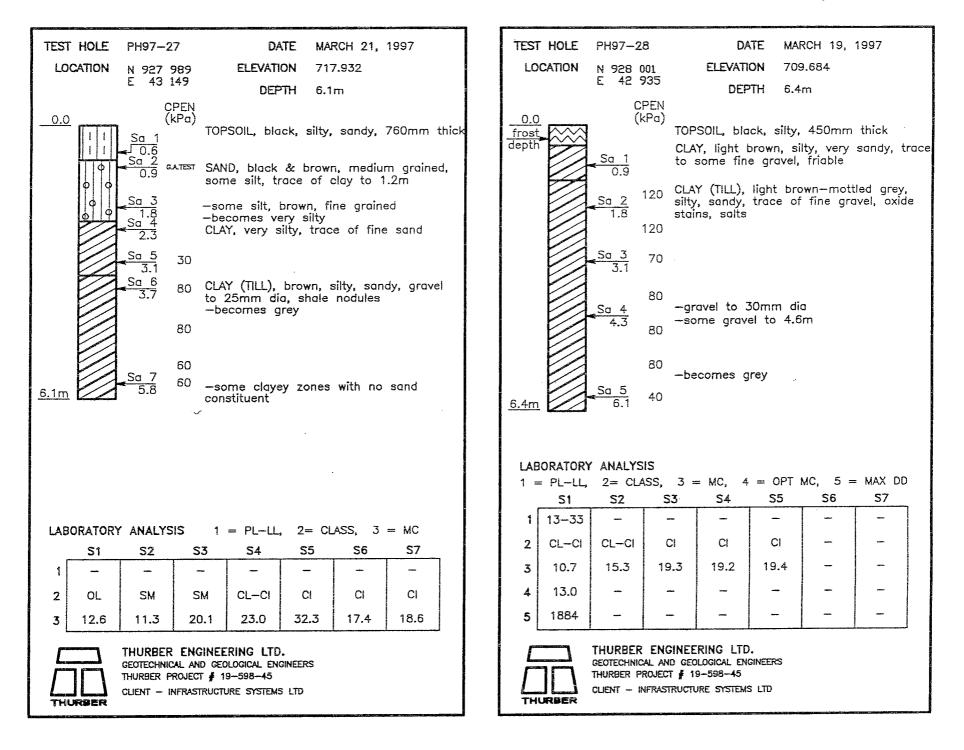


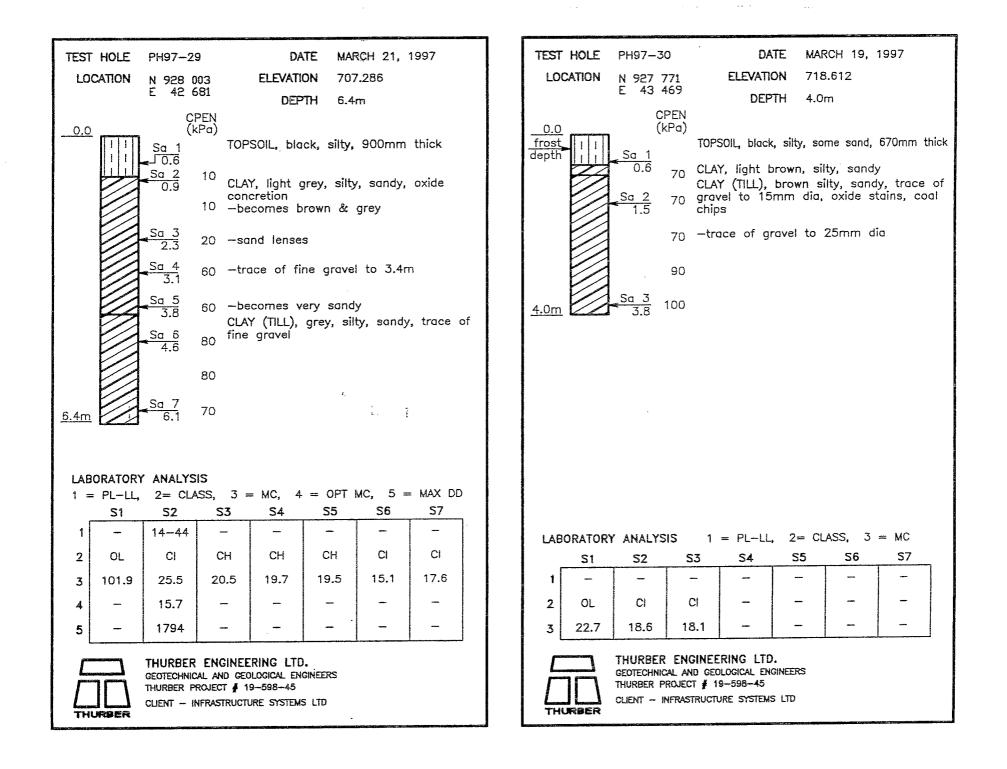

.

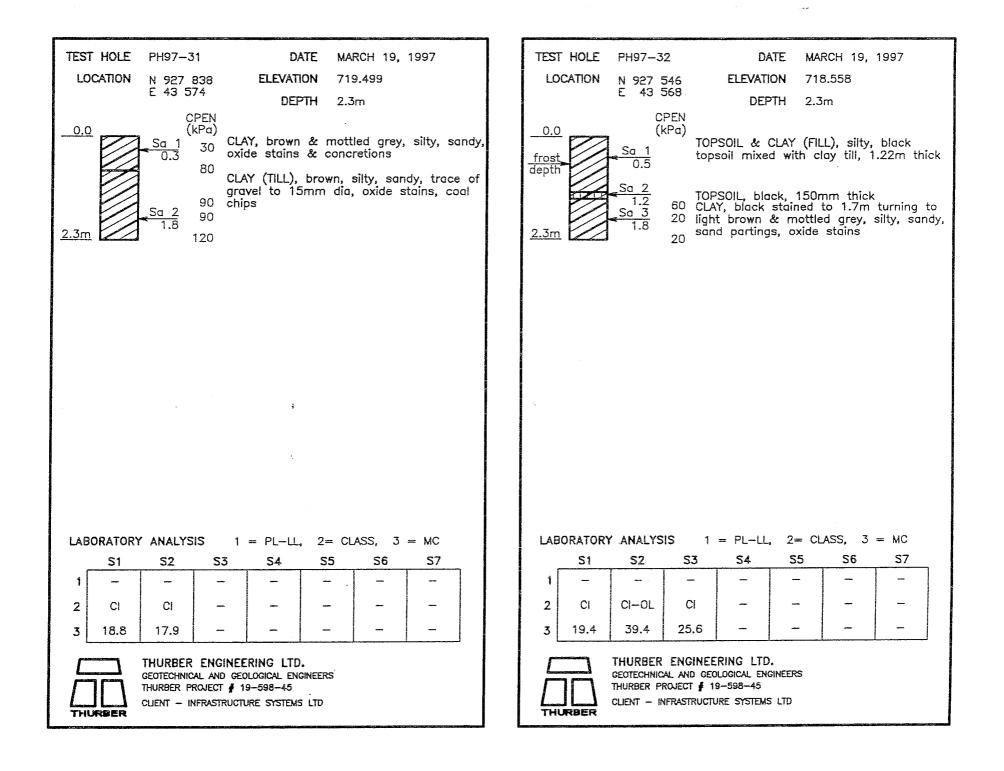


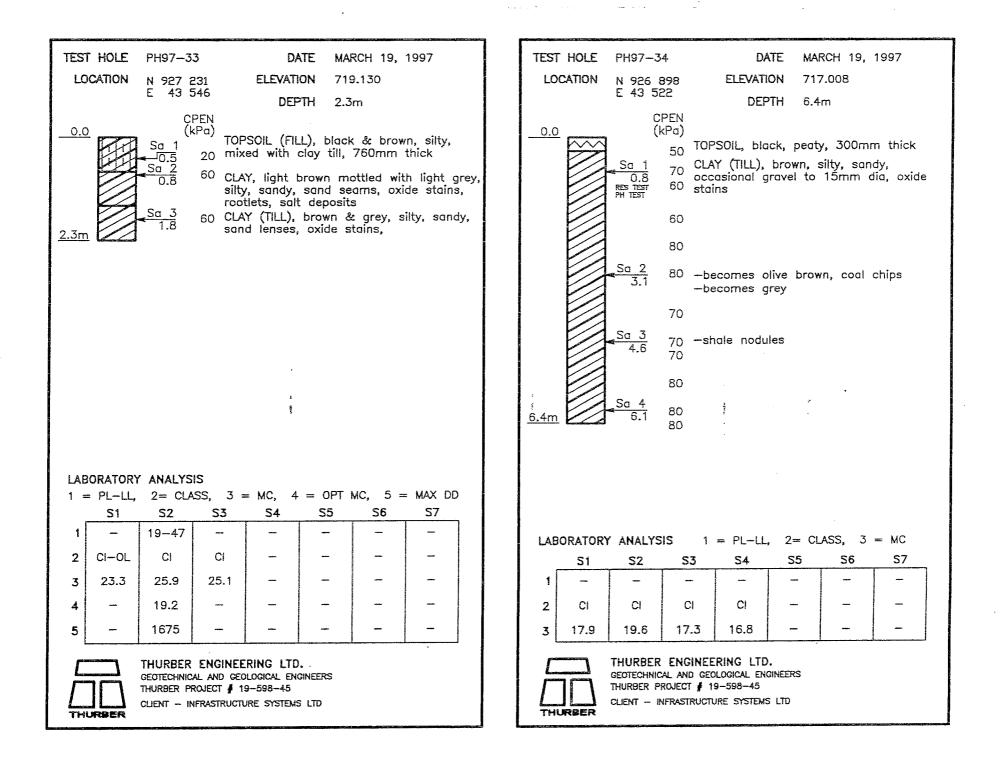




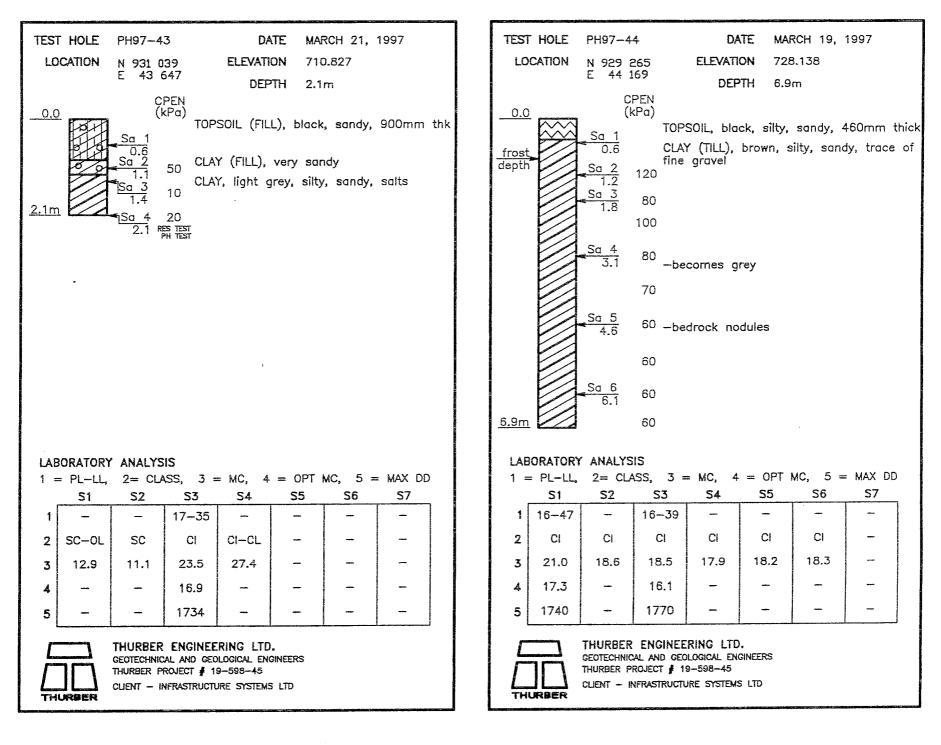






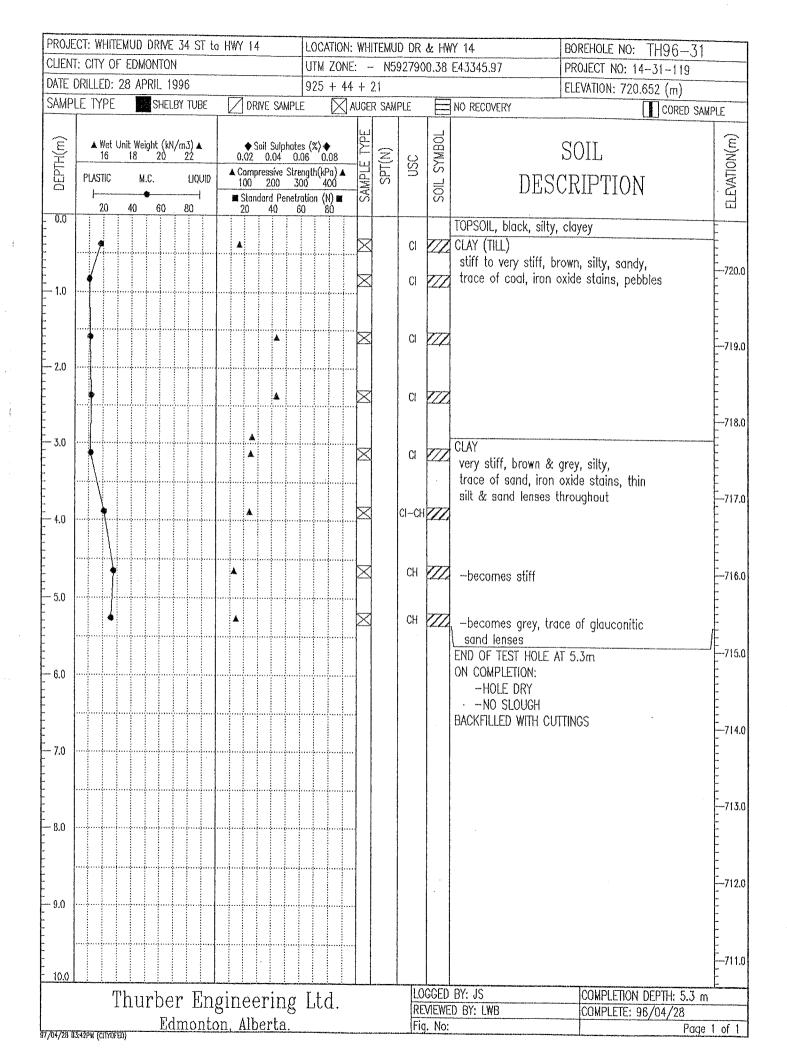


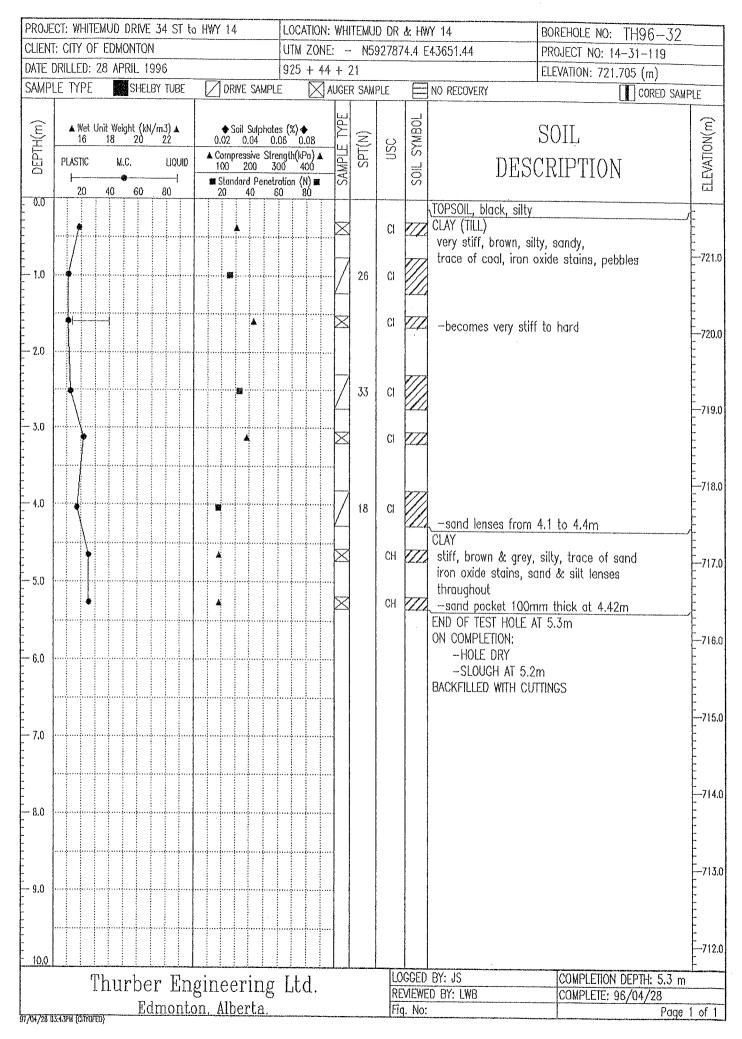
. .



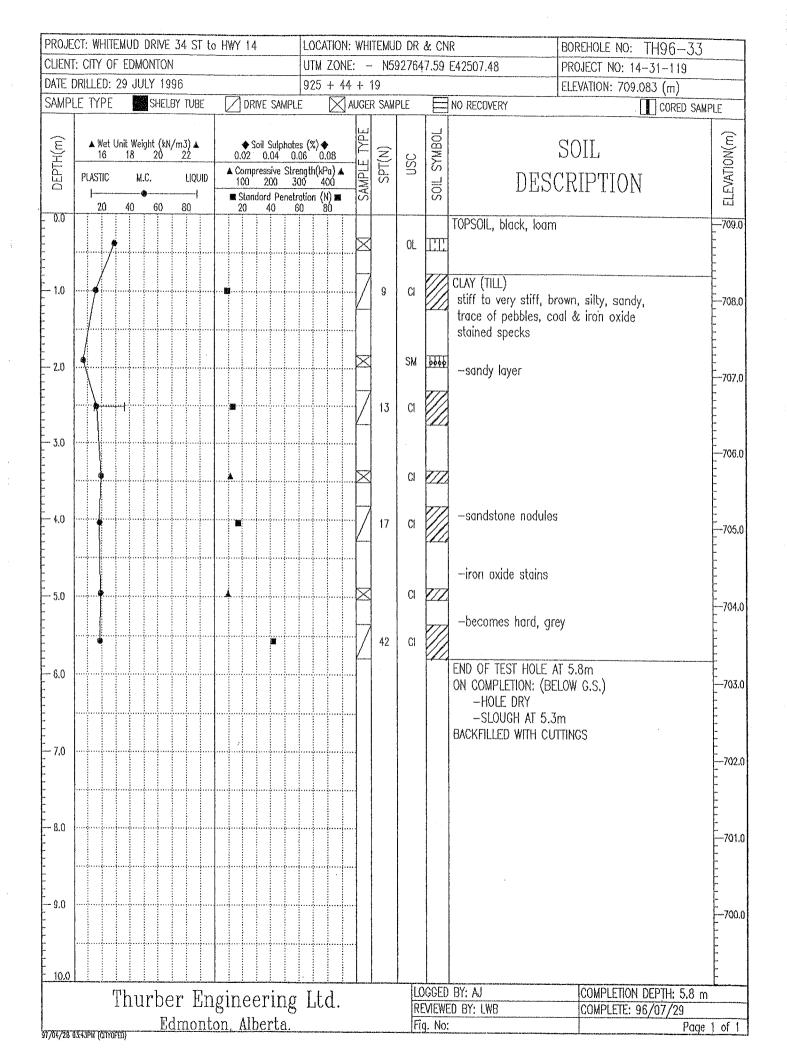
LOCA	HOLE	PH97-35 N 929 43 E 44 98	8	DAT ELEVATIO DEPT	N 735	RCH 21, 5.782 3m	1997		HOLE	PH97-36 N 929 4 E 44 6	35	ELEVAT		RCH 21, 7.658 Im	1997
0.0 2.3m		Sa 3 1.5 2	'a) PEA 900 10 CLA orac	AT, black, Omm thick Y, light gr anics to 1 acomes br	fibrous Tey, silty .5m	over am /, sandy,		0.0 frost depth <u>2.1m</u>		CF (k <u>Sa 1</u> 0.5 <u>Sa 2</u> 1.2 <u>Sa 3</u> 1.8	CLA	SOIL, da	rk brown brown, v		00mm thic sandy
		ANALYSIS		- MC - A	= 0PT										
	PL-LL,	2= CLASS				66	S7								
		2= CLASS 52	S, 3 = S3 -	S4	S5 -	S6									
	PL-LL, 	2= CLASS	S3	S4		-	-	LAB		Y ANALYSI		= PL-LL		LASS, 3	
1 = f 1 2 P	PL-LL, <u> S1</u> - rT-OL	2= CLASS 52 17-41 CI	S3 -	S4	 	-			ORATOR	Y ANALYSI S2	S 1 S3 -	= PL-LL S4	, 2= Cl S5	LASS, 3 <u>56</u> –	= MC S7
1 = f 1 2 P	PL-LL, 	2= CLASS 52 17-41 CI	S3 - CI	S4 - Cl	 			1					S5		
	PL-LL, <u> S1</u> - rT-OL	2= CLASS S2 17-41 Cl 33.0	S3 - CI	S4 - Cl					<u>S1</u>	S2	<u>53</u> -		S5		

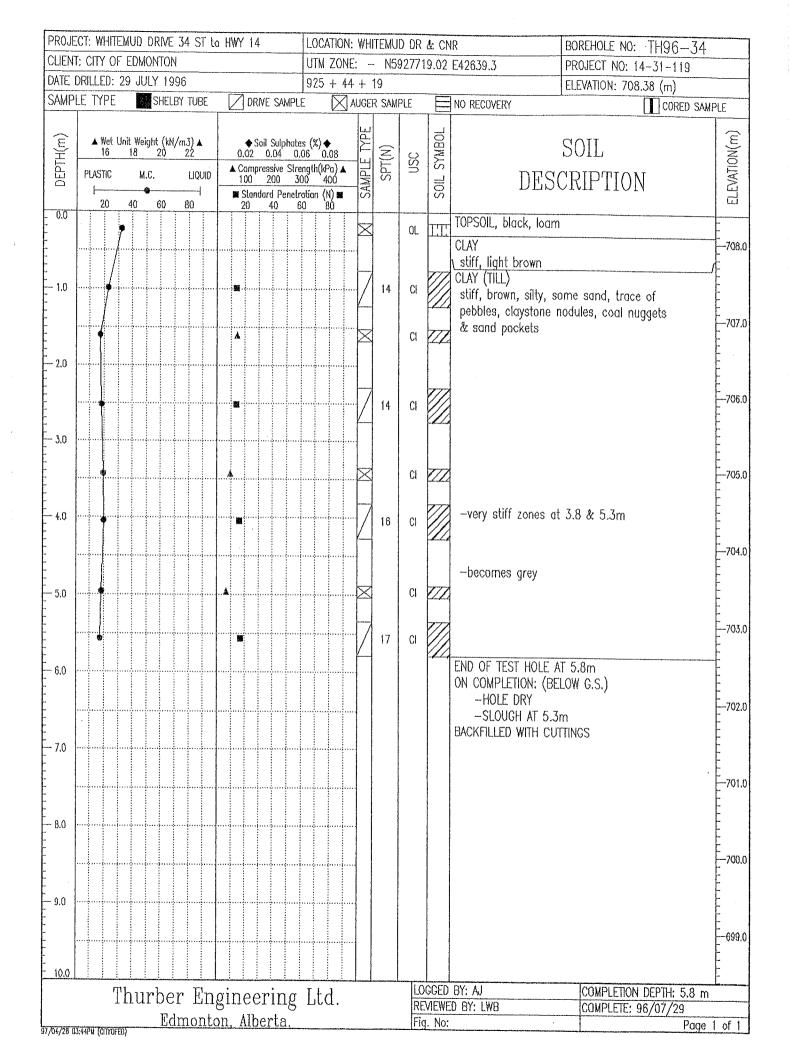
and a second
	na an a		energie werd werden 1995 in der eine		5			an and the second tensor second tensor				40000320
TEST HOLE	PH97-37	DATE	MARCH 21,	1997	TEST	HOLE	PH97-38	DAT	E MAR	CH 19,	1997	
LOCATION	N 929 435	ELEVATION	728.385		LO	CATION	N 929 568	ELEVATIO	N 720	.493		
	E 44 209	DEPTH	2.1m				E 43 776	DEPI	H 2.1r	n		
0.0 frost depth 2.1m	Sa 1 0.5 80 Sa 2 1.2 80	TOPSOIL, black, s CLAY (TILL), light trace of gravel t stains, sand lens — becomes brow	silty, 300mm brown, silty, o 15mm dia, es	sandy,	0.0 frost depth 2.1m		CPEN (kPa <u>5a 1</u> <u>1.2</u> 80 <u>5a 3</u> 80 <u>1.8</u> 80	N) TOPSOIL, black CLAY (TILL), b sandy, trace (k, silty, rown &	150mm mottled	thick grey, silt	:у,
LABORATORY	ANAI YSIS	1 = PL-LL, 2	= CLASS 3	= MC		ORATORI	ANALYSIS	1 = PL-LL	2= CL4	SS, 3	- MC	
S1			5 S6	s7		S1		S3 S4	S5	S6	S 7	
1 -				_	1		-	- -	-	-	_	
2 CI	ci c	а – -		_	2	CI	СІ	CI –	-		-	
3 17.4		0.5	- -	-	3	20.2	18.8 1	8.8 -	-	-	_	
	GEOTECHNICAL AN	GINEERING LTD. D GEOLOGICAL ENGINEER T # 19-598-45 IRUCTURE SYSTEMS LTD	S				GEOTECHNICAL / THURBER PROJE	IGINEERING LTD. IND GEOLOGICAL ENGII CT ∦ 19-598-45 STRUCTURE SYSTEMS				

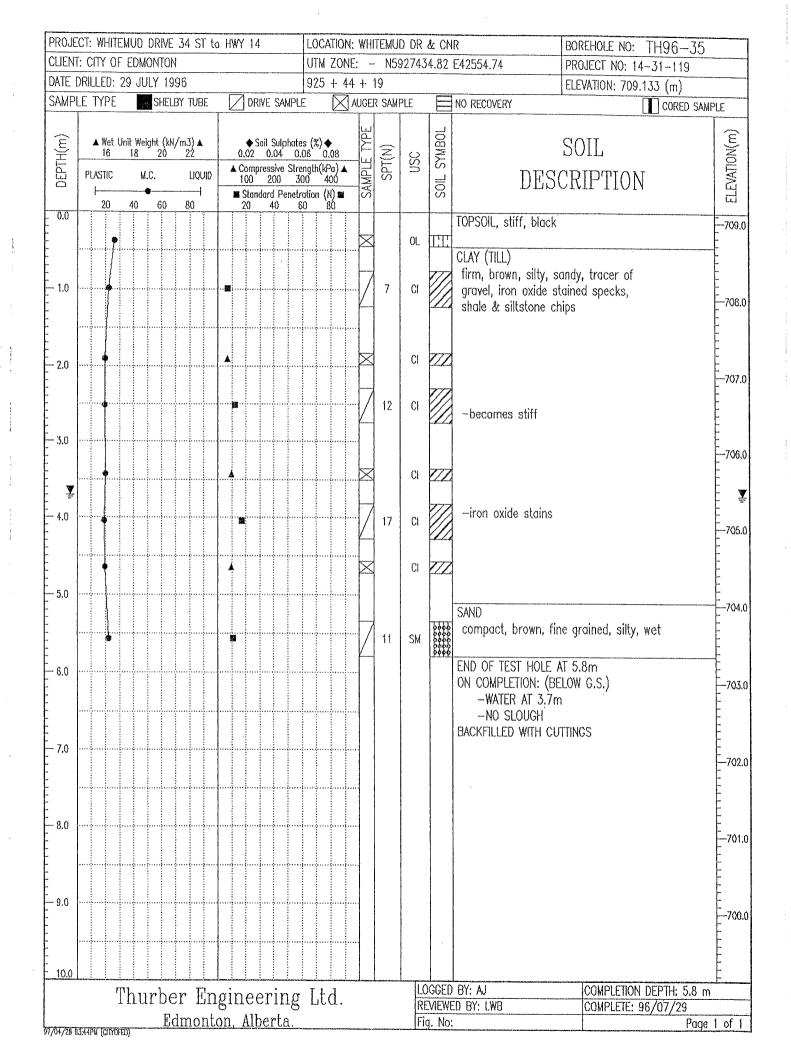

TEST HOLE	PH97-3	39	DA	TE MA	RCH 21,	1997	est hole	PH97-40		DA	\TE		
LOCATION	N 929	583	ELEVATIO		7.301		LOCATION	N 929 73	2	ELEVATI			
	E 43	475	DEP	TH 2.3	βm			E 43 32	6	DEF	rτΗ		
	Sa 1 0.5 Sa 2 1.2 Sa 3 1.5 Sa 4 2.3	CLA oxid TOP	SOIL, blac Y (FILL), le stains SOIL, blac Y, grey &	ck, silty, light bro ck, silty	300mm own, silty	r, sandy,			NO	PERMISSI		DRILL	
LABORATO 1 = PL-LI S1				= 0PT S5	MC, 5 = S6	≖ MAX DD S7							
1 -	 	15-41	54			-							
2 CI-OL	OL	CI	СН	_	_	_	_ABORATOR S1	Y ANALYSIS S2	1 S3	= PL-LL S4	, 2= Cl S5	LASS, 3 S6	= MC S7
3 23.5	90.8	21.5	28.7	-	_	_	1 -	-		بد ر 			_
4 -		15.5	_	_	-		2 -	-	_	_	_	-	_
5 –	-	1797	-			_	3 -			_	_	_	_
	GEOTECHNIC THURBER P	AL AND GEO ROJECT 🛔 19	RING LTD. Logical eng 9-598-45 IRE SYSTEMS	INEERS				THURBER E GEOTECHNICAL THURBER PRO CLIENT - INFF	AND GEO JECT # 1	0LOGICAL EN 9-598-45	GINEERS		


TEST HOLE PH97-41 DATE MARCH 21, 1997	TEST HOLE PH97-42 DATE MARCH 19, 1997
LOCATION N 929 867 ELEVATION 717.026	LOCATION N 931 065 ELEVATION 710.922
E 43 461 DEPTH 2.0m	E 43 381 DEPTH 2.1m
0.0 (kPa) TOPSOIL, black, silty, 300mm thick CLAY (FILL), brown, silty, sandy, trace of gravel 120 Sa 3 TOPSOIL, black, silty 2.0m Sa 4 60 CLAY, grey, silty, sandy, organic stained	$\frac{0.0}{0}$ $\frac{Sa 1}{0.3}$ $\frac{Sa 1}{0.3}$ $\frac{Sa 2}{1.2}$ $\frac{Sa 3}{1.7}$ $\frac{Sa 3}$
LABORATORY ANALYSIS $1 = PL-LL$, $2 = CLASS$, $3 = MC$ S1 $S2$ $S3$ $S4$ $S5$ $S6$ $S71$	LABORATORY ANALYSIS $1 = PL-LL$, $2 = CLASS$, $3 = MC$ S1 $S2$ $S3$ $S4$ $S5$ $S6$ $S71$ $ -2$ SP SP SP $ -3$ 3.7 10.5 24.2 $ -THURBER ENGINEERING LTD.GEOTECHNICAL AND GEOLOGICAL ENGINEERS$
THURBER PROJECT # 19-598-45 CLIENT - INFRASTRUCTURE SYSTEMS LTD	THURBER PROJECT # 19-598-45 CLIENT - INFRASTRUCTURE SYSTEMS LTD

and the second


.


TEST HOLE			DA ⁻		RCH 21,	1997	EST HOLE				ATE		
LOCATION	N 929 (E 44 (265 098	ELEVATIO		9.323		LOCATION			ELEVAT			
			DEPT	TH 6.9)m					DEI	этн		
0.0 epth	<u>Sa 1</u> 0.3 <u>Sa 2</u> 1.2	CLA des ATEST SAN to ATEST —W gra —ba 190 CLA san 170	Y, light bi licated, frid 1.5m ell graded vel to 10n ecomes fin dy, trace	rown, ve able rown, fi zone, s nm dia ne grain prown & of fine	ine grain some sil ed gravel, s	ed, silty t, trace of d grey, silty, oxide stains							
	4.9	110	avel to 25		a, cour i	cuita							
.9m]	70											
LABORATOR	Y ANALYS	IS 1 	= PL-LL, S4	2= CL S5	ASS, 3 S6	= MC 	LABORATOR	Y ANALYS	S S3	54		S6	57
1 –	-	-	-	-	-	-	1 –	-	-	-	-	-	-
2 CL-CI	SM	SW	SM	CI	СІ	СІ	2 –	-	-	-	-	-	-
3 12.2	5.1	4.7	4.1	14.2	16.5	17.3	3 -		_			_	
			ERING LTD.			<u></u>							



-

