

METHODS OF REDUCING COLLISIONS ON

ALBERTA ROADS

PHASE 2: PREPARATION OF APPLICATION GUIDELINES AND IMPLEMENTATION STRATEGIES

FINAL REPORT

NOVEMBER 2010

METHODS OF REDUCING COLLISIONS

ON ALBERTA ROADS

PHASE 2: PREPARATION OF APPLICATION GUIDELINES AND IMPLEMENTATION STRATEGIES

FINAL REPORT

November 2010

Opus International Consultants (Canada) Limited

308 - 809 Manning Road N.E. Calgary, AB, T2E 7M9 Telephone: (403) 207 6000 Facsimile: (403) 207 6045 www.opusinternational.ca

Our File: F-00087

ACKNOWLEDGEMENTS

The study on "Methods of Reducing Collisions on Alberta Roads" was directed by a Steering Committee comprised of the following members:

Richard Chow, Alberta Transportation (Chair) Bill Kenny, Alberta Transportation Muhammad Imran, Alberta Transportation Corinna Mulyk, Alberta Transportation Alex Tahmazian, City of Calgary Asif Iqbal, City of Edmonton Ron Yanitski, Strathcona County

The study was conducted under the authority of the Engineering Committee of the Alberta Traffic Safety Plan:

Bill Kenny, Alberta Transportation (Chair) Stu Becker, Alberta Transportation Jeannette Espie, Alberta Transportation Ron Yanitski, Strathcona County Dr. Tony Qiu, Professor, University of Alberta Asif Iqbal, City of Edmonton Mavis Johnson, Canadian Traffic Safety Institute Dr. John Morrall, Professor Emeritus, University of Calgary, Canadian Highways Institute Don Szarko, Alberta Motor Association Dwight Brown, City of Medicine Hat Marlene Anderson, Alberta Transportation Janis Fong, Genivar Alex Tahmazian, City of Calgary Richard Chow, Alberta Transportation Randy Youngman, Alberta Transportation Sue Welke, Alberta Urban Municipalities Association Muhammad Imran, Alberta Transportation Bill Rogan, Alberta Association of Municipal Districts and Counties

The Opus International Consultants team consisted of:

Sarah Rocchi, Project Director Raheem Dilgir, Project Manager Jeffrey Bagdade Cory Wilson Joanna Domarad Kanny Chow Margaret Gibbs Jesse Arsenault Gregory Ablett Katherine Coutts Dr. Darren Walton, Opus Central Laboratories Dr. Tarek Sayed, University of British Columbia Dr. Pat McGowen, Western Transportation Institute

THIS PAGE WAS LEFT INTENTIONALLY BLANK.

TABLE OF CONTENTS

EXECUTIVE SUMMARY

1.0	INTRO	DDUCTION	1
	1.1 1.2 1.3	Study Background Study Objectives Study Phases and Tasks	1 2 2
2.0	HIGHL	_Y EFFECTIVE MEASURES	4
	2.1 2.2 2.3	Alberta Road Agency Survey List of Measures by Context Basic Application Guidance	4 5 7
		Speed Related Collision Reduction Measures Unsignalized Intersection Collision Reduction Measures Signalized Intersection Collision Reduction Measures Run-Off-Road Movements Collision Reduction Measures Roadways (Links) Collision Reduction Measures Vulnerable Road Users Collision Reduction Measures	9 15 23 33 43 51
3.0	DETA	ILED APPLICATION GUIDELINES	. 57
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Gateway Treatments Variable Speed Limits Conversion of Stop-controlled Intersections to Roundabouts Positive Offset Left-turn Lanes Protected-only Left-turn Phasing High-tension Cable Barrier Systems Removal of Fixed Objects Pedestrian Countdown Signals	61 93 107 125 141 157 191 209
4.0	EVAL	JATION OF BENEFITS AND COSTS	225
	4.1 4.2 4.3	Collision Reduction Estimates Cost Estimates Benefit-Cost Estimates	225 226 230
5.0	IMPLE	MENTATION STRATEGY	235
	5.1 5.2 5.3 5.4 5.5 5.6	Approach Quick Wins 1-7 Year Strategies 7-20 Year Strategies Legislation, Education and Enforcement Monitoring and Evaluation	235 237 238 240 240 242

6.0	NEXT	STEP AND POSSIBLE FURTHER WORK	245
	6.1	Next Steps	245
	6.2	Possible Further Work	246

APPENDIX A	ROAD AGENCY SURVEY
APPENDIX B	BENEFIT AND COST CALCULATIONS
APPENDIX C	BCR CALCULATIONS

LIST OF FIGURES

FIGURE 1.1 STUDY PHASES OVERVIEW		3
FIGURE 3.1 GATEWAY TREATMENT		61
FIGURE 3.2 VISUAL ROAD NARROWING THROUGH HAT	CHING AND PAINTED MEDIANS	64
FIGURE 3.3 PHYSICAL ROAD NARROWING USING RAISE	D MEDIAN	64
FIGURE 3.4 ROADSIDE VERTICAL ELEMENTS		64
FIGURE 3.5 DUAL SPEED LIMIT SIGNS		64
FIGURE 3.6 ILLUMINATION AND DECORATIVE WELCOM	E SIGN	65
FIGURE 3.7 OVERHEAD ELEMENTS SPANNIG ROADWA	Υ	65
FIGURE 3.8 ILLUMINATION, SURFACE TREATMENT,	ROADSIDE VERTICAL ELEMENTS,	PHYSICAL AND
VISUAL ROAD NARROWING		
FIGURE 3.9 CURB EXTENSIONS WITH VEGETATION		
FIGURE 3.10 OPTICAL WIDTH TO DISCOURAGE SPEED		82
FIGURE 3.11 SPEED LIMIT SIGN DISPLAY OPTIONS		
FIGURE 3.12 LAYERED LANDSCAPING		85
FIGURE 3.13 PEDESTRIAN AND CYCLIST PATH TO BYPA	ASS PINCH POINT	
FIGURE 3.14 EXAMPLES OF VARIABLE SPEED LIMIT SIC	3NS	96
FIGURE 3.15 EXAMPLE OF SIGN INFORMING MOTORIST	S OF VSL	101
FIGURE 3.16 POSITIVE OFFSET LEFT-TURN LANE CON	CEPT	125
FIGURE 3.17 DUAL POSITIVE OFFSET LEFT-TURN LANE	(SUBURBAN)	126
FIGURE 3.18 SINGLE POSITIVE OFFSET LEFT-TURN LAI	NE (URBAN)	127
FIGURE 3.19 SINGLE POSITIVE OFFSET LEFT TURN LAI	NE (RURAL)	127
FIGURE 3.20 POSITIVE OFFSET LEFT-TURN LANE DESI	GN	134
FIGURE 3.21 POSITIVE OFFSET DUAL LEFT-TURN LANE	SIGNAGE	135
FIGURE 3.22 TURNING LANE PAVEMENT ARROWS		136
FIGURE 3.23 TURNING LANE GUIDE LINES		136
FIGURE 3.24 SIGNING AND DELINEATION FOR POSITIVI	E OFFSET LEFT-TURN LANES	137
FIGURE 3.25 PROTECTED LEFT-TURN PHASE		141
FIGURE 3.26 DUAL LEFT-TURN LANE WITH A PROTECT	ED-ONLY LEFT-TURN PHASE	143
FIGURE 3.27 SINGLE LEFT-TURN LANE WITH PROTECT	ED-ONLY PHASING	143
FIGURE 3.28 EXAMPLE OF ROADSIDE CABLE BARRIER	IN NEW ZEALAND	159
FIGURE 3.29 MEDIAN CABLE BARRIER: DEERFOOT TRA	AIL, CALGARY	159
FIGURE 3.30 CABLE BARRIER USED TO DISCOURAGE U	JNSAFE LANE CHANGES	160
FIGURE 3.31 CABLE BARRIER APPLICATION GUIDELINE	S FLOW CHART	167
FIGURE 3.32 PEDESTRIAN COUNTDOWN SIGNALS		211
FIGURE 3.33 PEDESTRIAN COUNTDOWN DISPLAY TIMI	NG	
FIGURE 3.34 PEDESTRIAN COUNTDOWN SIGNALS		221

LIST OF TABLES

TABLE 2.1 HIGHLY EFFECTIVE MEASURES BY LAND USE AND SPEED CONTEXT	6
TABLE 3.1 SUMMARY OF COLLISION REDUCTION FACTORS ASSOCIATED WITH GATEWAY TREATMEN	JTS67
TABLE 3.2 SUMMARY OF SPEED REDUCTIONS ASSOCIATED WITH GATEWAY TREATMENTS	
TABLE 3.3 TYPICAL LAND USE AND SPEED RANGES FOR	72
TABLE 3.4 SUGGESTED APPLICATION OF TREATMENTS BY SPEED LIMIT	74
TABLE 3.5 GATEWAY TREATMENTS FOR TRANSITIONS ON UNDIVIDED HIGHWAYS	75
TABLE 3.6 GATEWAY TREATMENTS FOR TRANSITIONS ON DIVIDED HIGHWAYS	
TABLE 3.7 GATEWAY TREATMENTS FOR URBAN – SUBURBAN TRANSITIONS	77
TABLE 3.8 ACCEPTABLE LAND USE AND SPEED RANGES FOR	100
TABLE 3.9 ROUNDABOUT EXAMPLE APPLICATIONS IN ALBERTA	109
TABLE 3.10 RESULTS OF BEFORE-AND-AFTER ANALYSIS OF ROUNDABOUTS	111
TABLE 3.11 AVERAGE COLLISION REDUCTION FACTORS	111
TABLE 3.12 ACCEPTABLE LAND USE AND SPEED RANGES FOR	115
TABLE 3.13 SOCIETAL COLLISION COSTS IN ALBERTA	118
TABLE 3.14 RELATIVE SAFETY BENEFIT OF POSITIVE OFFSET LEFT-TURN LANES WHEN USEI) with
PROTECTED/PERMISSIVE LEFT-TURN PHASING	128
TABLE 3.15 COLLISION REDUCTION FACTORS FOR OFFSET LEFT-TURN LANES	129
TABLE 3.16 TYPICAL LAND USE AND SPEED RANGES FOR POSITIVE OFFSET	132
TABLE 3.17 MINIMUM MEDIAN WIDTH REQUIREMENTS	132
TABLE 3.18 SUMMARY OF COLLISION REDUCTION FACTORS FOR THE INSTALLATION OF PROTECTED	D-ONLY
LEFT-TURN PHASING	144
TABLE 3.19 TYPICAL LAND USE AND SPEED RANGES FOR	147
TABLE 3.20 DOCUMENTED ROADSIDE BARRIER COLLISION REDUCTIONS	161
TABLE 3.21 DOCUMENTED MEDIAN CABLE BARRIER COLLISION REDUCTIONS	162
TABLE 3.22 ACCEPTABLE LAND USE AND SPEED RANGES FOR CABLE BARRIERS	165
TABLE 3.23 EXAMPLE APPLICATIONS	193
TABLE 3.24 REMOVAL OF FIXED OBJECT COLLISION REDUCTION FACTOR	194
TABLE 3.25 ACCEPTABLE LAND USE AND SPEED RANGES FOR REMOVAL OF FIXED OBJECTS	198
TABLE 3.26 FHWA SAMPLE ACTION PLAN	203
TABLE 3.27 IMPLEMENTATION CONSIDERATIONS	206
TABLE 3.28 ACCEPTABLE LAND USE AND SPEED RANGES FOR	216
TABLE 3.29 PRIORITY LOCATIONS FOR PCS RETROFITS	218
TABLE 4.1 LIFE-CYCLE COSTS	227
TABLE 4.2 BENEFITS AND COSTS OF SPEED BELATED COUNTERMEASURES	230
TABLE 4.3 BENEFITS AND COSTS OF UNSIGNALIZED INTERSECTION MEASURES	231
TABLE 4.4 BENEFITS AND COSTS OF SIGNALIZED INTERSECTION MEASURES	232
TABLE 4.5 BENEFITS AND COSTS OF BUN-OFF-BOAD COLLISION COUNTERMEASURES	
TABLE 4.6 BENEFITS AND COSTS OF ROADWAY (LINK) MEASURES	234
TABLE 4.7 BENEFITS AND COSTS OF VULNERABLE ROAD USER COLLISION COUNTERMEASURES	234

THIS PAGE INTENTIONALLY LEFT BLANK

EXECUTIVE SUMMARY

1. Background and Objectives

Alberta Transportation (TRANS) commissioned Opus International Consultants (Canada) Limited (herein referred to as Opus) to investigate and develop engineering strategies to address the collision patterns on all Alberta highways and streets. These roadways are operated by many different road authorities including urban municipalities, rural municipalities, Counties and the Province.

This study, entitled "*Methods of Reducing Collisions on Alberta Roads*" (abbreviated as *MORCOAR*), is intended to help achieve the goals of Alberta Traffic Safety Plan, which includes reducing fatal and serious injury collisions by 30% between the years of 2008-2010 compared to the baseline years of 1996-2001. The Province is currently developing new targets for 2015 to reflect the update to Transport Canada's Road Safety Vision.

The primary objective of this project is to develop proven, cost-effective and innovative engineering strategies to cover the range of land use, roadway and speed environments in Alberta. Seven "objective areas" have been clearly identified:

- Speed Related Collisions;
- Collisions at Unsignalized Intersections;
- Collisions at Signalized Intersections;
- Vehicle-Wildlife Collisions;
- Collisions Along Roadways (Links);
- Run-Off-Road Collisions; and
- Collisions Involving Vulnerable Road Users.

For each objective area, collision reduction strategies are to be developed for both rural and urban situations, for each of the following posted speed categories:

- 50 km/h or less;
- 60 km/h to 70 km/h;
- 80 km/h to 90 km/h; and
- 100 km/h or more.

Phase 1 of MORCOAR identified 33 collision reduction measures as *Highly Effective Measures*, including eight of the most effective (Priority 1), for the development of more detailed guidance. This report documents the Phase 2 findings: including application guidance for these measures, the costs and benefits of each, and a suggested 20-year implementation strategy.

2. Alberta Road Agency Survey

Alberta Transportation and several municipal road agencies were contacted at the outset of Phase 2 to determine the extent to which each of the *Highly Effective Measures* are currently in use, and the effectiveness of each measure within their jurisdiction and whether the application guidance they have is sufficient. This information was used to modify and finalize the list of *Highly Effective Measures*.

3. List of Measures by Context

The 33 *Highly Effective* Measures were divided among the appropriate *land use* and *speed* contexts. The purpose of distinguishing the measures in this manner was to encourage that they be implemented in the most effective way in order to maximize their benefit.

The land use contexts identified for this study are "Urban" and "Rural". For the purpose of this study, *urban* roads generally refer to low speed roads with raised curbs and *rural* roads are defined as higher speed roads with grass ditches and/or medians. *Suburban* roads were also identified as containing a hybrid of urban and rural characteristics. The speed categories are defined in Section 1 above. TABLE ES.1 lists all thirty-three measures by applicable context.

One-page guidelines were then prepared for each of the *Highly Effective Measures*. These guidelines act as 'quick references' for application guidance, costs and likely benefits. They also provide references to the best current industry application and implementation guidance. Note that of the seven objective areas; only Vehicle-Wildlife Collisions did not have any measures to be considered as highly effective, since they rarely result in human injury or fatality.

	URBAN SPEED LIMIT (km/h)			RURAL SPEED LIMIT (km/h)				
COLLISION REDUCTION MEASURE	≤50	60-70	80-90	≥100	≤50	60-70	80-90	≥100
Speed Management								
1. Consistent speed limits	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
2. Gateway treatments						✓	✓	\checkmark
3. Transverse pavement markings	\checkmark	✓	✓		\checkmark	✓	✓	
4. Variable speed limits			✓	✓			✓	✓
Unsignalized Intersections								
5. Advance warning on major road							✓	✓
6. Conversion to roundabout	✓	✓	✓	✓	✓	✓	✓	✓
7. Flashing beacon on stop sign							✓	✓
8. Left-turn lanes on major road	✓	✓	✓	✓		✓	✓	✓
9. Removal of obstructions	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
10. Transverse rumble strips							\checkmark	\checkmark
Signalized Intersections	•	•	•		•			
11. Advance warning flashers		✓					✓	
12. Conversion to roundabout	\checkmark	✓	\checkmark		\checkmark	✓	✓	
13. Dedicated left-turn lane / phasing	✓	✓	✓		\checkmark	✓	✓	
14. Positive offset left-turn lanes	\checkmark	\checkmark	✓					
15. Protected only left-turn phases		\checkmark	✓			✓	✓	
16. Removal of unwarranted signals	\checkmark	✓	✓		\checkmark	✓	✓	
17. Signal back plates	\checkmark	✓	✓		\checkmark	✓	✓	
18. Smart right-turn channel	✓	✓						
Off-Road Movements					8			
19. Advance curve warning signs				✓		✓	✓	✓
20. High-tension cable barrier systems		✓	✓	✓		✓	✓	✓
21. Horizontal and vertical realignments				✓			✓	✓
22. Impact attenuators							✓	✓
23. Removal of fixed objects		✓	✓	✓		✓	✓	✓
24. Rumble strips (shoulder/centreline)						✓	✓	✓
Roadways (Links)					8			
25. Delineator posts						✓	✓	✓
26. Edgelines and centrelines	✓	✓	✓	✓	√	✓	✓	✓
27. High-visibility pavement markings	✓	✓	✓	✓	√	✓	✓	✓
28. Increased sign retroreflectivity	✓	✓	✓	✓	\checkmark	✓	\checkmark	✓
29. Linear delineation systems		✓	✓	✓		✓	✓	✓
30. Wider pavement markings			\checkmark	✓			\checkmark	✓
Vulnerable Road Users								
31. New/upgraded intersection lighting	✓	✓	✓	✓	✓	✓	✓	✓
32. Pedestrian countdown signals	✓	✓						
33. Wider sidewalk / paved shoulder	✓	✓	✓	✓	✓	✓	✓	✓
TOTAL NUMBER OF MEASURES	19	23	17	15	14	16	27	22

TABLE ES.1 33 HIGHLY EFFECTIVE MEASURES BY LAND USE AND SPEED CONTEXT

4. Detailed Application Guidelines

Of the 33 *Highly Effective* Measures, eight were deemed to be the most effective (Priority 1) due to their high cost-effectiveness and high overall effectiveness. The Priority 1 measures are as follows:

- Gateway Treatments;
- Variable Speed Limits;
- Conversion of Stop-controlled Intersections to Roundabouts;
- Positive Offset Left-turn Lanes;
- Protected-only Left-turn Phasing;
- High-Tension Cable Barrier Systems;
- Removal of Fixed Objects; and,
- Pedestrian Countdown Signals.

The eight Priority 1 measures were then described in detail, with the following sub-sections:

- Background and Definitions;
- Current Status in Alberta;
- Example Applications;
- Benefits and Costs;
- Existing Application Guidance (Provincial, National and International);
- Recommended Application Guidance;
- Applicability (Land Use and Speed Context);
- Recommended Procedures and Implementation Considerations;
- Human Factors; and,
- Maintenance Considerations.

5. Benefit-Cost Evaluation

The benefits (expected collision reduction ranges for Alberta) and life-cycle costs of each of the *Highly Effective Measures* were derived, then a range of Benefit Cost Ratio (BCR) values were calculated and compared to produce an implementation strategy. The highest and lowest BCRs for each of the 33 countermeasures were determined as follows:

BCR_{Low}=Lowest Expected Benefit / Highest Expected Cost BCR_{High}=Highest Expected Benefit / Lowest Expected Cost

The BCR range for each of the thirty-three countermeasures is provided in TABLE ES.2 by objective area.

Countermeasure	Benefit Range*	Annual Life Cycle Cost Range	BCR Range				
Speed Management							
Consistent Speed Limits	10% - 16% of all injury collisions	\$1,050 - \$1,100	9.1 - 15.2				
Gateway Treatments	25%-50% of serious injury/fatal collisions	\$2,700 - \$52,500	0.5 - 18.5				
Transverse Pavement Markings	20% - 44% of all fatal and injury collisions	\$4,000 - \$7,000	2.9 - 11.0				
Variable Speed Limits	10% - 16% of all injury collisions	\$2,600 - \$32,500	0.3 - 6.2				
Unsignalized Interse	ctions		-				
Advance Intersection Warning on Major Road	15% - 30% of all injury collisions	\$1,030 - \$1,160	12.9 - 29.1				
Conversion of Stop Controlled Intersections to Roundabouts	57.6% - 69.6% of all fatal and injury collisions	\$15,500 - \$28,000	2.1 - 4.5				
Dedicated Left Turn Lanes on Major Road Approaches	29% - 35% of all fatal and injury collisions	\$3,000 - \$7,500	3.9 - 11.7				
Flashing Beacon on Stop Sign	15% - 30% of all injury collisions	\$1,550 - \$1,700	8.8 - 19.4				
Removal of Obstructions Within Sight Triangle	20% - 37% of all injury collisions	\$2,516 - 19,166	>50				
Transverse Rumble Strips	10% - 22% of all injury collisions	\$2,900 - \$3,700	2.7 - 7.6				
Signalized Intersecti	ons						
Advance Intersection Warning Flashers	20% - 44% of all injury collisions	\$3,100 - \$3,700	5.4 - 14.2				
Conversion of Signalized Intersections to Roundabouts	30% - 62.4% of all fatal and injury collisions	\$16,750 - \$28,000	1.1 - 3.7				
Dedicated Left-turn Lanes With Phasing	30% - 58% of all injury collisions	\$3,250 - \$8,000	3.8 - 17.8				
Positive Offset Left-turn Lanes	20% - 40% of injury collisions	\$3,500 - \$8,000	2.5 - 11.4				
Protected Only Left-turn Phase	8% - 16% of injury collisions	\$2,515 - \$2,560	3.1 - 6.4				
Removal of Unwarranted Traffic Signals	25% - 53% of all injury collisions	\$1,066 - \$1,216	20.5 - 49.7				

TABLE ES.2 BENEFITS AND COSTS OF COUNTERMEASURES

Government of Alberta

Transportation

Signal Back Plates	15% - 32% of all injury collisions	\$1,550 - \$2,700	5.6 - 20.6
Smart Right-turn Channel	65% - 80% of all injury collisions	\$3,250 - \$5,000	13.0 - 24.6
Off-Road Movements			
Advance Curve Warning	5% - 13% of all injury	\$1,090 - \$1,240	4.0 - 11.9
Cable Barriers	15% - 35.2% reduction of run-off-road injury collisions (roadside) 36% - 72% reduction of	\$4,700 - \$7,500	2.0 - 7.5 (roadside)
	head-on injury collisions (median)		4.0 - 15.5 (mediai)
Horizontal and Vertical Realignments	50% - 73% of all injury collisions	\$3,500 - \$34,333	1.5 - 20.9
Impact Attenuators	35% - 75% of injury collisions	\$5,500 - \$8,500	4.1 - 13.6
Removal of Fixed Objects	15% - 30% of all injury collisions	\$2,003 - \$52,000	0.3 - 15.0
Shoulder Rumble Strips	10% - 18% of all injury collisions	\$2,530 - \$2,560	3.9 - 7.1
Centreline Rumble Strips	BCR ca	lculations to be determined a	at a later date
Roadways (Links)			
Delineator Posts	5% - 11% of all injury collisions	\$1,150 - \$1,200	4.2 - 9.6 (assume 10 posts)
Edgelines and Centrelines	10% - 19% of all injury collisions	\$1,584 - \$1,758	5.7 - 12.0
High-visibility Pavement Markings	10% - 19% of injury collisions	\$1,600 - \$1,800	5.6 - 11.9
Increased Sign Retroreflectivity	25% - 42% of all injury collisions	\$1,100 - \$1,320	18.9 - 38.2
Linear Delineation Systems	-	\$1,800 - \$81,500	-
Wider Pavement Markings	10% - 16% of all injury collisions	\$1,600 - \$1,800	5.6 - 10.0
Vulnerable Road Use	rs		
New or Upgraded Intersection Lighting	39% - 78% of all injury collisions	\$2,600 - \$3,500	11.1 - 30.0
Pedestrian Countdown Signals	15% - 25% of all pedestrian	\$2,080 - \$2,200	6.8 - 12.0
	Collisions		

*Note: "all" (in terms of collision type) is assumed to refer to the preventable collisions, or collisions within the affected area only: e.g. gateway treatments are only effective in the vicinity of the gateway treatment, and the reductions associated positive offset left-turn lanes refer only to left-turn collisions in the direction of application.

6. Implementation Strategy

An implementation strategy was developed to facilitate the timely and optimal implementation of the highly effective measures identified in this study. Implementability depends on numerous factors, and is presented for the consideration of each agency and for discussion between agencies. Three time frames were identified at the outset of the study (Immediate, 1-7 years, and 7-20 years).

The following countermeasures are recommended for implementation in the immediate time frame ("quick wins"):

Speed Management:	Consistent Speed Limits
Signalized Intersections:	Removal of Unwarranted Traffic Signals; Smart Right-Turn
	Channels
Unsignalized Intersections:	Removal of Sight Obstructions; Advance Intersection Warning
	on Major Road; Flashing Beacon on Stop Sign
Roadways (Links):	Edgelines and Centrelines
Run-off-Road:	Cable Barriers
Vulnerable Road Users:	New or Upgraded Intersection Lighting; Pedestrian
	Countdown Signals

The 1 - 7 year strategies are as follows, by each objective area:

Speed Management:	Gateway Treatments, Transverse Pavement Markings: Variable
opeed management.	Speed Limits
Unsignalized Intersections:	Dedicated Left-Turn Lanes; Transverse Rumble Strips;
	Conversion to Roundabouts
Signalized Intersections:	Signal Back Plates; Advance Warning Flashers; Dedicated Left
	Turn Lanes and Phasing; Positive Offset Left-Turn Lanes;
	Protected-only Left-Turn Phasing
Roadways (Links):	Increased Sign Retro-reflectivity; High Visibility Pavement
	Markings; Wider Pavement Markings
Run-off-Road:	Impact Attenuators, Curve Warning Signs; Rumble Strips
	(shoulder/centreline)
Vulnerable Road Users:	Wider Sidewalks or Paved Shoulders

The measures identified for implementation in the longer term (7 to 20 years) are as follows:

Speed Management:	none				
Unsignalized Intersections:	none				
Signalized Intersections:	Conversion to Roundabouts				
Roadways (Links):	Linear Delineation Systems, Delineator Posts				
Run-off-Road:	Horizontal and Vertical Realignments; Removal of Fixed Objects				
Vulnerable Road Users:	none				

The success of several of the measures will depend on the level of public education delivered and the extent of enforcement conducted. Legislative changes may also be required to enforce some of the recommended countermeasures.

The success of any collision reduction initiatives can only be assessed if a clear and effective monitoring and evaluation plan is put into place. It is suggested that *fatal and injury collisions* be used as the primary source of data, to measure the success of implementing the measures identified in this study.

While activities should be monitored on an ongoing basis, it is recommended that the effectiveness of the enhancements be formally evaluated at pre-determined intervals:

Quick wins: after one year and subsequently every three years thereafter;

1-7 Year Strategies: within three years, and then within seven years of implementation; and,

7-20 Year Strategies: formal evaluations should be conducted every three years.

7. Next Step and Possible Further Work

To maximize the value of this study, TRANS and the Engineering Committee can consider the following follow-up actions:

- Circulate study deliverables to road agencies;
- Provide training to industry and stakeholders in Alberta;
- Incorporate measures into existing processes and budgets;
- Adapt guidelines to current policies and standards; and,
- Set up evaluation and monitoring program.

Government			
of Alberta 💻			
Transportation			

Subsequent to (or in parallel with) the above "next steps", TRANS and the Engineering Committee may consider the following work items, either internally or through engaging a qualified consultant:

- Conduct another agency survey to prioritize the need for detailed guidance for other 25 Highly Effective Measures;
- Develop application guidance for other HEMs;
- Initiate the development of national guidance;
- Provide updates as important new guidance gets released;
- Prepare supporting implementation guidance;
- Incorporate new HSM information and new Canadian CMFs;
- Prepare Alberta-specific collision prediction models; and,
- Conduct another comprehensive MORCOAR study in 5 years (2015), to capture new national and provincial priorities and 2020 targets.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

1.0 INTRODUCTION

1.1 Study Background

The Alberta Traffic Safety Plan (ATSP), first published in 2006, outlines 2010 collision reduction targets for the Government of Alberta and identifies a wide range of traffic safety strategies to meet these targets. The Traffic Safety Action Plan (2007) identifies short-term activities and strategic objectives, focused on the improvement of Alberta's quality of life and the safety and security of communities. Since its inception in 2007, the Engineering Committee has been focused on developing and implementing Alberta Transportation's Engineering Strategic Plan (ESP) in support of the ATSP.

Alberta Transportation (TRANS) commissioned Opus International Consultants (Canada) Limited (herein referred to as Opus) to investigate and develop methods (engineering measures and strategies) to address the collision patterns on all Alberta highways and streets. These roadways are operated by many different road authorities including urban municipalities, rural municipalities, Counties and the Province.

This study, entitled "*Methods of Reducing Collisions on Alberta Roads*" (abbreviated as *MORCOAR*), is intended to help achieve the goals of ATSP, which includes reducing fatal and serious injury collisions by 30% between the years of 2008-2010 compared to the baseline years of 1996-2001. The ATSP is currently being updated to indicate priorities and targets for the next few years, in support of Transport Canada's updated Road Safety Vision.

It is emphasized that the subject of this assignment is to investigate and develop engineering strategies only. Education, enforcement, data and other strategies are being developed and evaluated by other committees under the ATSP. The purpose of this project is to address some of the primary themes identified in the ESP.

1.2 Study Objectives

The primary objective of this project is to develop cost-effective and innovative engineering strategies to cover the range of land use, roadway and speed environments in Alberta. Seven "objective areas" have been clearly defined. Due to the differences in measures for signalized and unsignalized intersections, these have been separated into two, for a total of seven objective areas.

- Speed Related Collisions;
- Collisions at Unsignalized Intersections;
- Collisions at Signalized Intersections;
- Vehicle-Wildlife Collisions;
- Collisions Along Roadways (Links);
- Run-Off-Road Collisions; and
- Collisions Involving Vulnerable Road Users.

For each objective area, collision reduction strategies are to be developed for both rural and urban situations, for each of the following posted speed categories:

- 50 km/h or less;
- 60 km/h to 70 km/h;
- 80 km/h to 90 km/h; and
- 100 km/h or more.

1.3 Study Phases and Tasks

The study phases and tasks of *MORCOAR* are summarized in FIGURE 1.1. The study is divided into two phases. This document represents the Phase 2 final report. This report presents recommended guidelines and outlines an implementation strategy.

- Section 2.0 presents a revised version of the list of the 33 *Highly Effective Measures* generated in Phase 1, and basic application guidance for each;
- Section 3.0 provides detailed application guidance for the 8 measures considered to be the most effective and in need of guidance;
- Section 4.0 ranks the 33 measures based on a benefit-cost analysis;
- Section 5.0 provides a 20-year implementation strategy; and,
- Section 0 identifies further work to build on this study and achieve success.

FIGURE 1.1 STUDY OBJECTIVES, PHASES AND TASKS

2.0 HIGHLY EFFECTIVE MEASURES

In Phase 1 of *MORCOAR*, 33 collision reduction measures as *Highly Effective Measures* were selected based on the evaluation of a much longer list of measures. Section 2.1 presents the results of a survey of Alberta road agencies regarding the use and effectiveness of these measures. Section 2.2 lists the 33 measures by land use and speed context. Section 2.3 contains basic application guidance for each of the 33 *Highly Effective Measures*.

2.1 Alberta Road Agency Survey

Alberta Transportation and a handful of municipal road agencies were contacted in order to determine which of the *Highly Effective Measures* they currently use, the extent of their application, guidelines dictating their application, and their measured (or perceived) effectiveness. The agencies contacted are as follows:

- Alberta Transportation;
- The City of Calgary;
- The City of Edmonton; and
- Strathcona County.

It was evident from the survey that:

- There is a wide variety in current practices, which presents an excellent opportunity for the sharing of knowledge and information between agencies.
- Most municipalities follow *Transportation Association of Canada* practices, which in most cases differ from Provincial practices. This can present challenges in design consistency between highways and municipal roads.
- Some of the current practices are currently internal documents, which contain more context-sensitive guidance than provincially or nationally published guidance.
- The performance of most measures has generally not been formally evaluated.

The survey responses indicated the following:

- Physical or perceptual road narrowings, transverse pavement markings and gateway treatments all help to lower speeds;
- The consistent application of speed limits was viewed anecdotally as being highly effective;

November 2010

- Limited guidance for the conversion of intersections to roundabouts limits installation, in spite of the high collision reduction potential;
- Warning signs used by all agencies based on existing guidelines or 'as needed';
- The removal of sight obstructions near intersections is already practiced regularly;
- 'Smart' right turn channels considered successful based on recent pilots in Edmonton;
- Current guidance for positive offset left turn lanes is inadequate;
- Protected only left turn phases are viewed as highly successful;
- Wildlife fencing and overpasses are considered too expensive;
- Rumble strips (shoulder and centreline) are of limited use in urban areas;
- Cable barriers and linear delineation systems have potential, but guidelines insufficient;
- Increased sign retroreflectivity is deemed effective;
- Painted edgelines and centrelines both seen as highly effective, and widely used;
- Guidance for the removal of fixed objects was found to be lacking; and,
- Most agencies would welcome additional guidelines for pedestrian countdown signals.

The full results of the survey are provided in APPENDIX A.

2.2 List of Measures by Context

As the starting point for context sensitive application, the appropriate *land use* and *speed* contexts for the 33 *Highly Effective* Measures were identified. It is surmised that applications within these contexts will be more effective and encourage greater consistency for road users.

The land use contexts identified for this study are "Urban" and "Rural". For the purpose of this study, *urban* roads generally refer to lower speed roads with urban cross sections (e.g. curb and gutter) and *rural* roads are defined as higher speed roads with grass ditches and/or medians. TABLE 2.1 lists the 33 measures by context.

The check marks (\checkmark) indicate the contexts with the best applications, based on literature and experience. However, they may also be considered on a case-by-case basis for other contexts, where unique circumstances exist or other measures have already been tried unsuccessfully. The speed and land use contexts for each measure are further discussed in Section 2.3 in this report.

November 2010

		RAN SPEED		(h)				1/h)
COLLISION REDUCTION MEASURE	<50	60-70	80-90	>100	<50 60-70 80-90			>100
Speed Management	_50	0070	00 /0		_50	0070	00 /0	
1. Consistent speed limits	✓	✓	✓	✓	√	✓	 ✓ 	✓
2. Gateway treatments						✓	\checkmark	✓
3. Transverse pavement markings	✓	✓	✓		\checkmark	✓	\checkmark	
4. Variable speed limits			✓	\checkmark			\checkmark	✓
Unsignalized Intersections				L	1	1		
5. Advance warning on major road							✓	✓
6. Conversion to roundabout	✓	✓	✓	✓	\checkmark	✓	✓	✓
7. Flashing beacon on stop sign							✓	✓
8.Left-turn lanes on major road	✓	✓	✓	✓		✓	✓	✓
9. Removal of obstructions	✓	✓	✓	✓	√	✓	✓	✓
10. Transverse rumble strips							✓	✓
Signalized Intersections								
11.Advance warning flashers		✓					\checkmark	
12. Conversion to roundabout	✓	✓	\checkmark		\checkmark	\checkmark	\checkmark	
13. Dedicated left-turn lane / phasing	✓	✓	✓		\checkmark	✓	\checkmark	
14.Positive offset left-turn lanes	✓	✓	✓					
15.Protected only left-turn phases		✓	✓			✓	\checkmark	
16.Removal of unwarranted signals	✓	✓	✓		\checkmark	✓	\checkmark	
17. Signal back plates	✓	✓	✓		\checkmark	✓	\checkmark	
18. Smart right-turn channel	✓	✓						
Off-Road Movements								
19.Advance curve warning signs				\checkmark		\checkmark	\checkmark	\checkmark
20.High-tension cable barrier systems		✓	✓	✓		✓	\checkmark	\checkmark
21.Horizontal and vertical realignments				\checkmark			\checkmark	\checkmark
22.Impact attenuators							\checkmark	\checkmark
23.Removal of fixed objects		✓	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
24. Rumble strips (shoulder/centreline)						✓	\checkmark	\checkmark
Roadways (Links)	•	•	•	•	•			
25.Delineator posts						✓	✓	✓
26.Edgelines and centrelines	✓	✓	✓	✓	✓	✓	✓	✓
27.High-visibility pavement markings	✓	✓	✓	✓	√	✓	✓	✓
28.Increased sign retroreflectivity	✓	✓	✓	✓	√	✓	✓	✓
29.Linear delineation systems		 ✓ 	✓	✓		✓	✓	✓
30.Wider pavement markings			✓	✓		1	✓	✓
Vulnerable Road Users		<u> </u>			•			
31.New/upgraded intersection lighting	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
32.Pedestrian countdown signals	✓	✓						
33.Wider sidewalk / paved shoulder	✓	✓	✓	✓	\checkmark	✓	\checkmark	✓
TOTAL NUMBER OF MEASURES	19	23	17	15	14	16	27	22

TABLE 2.1 33 HIGHLY EFFECTIVE MEASURES BY LAND USE AND SPEED CONTEXT

2.3 Basic Application Guidance

This section provides basic application guidance for the 33 *Highly Effective Measures* by objective area. This guidance was designed to provide practitioners a quick reference to determine the suitability of the measure for the range of Alberta road contexts. Each measure is presented in a one-page, easy to follow format, containing:

- A photo that illustrates the measure;
- An "objective" that briefly explains what the measure is supposed to do, i.e. what problem it is trying to solve and how, in human factors terms, it attempts to do this;
- Application guidance that describes the circumstances in which to apply the measure;
- The applicable land use and posted speed categories;
- The status of the use of the measure in Alberta, based on the road agency survey;
- The documented collision reductions (injury reductions where available), based on experience in Alberta or other jurisdictions, and the benefit range derived from this study is also provided in *italics*;
- Typical installation costs (construction and operational), separately for new and retrofit situations methodology is explained in Section 4.2, and cost details are provided in APPENDIX B;
- Further guidance: where further detailed application and implementation guidance can be found; and,
- Other highly effective strategies and enhancements that can be considered to address similar issues, or to further enhance the effectiveness of the measure.

For the eight measures that the Project Steering Committee agreed require additional guidance, links to the more detailed guidance is provided on the one-page summaries.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

METHODS OF REDUCING COLLISIONS ON ALBERTA ROADS

BASIC APPLICATION GUIDELINES FOR SPEED RELATED COLLISION REDUCTION MEASURES

Consistent speed limits	11
Gateway treatments	12
Transverse pavement markings	13
Variable speed limits	14

THIS PAGE WAS INTENTIONALLY LEFT BLANK

Methods of Reducing Collisions on Alberta	a Roads Speed F	d Related Sept. 2010 Pa		Page	age 11		
Consistent Speed L	.imits		Land	Use	•		
			Urban			H	NIN ST
+			Suburt	ban	N		
			Rurai		γ		
	50		Posted	Spe	eds		
investigation and address of the		MAXIMUM	≤50 km	/h			
	and the second	?	80-70 k	.m/n .m/h			
and the second se			l ≥100 kr	n/h	\checkmark		
Application Guidance	ce		Alberta	Stat	tus		
<i>Objective:</i> to consistently apply re	gulatory speed	Large		N	L		
limits throughout a road network to	o better reflect	Municip	palities			V	V
to increase motorist compliance,	reduce speed	Small Municir	balities		\checkmark		
variance and reduce collision severity.		Highwa			\checkmark	\checkmark	
Speed limits should be established following principles for a road segment	based on the :	N=None; L=Limited; C=Common; P=Proven					
 Horizontal alignment Average lane width 		Documented Benefits					
Roadside hazards		Unknown CRF, although studies					
 Pedestrian and cyclist exposure Pavement surface 		lower cra	ash rates ¹	sternt	spee	eus r	lave
 Intersections and driveways On-street parking 		10% - 16% of all injury collisions					
A systematic method for incorporating	those oritoria to	Tv	nical Incta	llati	on (`oot	
arrive at a speed limit value is provid	ded in the TAC	ı y _ 🧄 _		anau		,051	
Guidelines for Establishing Posted Spectral determined value should be comp	<i>eed Limits</i> . The pared with the		Units	Cost Low	t Ranç	ge* High	1
prevailing 85 th percentile speed, if know	vn.	Retrofit Ne	Each	\$25 -		\$500 -	C
This measure is relatively easy to implalso require road agencies to review to setting policies and bylaws.	*New proj additional	ects should r capital costs	not re s.	sult in	any		
Further Guidance	Other Effecti	ve Strate	egies and	Enha	ance	men	ts
MUTCDC [Section A2.3]	Gateway treatments						
TAC Canadian Guidelines for	 Transverse pavement markings Variable speed limits 						
Establishing Posted Speed Limits	Revise speed limit policy						

¹ Garber, NJ and R Gadirau (1988). Speed Variance and its Influence on Accidents. AAA Foundation for Traffic Safety, Washington DC.

Methods of Reducing Collisions on Albe	erta Roads	Speed F	d Related Sept. 2010 I		Page 12			
Gateway Treatments			Land	d Use	Э			
				Urban			MA	IN ST
		K		Subur	ban	\checkmark		
Little Party Ro		and the second	Å	Rural		\checkmark		
				Posted	Spe	eds		
	AL SUD OF		MAXIMU	M ≤50 km	ı/h			
			9	60-70 k	km/h			
V		11	•	80-90	km/h	\checkmark		
ň		Y	L	_ ≥100 k	m/h	\checkmark		
				Alberta	a Sta	tus		
Application Guida	nce				N	L	C	Ρ
			Large			<u> </u>		-
<i>Objective:</i> to define and emphas	ize the tra	ansition	Munic	ipalities		ν		
between a nigher-speed and lower-sp	etween a higher-speed and lower-speed environment.		Small	1		1		
Gateway Treatments are more common	outside of	Canada.	Munic	ipalities	N			
and there is no specific guidance for the	and there is no specific quidance for their application within			avs				
Canada Detailed guidelines have been prepared in the			- ingitiv		<u> </u>	L_	<u> </u>	
document Application Guidelines for Gateway Treatments			N=None;	L=Limited; C=0	Comm	on; P=	Prove	ก
as part of the study on Methods of Reducing Collisions on								
Alberta Roads (Section 3.1). Gatew	av treatme	ents are	Documented Benefit					
encouraged.								
			25% of	all injury co	ollisic	ns ²		
• Where there is a transition in the	e land use	(rural to	500/					
suburban or suburban to urban.		(iaiai to	50% 01	all fatal an	d ser	ious	injur	y
Where the speed limit changes by	Where the speed limit changes by 20 km/h or more:			ns				
Where collisions are concentrated	Lo Rin/n or	ear this transition 25%-50% of serious injury/fata			fatal			
(including collisions involving vuln	orable road	usore).	collisio	ns	uo mij	ury/i	aiai	
		users),	Т	vpical Inst	allati	ion (Cost	
The detailed application guidelines prov	ide quidanc	o on tho		,				
various types of gateway treatments for	r each land-	use and		Linit	Cost	Ranç	ge*	
speed limit category. In general the	effectivene	use and	Detrofit		Low	0	High	000
ateway treatment is maximized w	hen it con	ntains a	New	each	\$200	<u>)0</u>	\$500	,000
combination of both borizontal and vert	tical feature	e They	*Large c	ost ranges du	ie to v	ariab	ility of	,000
also contain a number of implementation	nn details i	ncluding	treatmer	nt types.				
instructions for the placement of gatewa	iv treatment	s						
	Other	Effectiv	o Strate	nies and F	nha	ncor	nonte	6
	• New or i	Indraded	Linterse	ction lightin	- a	ncei	nema	3
FHWA Determining Effective	Advance	e intersec	tion wa	ning on ma	e ijor ro	bad		
Roadway Design Treatments for	Transve	rse pave	ment ma	arkings	,	-		
Transitioning from Rural Areas to	Wider Sidewalk or Paved Shoulder							
UIDAN Areas ON STATE HIGHWAYS	Conversion of Signalized Intersection to a Roundal				bout			
LTSA Guidelines for Urban-Rural	Convers	ion of Ur	isignaliz	ed Intersec	tion t	o a		
Speed Thresholds RTS 15 (2002)	Roundal	oout						

² Wheeler, A.H. and Taylor M.C. Accident reduction resulting from village traffic calming, European Transport Conference, Cambridge. Proc. Seminar J. Assoc. for European Transport, 2000.

Methods of Reducing Collisions on Alberta	Roads	Speed F	Related	Sept. 20 ⁻	10	Pag	je 13		
Transverse Pavement Markings				Land Urban Subur Rural	d Use ban	* √ √			
	M		MAXIMUN ?	Posted ≤50 km 60-70 k ≥100 k	Spec n/h km/h km/h m/h	eds $\sqrt{1}$			
Application Guidanc	e						C	P	
<i>Objective:</i> to reduce motorists creating the perception that the road	s'speed l is narro	ls by wing.	Large Munici Small	palities	√ √				
Transverse pavement markings are placed within a travel lane along roadway segments. Transverse markings aim to reducing speeds by providing less space between successive transverse markings. This		Highways √ N=None; L=Limited; C=Common; P=Proven							
creates the perception that the lane or cross-section is narrowing, and can result in motorists subconsciously lowering their speeds.			Documented Benefits						
Previous applications of transverse markings indicate that they are most effective on the approaches to horizontal curves, both on freeways and non- freeways. They are also commonly provided on the approaches to intersections, but can be marked along			55% of all fatal and injury collisions ⁴ 20% - 44% of all fatal and injury collisions					ons ⁴	
other road sections, including transition	zones.	5	Ту	pical Inst	allati	on C	Cost		
The markings can vary in appearar hatching (pictured) to thicker bars pla entire travel lane.	nce from aced acro	side- ss an	Retrofit	Units	Cost Low \$2	t Ran	ge High \$5	1	
Transverse pavement markings are and inexpensive to implement.	generally	easy	New	m	\$2		\$5		
Further Guidance FHWA Low Cost Treatments for Horizontal Curve Safety (2006) [Chapter 7] MUTCD [Section 3B.22]	Other • Gatewa • Consisi • Horizor • Advanc • Advanc • High-vis	Effecti ay treati tent spe tal and ce curve ce inters sibility p	ve Strate ments eed limits l vertical e warning section w pavemen	egies and realignmer signs arning on t markings	Enh a nts major	ance r roa	e men	ts	

³ Helliar – Symons, R.D. Yellow Bar Experimental Carriageway Markings: Accident Study, Transport and Road Research Laboratory, Supplementary Report 1010, Crowthorne, UK, 1981.

⁴ Griffin, L.I. and Reinhardt, R.N., "A Review of Two Innovative Pavement Patterns that Have Been Developed to Reduce Traffic Speeds and Crashes." Washington, D.C. AAA Foundation for Traffic Safety (1996)

Methods of Reducing Collisions on Alberta	a Roads Speed F	Related	Sept. 201	0	P	age [.]	14
Variable Speed Lii	mits	Land Use					
			Urban Suburt	oan	$\frac{1}{n} \frac{1}{\sqrt{n}}$		
60	Posted Speeds						
		MAXIMUM ≤50 km/h 60-70 km/h 80-90 km/h ≥100 km/h √					
Application Ouidan			Alberta	Stat	us		
Application Guidance <i>Objective:</i> to provide safer and m speed limits that reflect real-time traff and weather conditions.	ce ore appropriate ic, road surface	Large Municip Small Municip	alities alities	N √ √	L	С	P
Variable speed limits (VSLs) have been successfully applied in Europe and other parts of the world. However, legislation does not currently permit these signs to be enforceable in Alberta or other provinces. Due to their significant safety benefits, VSLs are now gaining more attention. The document <i>Safety Benefits of Variable Speed Limits</i> has been prepared as part of the study on <i>Methods</i> <i>of Reducing Collisions on Alberta Roads (Section 3.2)</i> , to synthesize these benefits, and to identify the barriers towards implementing VSL on Alberta's roadways.		Highways √ N=None; L=Limited; C=Common; P=Proven					
		Documented Benefits 45% of all collisions ⁵ 20% of all injury collisions ⁶					
The above document also provides some on appropriate applications for VSLs. T	e basic guidance hey are typically	10% - 16% of all injury collisions					
provided on freeways, where movement is of peak traffic periods and not influenced devices such as traffic signals. They commonly provided for congestion relief in areas, for weather/road conditions in more where road incidents could result in major traffic and secondary incidents. Once legislation is in place, extensive res	I ypical installation Cost w Cost Range* Low High Retrofit each \$1200 \$300,000 New each \$1000 \$300,000 *Large cost ranges due to variability in sign types (side-mounted vs. overhead). 'Retrofit' slightly higher due to the removal of existing sign.					,00 ,000 sign val	
locations would need to be undertaken safe and appropriate speed to display.	to determine the	5	-				
Further Guidance MUTCD [Section 2B.13]	Other Effecti • Consistent spe • Transverse pa • Horizontal and • Gateway treate	tive Strategies and Enhancements peed limits oavement markings nd vertical realignments atments					ts

⁵ Abdel-Aty, M., et.al. Considering Dynamic Variable Speed Limit Strategies for Real-Time Crash Risk Reduction on Freeways, Transportation Research Board (TRB) Annual Meetings, Washington DC, 2008.

⁶ Lind, G., and Linkvist, A. Traffic Controlled Variable Speed Limits, Sweden. TEMPO Evaluation Expert Group, European Commission, 2009

METHODS OF REDUCING COLLISIONS ON ALBERTA ROADS

BASIC APPLICATION GUIDELINES FOR UNSIGNALIZED INTERSECTION COLLISION REDUCTION MEASURES

Advance warning on major road	17
Conversion to roundabout	18
Flashing beacon on stop sign	19
Left-turn lanes on major road	20
Removal of obstructions	21
Transverse rumble strips	22

THIS PAGE WAS INTENTIONALLY LEFT BLANK

Methods of Reducing Collisions on Alb	erta Roads Unsigna	lized Ints	Sept. 2010	Page 17		
Advance Intersection	Warning on		Land Use	e		
Major Road			Urban	MAIN ST		
			Suburban			
			Bural			
	AHEAD		Posted Spe	eds		
			≤50 km/h			
		MAXIMUM	60-70 km/h			
232 ST	32 ST	?	80-90 km/h	\checkmark		
			≥100 km/h	\checkmark		
Application Guida	ince		Alberta Sta	tus		
<i>Objective:</i> to provide advar	nce warning of	Large	N			
possible crossing movements ah	ead.	Municipa	lities	\checkmark		
The use of an advance warning s	sian (either of the	Small	litico	\checkmark		
ones shown) above aims to make	drivers anticipate					
crossing vehicles, so as to allow n	nore time to make					
These signs are particularly effective	ve where stopping	N=None; L=Limited; C=Common; P=Proven				
sight distances are limited.		De	ourmonted P			
Alberta Transportation has a Reco	mmended Practice	Do	cumented b			
for both signs. A Concealed Roa	ad sign (MUTCDC	30% of al	I rural interse	ection		
WA-11 to WA-15) should be u distance is limited due to geom	ised where sight	collisions				
IMPORTANT INTERSECTION AH	EAD sign (Alberta	15% - 30%	% of all injury	collisions		
Transportation Sign Catalogue W	A-144) should be					
	i two nignways.					
Where either sign is warranted, a di	istance tab is often	Tvn	ical Installat	ion Cost		
provided. An advance street-nam considered as a more effective	alternative to the	_ #				
distance tab. Tabs should have 20	00 mm letters, and		Units Cos	t Range*		
can be the same colour as the sign	(yellow) or green.	Retrofit	each \$15	0 \$250		
These signs should contain highly i	reflective sheeting,	*'Retrofit' is	each \$45 cost of the tab;	Wew' is cost of		
and be provided at both the roa	adside and in the	the tab and	sign.			
Further Guidance	Other Effectiv	e Strategie	es and Enha	ncements		
	Transverse rumb	le strips				
Alberta Transportation Recommended Practices for	Flashing beacon	on stop sig	In			
Warning Signs (2006)	Removal of obstr Dedicated left tur	uctions with	hin sight trian	igles		
MUTCDC [Section A3.3]	 Dedicated left-turn lanes on major road approache Gateway treatments 					

⁷ Gan, A., Shen, J., and Rodriguez, A., "Update of Florida Crash Reduction Factors and Countermeasures to Improve the Development of District Safety Improvement Projects." Florida Department of Transportation, (2005)

Methods of Reducing Collisions on Albe	erta Roads Unsignalized Ints Sept. 20			10	F	Page '	18	
Conversion of Stop-C	Controlle	ed		Land	Use	•		
Intersections to Rou	ndabout	ts		Urban		\checkmark	M	UN ST
				Suburb	ban			
				Bural		N		
						v		
	and the second			Posted	Spee	eds		
	(West		MAXIMUM	≤50 km/	/h			
I I I I I I I I I I I I I I I I I I I	anna an		9	60-70 k	<u>m/h</u>			
A A A A A A A A A A A A A A A A A A A	- A day		•	80-90 k ≥100 kr	n/h			
					<u> </u>			
Application Guida	nce			Alberta	Stat	us		
Objective: to reduce conflicting mover severity at stop-controlled intersections	ments and co s through hor	ollision izontal	Lorgo		N	L	С	Ρ
deflection, reduced speeds and simple y	ield-control.		Municip	alities		\checkmark		
A high proportion of the rural fatalities and	major injuries	around	Small					
the province occur at stop controlled	d intersections	s, and	Municip	alities		v		
effectiveness. A well designed modern rou	undabout can ir	nprove	Highways $$					
the safety of some of these intersections	s by more effe ints	ectively	N=None; L=Limited; C=Common; P=Proven					1
			Documented Benefits					
Detailed application guidelines have been p Methods of Reducing Collisions on Alberta	prepared as par <i>Roads</i> study, a	t of the and are						
documented in Application Guidelines for th	e Conversion c	of Stop-	18% - 72% of all collisions					
Controlled Intersections to Houndabouts (Se	ection 3.3).		72% - 87	'% of all fa	tal a	nd ir	ijury	
In general, conversion to a roundabout s	should be cons	sidered	collisions	°				
the need to provide a higher degree	e of traffic contr	rol than	57.6% -	69.6% of a	all fai	tal ar	nd ini	urv
a "stop control" is established; and	bacad an cafe	aty and	collisions	S			,	,
• there is a clear economic benefit other considerations under current t	traffic condition	s.	Ту	oical Insta	allati	on C	ost	
Roundabouts are discouraged along existin	na or future fre	eways.	F 🛸 -		Cost F	Range	•	
national highway routes, and at other loca	ations where t	hrough			_OW	000	High	000
volumes are dominant and left-turning volun	nes are minima	l l.	New*		¢∠50,0	000	\$275 -	,000
If a roundabout is to be installed, implement	entation guidan	nce (for	*'Retrofit' is	s expected t	o be s	slightl	y mor	е
An Informational Guide (Publication No. FHWA-RD-00-067),		costs of re	moving exis	ting si	igns a	and		
USDOT, FHWA.	Othor E	ffootiv	possible re	egrading.	nhai	n	onte	
			e Silaley	ico anu E	mai	ICEII		2
Alberta Transportation Boundabout	 Transvers 	e rumb	le strips					
Design Guidelines on Provincial	New or upgraded intersection lighting							
Highways (Design Bulletin #68/2010)	 Galeway t Advance i 	ntersec	nts tion warni	ing on mai	ior ro	ad		
TAC's Synthesis of North American	Removal	of obstr	uctions in	sight trian	igle	~~		
Roundabout Practice (2008)								

⁸ National Cooperative Highway Research Program (NCHRP), Roundabouts in the United States, Report 572 (2007)

Methods of Reducing Collisions on Alberta F	Alberta Roads Unsignalized Ints Sept. 2010				Page 19		
Flashing Beacon on Sto	op Sign		Land L	lse	A		
			Urban		L		
1		A .	Suburba	n			
			Rural	\checkmark			
CTOD			Posted S	peeds			
STOP			≤50 km/h]		
	14	MAAIMUM	60-70 km	/h			
			80-90 km	/h √			
			≥100 km/	n∣√			
Application Guidance	•		Alberta S	tatus			
Objective: to emphasize the stop	condition at	1	/	V L	С	Ρ	
collision-prone rural highway intersed	ctions.	Large Municipa	alities	\checkmark			
		Small		2			
conjunction with stop signs provided they	ng beacons in are in constant	Municipa	alities	•			
use (not turned off at certain times). Flashir	ng beacons can	Highway	'S		\checkmark		
from a much longer distance than a stop sign and	an intersection n alone.	N=None; L=Limited; C=Common; P=Proven					
Flashing beacons should only be conside	red at isolated	Do	cumented	Bene	fits 🧃		
collisions involving vehicles failing to stop a	t the stop sign,				<u> </u>		
and where stop sign enlargements, where the strips and enhanced pave	warning signs, ement markings	30% of failure to stop collisions ⁹ 15% - 30% of all injury collisions					
have proven ineffective. Flashing beau	cons are less						
appropriate within urbanized areas, due to	the distraction						
	0113.						
A potentially more effective version of the b	eacon involves						
distance and particularly during foggy cond	itions. Another						
alternative to the beacon is the use of LEE	D technology to	Тур	ical Install	ation	Cost		
outline the border of the stop sign and flash.			Linits	ost Ra	nge		
Regarding installation, backboards can b	be provided to	Retrofit	each \$	0W 500	High		
further increase conspicuity. If no power so	ource is nearby,	New	each \$	1000	\$200	,)0	
Further Guidance	Other Effect	ive Strate	aies and E	nhano	cemer	nts	
			J				
Alberta Transportation <u>Recommended</u> Practices for Safety <u>Measures at Rural Stop</u>	Conversion to	o roundabo	out				
Control Intersections (2006)	 Transverse fi Removal of or 	bstruction	s within sial	nt triar	ales		
Hamilton-Finn <u>Enhancement of Stop Control</u> <u>at Rural Highway Intersections</u> (2005)	Advance inte	rsection wa	arning on m	ajor re	bad		
MUTCDC [Section B1.5.3.2]							

⁹ Gan, A., Shan, J. and Rodriguez, A., Update of Florida Crash Reduction Factors and Countermeasures to Improve the Development of District Safety Improvement, Florida Department of Transportation (2005).

Methods of Reducing Collisions on Albe	Methods of Reducing Collisions on Alberta Roads Unsigna)10		Pag	e 20
Left Turn Lanes on M	lajor Road		Lanc	d Us	e		
Approaches	5		Urban		\checkmark		MAIN ST
			Subur	ban	\checkmark		
			Rural		\checkmark		
	5		Posted	Spe	eds	;	
			≤50 km	• n/h			
		9	60-70 k	km/h	$\sqrt{1}$		
		Ŀ	80-90 ki ≥100 ki	<u>(m/n</u> m/h	$\frac{N}{}$	_	
			Alberta	a Sta	atus		
Application Guida	nce			N	L	С	Р
Objective: to separate approach	movements and	Large					
provide unobstructed sight di	stance for left-	Municipa Small	alities			,	
turning traffic.		Municip	lities			V	
Dedicated left-turn lanes should	be provided at	Highway	/s			\checkmark	
locations with a history of left-turn end collisions involving left-turning v	collisions, or rear- ehicles.	N=None; L=Limited; C=Common; P=Proven					ven
Left turn lanes should also be p possible on high speed roadways, a	provided wherever nd particularly (but	Documented Benefits					A
not limited to) locations where traffic These volume thresholds are define provincial and municipal guidelines.	volumes are high. d in the applicable	35% of ru intersection	iral fatal a on collisio	and i ons ¹⁰	injur º	У	
	una ina thao alban a	29% of fa	ital and in	njury	ourb	an	
graphic) provides greater separatio	on and can more	Intersection		JIIS			
effectively achieve a positive offse	et of the opposing	29% - 35	% of all fa	atal a	and	injur	У
urban environments.	e in suburban and	Typ	oical Insta	allat	ion	Cos	st
Left-turn lanes are most effective	a when they are	- 🔆 -	[Cos	st Ba	nae	
properly signed and marked, both at the immediate			Units	Lov	N	Hi	gh
location and in advance.		New	LS LS	\$15	эк)k	\$1 \$2	00k 25k
Further Guidance	Other Effectiv	e Strategi	es and E	Inha	ince	mer	nts
Alberta Highway Geometric	• Advance intersor	tion warni	na on ma	ior r	hen		
Design Guide [D.7.6]	Removal of obstr	uctions wit	thin sight	triar	ngle	s	
TAC <u>Geometric Design Guide for</u> <u>Canadian Roads</u> [Section 2.3.8]	Wider pavement	markings					

¹⁰ FHWA, Safety Effectiveness of Intersection Left- and Right-Turn Lanes, Report No. FHWA-RD-02-089 (2002)

Methods of Reducing Collisions on Albe	erta Roads Unsigna	alized Ints	Sept. 20	10	F	Page	21
Removal of Obstruction	ons Within		Land	Use)		
Sight Triangle		Urban Suburt Rural	Dan	$\sqrt{}$		IN 9T	
Sight obstruction		MAXIMUM ?	Posted ≤50 km, 60-70 k 80-90 k ≥100 kr	Spee /h m/h m/h m/h	eds √ √ √ √		
Application Guida	nce		Alberta	Stat	tus		
<i>Objective:</i> to provide unobstruct	ted sight lines at	Large Municipa	lities	N	L	<i>C</i> √	P
This is normally part of good design obstructions are sometimes introduced or appear over time, during upg	This is normally part of good design practice. However, obstructions are sometimes introduced during construction, or appear over time, during upgrades or private		lities S ted: C=Con	nmon:	√ P=Pro	√ oven	
The most significant sight obstructions to the intersection geometry, due to h curvature, or skewness. Other sigh range from fences, trees and shrubs to signposts, and parked vehicles. So obstructions act together to create a larg Where significant sight obstructions should be removed immediately. relocating, lowering or trimming the	are typically related norizontal or vertical nt obstructions can o utility poles, signs, Sometimes multiple ger obstruction. are identified, they This may involve e object. All new	Doe 37% of inju 56% of fata *Collision F signalized i similar redu for unsigna 20% - 37%	ry collision I collision Reduction Intersection Iction fact lized inter of all inju	ed Bo ns ¹¹ Facto ons. H tors a rsecti	ors b Howe are exions.	ased ver, cpecte	on əd
intersections should be constructed views between motorists on conflicting as pedestrians. Where sight triangles cannot be provide standards, the posted speed limit shoul warning should be provided.	with unobstructed approaches as well ed per the published d be lowered and/or	Typi	Cal Insta Units each - from low c	Cost Low \$500 - ost (tr	on C t Ranç) ree re	ge* High \$500 - moval)k I,
Further Guidance	Other Effectiv	parking restr realignment) re Strategie	rictions) to es and E	high nhar	cost (ncen	road	
Alberta Highway Geometric Design Guide [D.4.2] TAC <u>Geometric Design Guide for</u> Canadian Roads [Section 2.3.3]	 Advance intersect Positive offset left- Horizontal and ver Removal of fixed of 	ion warning turn lanes tical realignn objects from o	nents clear zone	Ð			

¹¹ <u>FHWA, Signalized Intersections: Informational Guide, Report No. FHWA-HRT-04-091 (2004)</u>

Methods of Reducing Collisions on Alberta	<i>Roads</i> Unsignaliz	zed Ints	Sept. 201	0	P	age 2	22
Transverse Rumble	Strins		Land	Use	e	A	
Transverse trainble	Sulps		Urban				UN ST
AR			Suburba	an			
and the second second second	Manager Mindleft		Bural				
			nurai		V		
	- And		Posted	Spe	eds		
		MAXIMUM	≤50 km	/h			
	- E		60-70 k	m/h			
-	C.	1 . 1	80-90 k	. <u>m/h</u>	V		
		\square	≥100 Kr	n/n	γ		
			Alberta	Sta	tus		
Application Guidan	се			Ν	L	С	Ρ
Objective: to alert drivers of need	d to stop at the	Large Municip	alities		\checkmark		
upcoming intersection.		Small	- 1141		\checkmark		
Rumble strips provide a vibro-tactile (f	feel) and auditory		Dalities			,	
(hear) cue to enhance intersection at	wareness for the	Highways					
drivers approaching on the stop-control	lied legs.	N=None; L=Limited; C=Common; P=Proven					ven
Rumble strips are used where engir indicates a special need due to stoppi restrictions, high approach speeds, or sign violation crashes.	neering judgment ing sight distance a history of stop	Do 28% of	ocumente failure to s	ed B stop	enet colli	fits	1 5 ⁷
They should be installed on the approaches to intersections, and effective where motorists have not bee for a significant distance. They can be paint markings. They require regul	e stop-controlled are particularly n required to stop be enhanced with lar monitoring to	10% - 22	2% of all i	njury	' coll	ision	S
maintain their effectiveness.		Tvr	oical Insta	allati	on (Cost	
Transverse rumble strips may not b	e appropriate in						
residential areas due to noise and vi	bration concerns.		Units	Cos	t Ran	ge Lliat	
In addition to the effective strategies an	nd enhancements	Retrofit	set	\$20	00	\$60	00
listed below, Stop Anead signs, largel	r Stop signs, and	New	set	\$20	00	\$50	00
supplementary measures.	ly be used as						
Further Guidance	Other Effective	e Strateg	ies and E	Inha	nce	men	ts
TAC Best Practice Guidelines for the	 Advance interse 	ction war	ning on m	ajor	road	ł	
Design and Application of Transverse	Flashing beacor	n on stop	sign				
HUMDIE Strips [Section 4.0]	Removal of obst	tructions v	within sigh	nt tria	angle	es S	haa
Alberta Highway Geometric Design Guide [Section C3.1]	Transverse pave	ement ma	urkings	ioad	арр	roac	nes

METHODS OF REDUCING COLLISIONS ON ALBERTA ROADS

BASIC APPLICATION GUIDELINES FOR SIGNALIZED INTERSECTION COLLISION REDUCTION MEASURES

Advance warning flashers	25
Conversion to roundabout	26
Dedicated left-turn lane with phasing	27
Positive offset left-turn lanes	28
Protected only left-turn phases	29
Removal of unwarranted signals	30
Signal back plates	31
Smart right-turn channel	32

Methods of Reducing Collisions on Alberta Road	ds Signaliz	ed Ints	Sept. 201	0	F	Page	25
Advance Intersection War Flashers	rning		Land Urban	l Use	\checkmark	IM	NIN ST
			Suburt	ban			HER
			Rural		\checkmark		
PREPARE TO STOP		MAXIMU ?	Posted ■ ≤50 km 60-70 k 80-90 k ≥100 kr	Spee /h :m/h :m/h m/h	eds √ √		
Application Guidance			Alberta	Stat	us		
<i>Objective:</i> to alert drivers of the onset traffic signal indication at an upcoming	of the red signalized	Large Munic Small	cipalities	N	L	C √	<i>P</i> √
Intersection.		Munic	palities			v ,	
Advance Warning Flashers (AWF's) prov conspicuous advance warning of a signalized	vide highly intersection	Highw N-None	Vays	Commo	n·P–	√ Provei	\checkmark
ahead. They are timed with the signal so the decision can occur well before the intersection right angle and rear end crashes.	at the stop , to prevent		Documente	ed Be	enefi	ts	
Advance warning flashers are more effective:		18% of	f total collisio	ons ¹²			
 where limited sight distances are available on higher speed roads; 	Э;	44% of all fatal and injury collisions ¹¹					ns ¹¹
 on roads with high truck volume; on steep approach grades; 		20% -	44% of all in	njury c	collis	ions	
 at intersections with a collision history; an at intersections with high minor road volur 	d, nes.						
Advance warning flashers can also be used a such as the first signalized intersection at the o	t gateways, utskirts of a	T	ypical Insta	allatio	on C	ost	
city.			Units	Cost Low	Ranç	ge High	1
Guidance for the application, placement an AWF's is provided in the TAC document referen	d timing of ced below.	Retrofi New	t each each	\$1,50 \$1,50	00 00	\$3,0 \$3,0	00 00
Further GuidanceOtMUTCDC [Section A3.6.4]• RemoTAC Advance Warning Flashers: Guidelines for Application and Installation [Section 5.2]• Increase• Horize• Gatew• Positi	her Effectiv oval of obstru or upgraded i overse pavem ased sign retr ontal and ver way treatmen ve offset left-	e Strate ctions wi ntersecti eent mark oreflectiv tical real ts turn lane	egies and E thin sight tria on lighting kings vity ignments	ngles	icen	nent	5

¹² Sayed, T., Homayoun, V., Rodriguez, F., Advance Warning Flashers, Do They Improve Safety? (2000).

Methods of Reducing Collisions on Alberta Roads

Signalized Ints

Sept. 2010 Page 26

Conversion of Signalized Intersection to Roundabout

Application Guidance

Objective: to reduce conflicting movements, through vehicle speeds and collision severity at signalized intersections.

Signalized intersections can be relatively high in complexity, due to the several phases and conflict points and are typically where most crashes in a road network are concentrated. Where space permits, traffic signals can be upgraded to modern roundabouts. A well designed modern roundabout can improve the safety of intersections by reducing speed and speed differentials at intersections and by eliminating or altering conflict points.

Due to high construction costs, roundabouts should only be implemented at locations where there is a high rate of right angle, head-on, left turn across path or u-turn crashes, or in the absence of crash data, where left-turn volumes are high. They can also be effective as gateway treatments.

Roundabouts should only be applied if grades are minimal, and adequate sight distances can be provided. Their effectiveness is highly dependent on their design features, such as the diameter, entrance angle, and central island treatments.

Preferences for the practices for the layout, signing and marking are described in <u>FHWA's Roundabouts: An</u> <u>Informational Guide</u>.

Further Guidance

NCHRP Report 572: Roundabouts

Alberta Transportation Roundabout

Highways (Design Bulletin #68/2010)

Design Guidelines on Provincial

in the United States

nalized		Land	Use	•		
ndabout		Urban		\checkmark	- M	UN ST
the second s		Subur	ban	\checkmark		H
III		Rural		\checkmark		
T		Posted	Spe	eds		
Con The	MAXIMUM	≤50 km	/h			
	2	60-70 k 80-90 k	. <u>m/h</u> .m/h			
Call-(Ŀ	≥100 kr	n/h			
nce		Alberta	Stat	tus		
ing movements			Ν	L	С	Ρ
sion severity at	Large Municipa	lities		\checkmark		
	Small	litico				
elatively high in	Highway			2		
a road network are					1	
affic signals can be Il designed modern	,	,		- ,		
of intersections by at intersections and	Do	cumente	ed B	enef	its 🧵	1ª
	40% - 48%	6 of all co	ollisio	ons ⁸		
outs should only be a high rate of right	78% of all	fatal and	d inju	ry co	ollisio	ns ⁸
i-turn crashes, or in t-turn volumes are	30% - 62.4	4% of all	fata	and	injur	y
way treatments.	Collisions					
rades are minimal,	Турі	cal Insta	allati	on C	ost	
eir design features,	I 5 T	Units	Cost I	Range) Lliab	
and central Island	Retrofit	LS	\$275,	000	\$500	,000
avout cigning and	New* ·	- · · · · · · · · · · · · · · · · · · ·	to s	slightl	- y be	more
Roundabouts: An	expensive th removing of	nan 'New' existing s	due te sians	o add and s	ed co signals	sts of s and
Other Effectiv	possible reg	rading.	nhai		onte	
Other Enectiv	e Strategie	s anu e	ma	icen	ients	Ď
• Transverse rumb	le strips	مالماما م				
 New or upgraded Gateway treatme 	ntersectio	n lighting	J			
Advance intersec	ction warning on major road					

Removal of unwarranted signals

Methods of Reducing Collisions on Albe	erta Roads Signaliz	ed Ints Sept. 20)10 Page 27
Dedicated Left-turn L Phasing	_ane with	Lan Urbar	
	Subu	rban √ √	
		MAXIMUM ≤50 kr 60-70 80-90 ≥100 kr	I Speeds n/h √ km/h √ km/h √ km/h √
Application Guida	nce	Albert	a Status
<i>Objective:</i> to separate left-turn through vehicles on the approach sequence, to provide assured gaps.	movements from and in the signal	Large Municipalities Small	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
A high proportion of the injury and fatal at signalized intersections involve lef Separating left-turn movements on reduce conflicts with through movem greater flexibility with regards to dedica	A high proportion of the injury and fatal collisions that occur at signalized intersections involve left turn movements. Separating left-turn movements on the approach can reduce conflicts with through movements, and provide		N √ √ €Common; P=Proven
and displays. Left-turn lanes should be provided at all with high left turning traffic volumes, permits. On highways, left turn lane according to TRANS' <u>Highway Geometr</u> Where left-turn lanes are warranted at suggested that protected left-turn ph whenever possible, where operational maintained.	a traffic signal, it is asing be provided l efficiency can be	Document 58% all collisions *Although not explicit reduction is assumed approaches that the 30% - 58% of all	ted Benefits Transformed Benefits and Benefi
 The benefits of dedicated left-turn lane be more fully realized by including the for Consider providing protected-only Ensure left-turn indications are provided with the through realized with the the through realized with the the the through	es and phasing can blowing features: left-turn phasing positioned so as to	Typical InsImage: Colspan="2">UnitsRetrofitLSNewLS	tallation CostCost RangeLowHigh\$20k\$100k\$15k\$30k
Further Guidance MUTCDC [Section B4.6.6] Alberta Highway Geometric Design Guide [D.7.6] TAC Geometric Design Guide for Canadian Roads [Section 2.3.10]	Other Effectiv • Signal back plate • New or upgraded • Protected only lef • Positive offset lef	e Strategies and s I intersection lightir ft-turn phase t-turn lanes	Enhancements

¹³ <u>Thomas, G., and D. Smith. Effectiveness of Roadway Safety improvements. Center for Transportation Research</u> and education, 2001

Methods of Reducing Collisions on Alb	erta Roads Signaliz	ed Ints	Sept. 201	0	F	Page	28
Positive Offset Left-t	urn Lanes		Lanc	l Use	e		
			Urban		\checkmark		IN ST
			Subur	oan			世界
					\checkmark		
			Posted	Spe	eds		
	1-	MAXIMUM	≤50 km	/h			
215 all the	and the second	?	60-70 k	$\frac{m/h}{m/h}$			
			≥100 ki	n/h	v		
			Alberta	Stat	tus		
Application Guida	ince			Ν	L	С	Ρ
<i>Objective:</i> to improve sight distant	ce for permissive	Large Municip	alities			\checkmark	
ient-turn movements at signalized int	ersections.	Small	alitiaa		\checkmark		
Positive offset left-turn lanes (aligning lanes to the left-of one another) ca	g opposing left-turn an help provide an	Highway			2		
unobstructed view of opposing traffic,	to assist drivers in	N=None: L =	ys =Limited: C=0	Commo	on: P=	Prover	<u> </u>
has been found to be extremely benefic	and for older drivers.		-2		511,1 =		
In general, it is suggested that positive	offset left-turn lanes	Documented Benefits *					
be provided wherever space exists and movements are provided <i>Guidelines</i> i	l permissive left-turn						ו ר
Positive Offset Left-turn Lanes have be	en prepared as part	injury/fata	al collisior	1 ¹⁴		Per	
<i>Roads (Section 3.4).</i> The key installation	on criteria include:	*Although	not explicitly	/ state	ed, the	e collis	sion
Safety: presence of left-turn collis	ions	reduction is approache	s assumed s that the tr	to be j eatme	just fo ent wa	or the is app	lied.
• Signal phasing: where it may	not be possible to	20% - 40% of injury collisions					
 Median width: at least 10.8 metre 	g s	Тур	oical Insta	allati	on C	ost	
The offset is much more effective wit	h raised separation.	- 🏩 -		Cos	t Rano	ae	
but can also be applied using de	epressed island or	Rotrofit	Units	Low		High	ו רע
above include recommended positive offset distances.		New	LS	\$25k	х Х	\$100)k
Further Guidance	Key Related	Strategie	es and En	hand	ceme	ents	
TAC Geometric Design Guide for	Protected only le	ft-turn pha	ise				
Canadian Hoads [Section 2.3.8.7]	 New or upgraded Dedicated left-ture 	t intersecti rn lane wit	ion lighting h phasing	g			
Alberta Highway Geometric	Traffic signal backboards						
Section U.D.1.4							
<u> </u>	l						

¹⁴ <u>FHWA, Techbrief: Safety Evaluation of Offset Improvements for Left-Turn Lanes. FHWA Publication No.: FHWA-HRT-09-036</u>

_

Methods of Reducing Collisions on Alberta Roads Sig	gnalized Ints Sept. 2010 Page 30
Removal of Unwarranted Traffic	C Land Use
Signais	Urban √ Suburban √ Rural √
	MAXIMUM ≤50 km/h √ 60-70 km/h √ 80-90 km/h √ ≥100 km/h √
Application Guidance	Alberta Status
<i>Objective:</i> to ensure that traffic signals a provided only if they continue to be warranted operational or safety reasons.	are forNLCPLarge Municipalities $$ $$ $$ Small $$ $$ $$
Studies show that traffic signals typically only impro- safety at locations where they are warranted according accepted engineering practices.	rove g to Highways √ N=None; L=Limited; C=Common; P=Proven
Several conditions could prompt the need to review continued appropriate use of a traffic signal, including drop in traffic volumes (particularly minor street volume which may be related to changes in traffic patterns due development, roadway re-classification or the removal certain movements. Aside from responding to chang road agencies may also choose to review the need for al its traffic signals as a regular course of business example, every two years).	the ng a les), e to al of ges, all of (for 25% of all urban collisions ¹⁵ 25% - 53% of all injury collisions
traffic signal removal is documented in the Institute Transportation Engineers guidelines referred to below.	e of Typical Installation Cost
The signals should be placed on flash mode prior to decommissioning. During an interim stage after remove the use of a 'New' sign (WD-182) and any applicable ta should be used. The unused signal structures need to completely removed so as to avoid confusing drivers.Further GuidanceOther EffeITE Guidelines for the Activation, Modification, or Removal of Traffic Control Signals (2005)Alberta Transportation Recommended Practices for Advance Warning of a Traffic Control Change• Conversion s • Increased sig • Removal of other	the oval, tabs o be Units Cost Range Low High Retrofit LS \$2000 \$6500 New ective Strategies and Enhancements signalized intersection to roundabout gn retroreflectivity obstructions within sight triangles

¹⁵ NCHRP, Crash Reduction Factors for Traffic Engineering and Intelligent Transportation System (ITS) Improvements: State-of-Knowledge Report (2005).

Methods of Reducing Collisions on Alb	erta Roads	Signaliz	ed Ints	Sept. 201	10	Page 31	
Signal Back Pl	ates			Land	l Use		
			Urban Suburt Rural	√ ban √	MAIN ST		
		Posted Speeds MAXIMUM ≤50□km/h √ 60-70 km/h √ 80-90 km/h √ ≥100 km/h √					
Application Guida	200			Alberta	status	i	
<i>Objective:</i> to improve the cor traffic signal displays.	nce nspicuousr	ness of	Large Municij Small	oalities	N L	C P √ √	
Traffic signal back plates (or "backboards") provide a border around traffic signal lenses that helps to reduce sun glare problems and background distractions.			Highways √ N=None; L=Limited; C=Common; P=Proven				
Back plates should be provided on all primary signal heads, but can also be effective with secondary or tertiary heads. The backboard is particularly effective during sun glare or where there are background distractions such as trees or mountains.			Documented Benefits				
Back plates should be yellow characteristics, but black can also be more effective at night, to contra- background. If black is used, a ye around the backboard can be highly	v, with re be used. Y ast from th llow reflecti r effective.	eflective ´ellow is ne dark ive strip	15% - 3	2% of all if	njury coi	IISIONS	
Signal back plates represent a hi measure that should be impleme	ighly cost-e ented cons	effective sistently	Ту	pical Insta	allation	Cost	
throughout a road jurisdiction.	throughout a road jurisdiction.			Units	Cost Ra	Inge High	
			New	each each	\$1000 \$500	\$5000 \$1000	
Further Guidance MUTCDC [Section B3.2.3]	Other New or u Advance	Effectiv	e Strateg intersec flashers ft-turn ob	gies and E	Enhance g	ments	
TAC <u>Synthesis of Current</u> <u>Practices for Enhancing Traffic</u> Signal Conspicuity, 2005		2 0 11 10					

Smart Right-turn Channel

Application Guidance

Objective: to reduce rear-end and pedestrian collisions by revising the geometry to better reflect the yield condition.

In the modification of existing and construction of new yield-controlled right-turn channels, "smart right-turn channels" (also known as "Aussie Right" and the "High Entry-Angle Design") can be considered. These designs have been developed and tested by agencies including the City of Ottawa and the City of Edmonton.

Compared to the traditional right-turn configurations, this design aims to reduce driver workload by reducing the angle drivers must turn their heads to check for traffic, improving visibility of pedestrians, and reducing the turning speed to be more compatible with a yield condition. Therefore, the design represents a compromise between providing the superior visibility of a simple radius design and the capacity and truck turning accommodation of a higher-speed design. Multiple designs have been endorsed by the City of Edmonton.

Therefore, smart right-turn channels should be considered at all locations where both pedestrians and trucks are since it contains features present, intended to accommodate both. It is ideally suited where cross-street traffic volumes and truck turning volumes are relatively low.

	Urban	\checkmark	MAIN ST
	Suburban	\checkmark	
	Rural		

Sept. 2010

Posted Speeds

MAXIMUM	≤50 km/h	\checkmark
	60-70 km/h	\checkmark
121	80-90 km/h	
	≥100 km/h	

Alberta Status

Ν	L	С	Ρ
	\checkmark		\checkmark
	\checkmark		
\checkmark			
	 √	N L √ √ √ √	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Documented Benefits

No formal study with quoted collision reduction factor (CRF), but recent Edmonton experience shows a reduction in collision rate of 65-80%.

65% - 80% of all injury collisions

Typical Installation Cost

	Linito	Cost Rar	ge		
*	Units	Low	High		
Retrofit	each	\$15k	\$50k		
New	each	\$15k	\$25k		

Further Guidance	Other Effective Strategies and Enhancements
City of Edmonton <u>Integrated</u> <u>Corridor Safety Project</u> <u>Report (</u> 2009) [Section 3]	 Removal of obstructions from sight triangles New or upgraded intersection lighting Wider sidewalk or paved shoulder Pedestrian countdown signals
ITE <u>Urban Street Geometric</u> <u>Design Handbook</u> [Section 4.5.6]	

METHODS OF REDUCING COLLISIONS ON ALBERTA ROADS

BASIC APPLICATION GUIDELINES FOR RUN-OFF-ROAD MOVEMENTS COLLISION REDUCTION MEASURES

Advance curve warning signs			
High tension cable barrier systems	36		
Horizontal and vertical realignments	37		
Impact attenuators	38		
Removal of fixed objects			
Rumble strips			
Shoulder rumble strips	40		
Centreline rumble strips	41		

Methods of Reducing Collisions on Alb	erta Roads Off-R	oad Movements	Sept. 2010	Page 35		
Advance Curve War	nina Sians		Land Use	•		
			Urban Suburban Rural			
		MAXIMUM ?	Posted Spece ≤50⊡km/h 60-70 km/h 80-90 km/h ≥100 km/h	eds V V V		
Application Guida		Alberta Stat	tus			
<i>Objective:</i> To inform motorists change in the road alignment.	g Large Municipal	ities	$\begin{array}{c c} L & C & P \\ \hline & \end{array}$			
Advance curve warning signs inform motorists of a upcoming change in the horizontal alignment of the roa		an Highways	ities	√ √		
Curve warning signs should be provide radii lower than the threshold value MUTCDC Section A3.2.1 for various d WA-3 is provided for gentler curves curves and WA-1 for turns	th ne gn er 10% reduct collisions, s	N=None; L=Limited; C=Common; P=Proven Documented Benefits 10% reduction (all fatal and injury collisions, sign only) ⁷				
Advisory speed tabs should be provid has a safe speed of at least 20 km/ speed. Where these signs have pro amber flashing beacon above the considered.	29% reduct sign only) ⁷ ad 30% (all RC an 13% reduct with advisor 30% reduct	29% reduction (all head-on collisions, sign only) ⁷ 30% (all ROR collisions, sign only) ⁷ 13% reduction (all injury collisions, sign with advisory speed tab) ⁷ 30% reduction (all collisions, sign with				
If successive curves/turns in opposite than 150m apart, reverse Curve/Turr signs should be used.	e directions are lean n or Winding Roa	advisory sp ad 5% - 13%	advisory speed tab or flashing beacon)' 5% - 13% of all injury collisions			
Implementation guidance can be for Transportation Recommended Practic Curve Signs. The signs should be loc advance of the curve.	ta in Retrofit	I ypical installation CostUnitsCost RangeLowHighRetrofiteach\$425\$600Neweach\$425\$600				
Further Guidance	Other Effect	tive Strategie	s and Enhai	ncements		
Alberta Transportation Recommended Practices: Turn and Curve Signs	 Delineator pos Edgelines and High-visibility Rumble strips 	sts centrelines oavement mark (shoulder/cent	kings reline)			
MUTCDC [Section A3.2.1]	Horizontal and	l vertical realig	nments			

Methods of Reducing Collisions on Alberta R	oads Off-Road	Movement	s Sept. 2	2010	F	Page	36
High-Tension Cable B Systems	arrier		•	MAIN ST			
				-			
		MAXIMUM ≤50 km/h ≤50 km/h 2 60-70 km/h √ 80-90 km/h √ ≥100 km/h √					
Application Guidance			Alberta	Stat	tus	-	
<i>Objective:</i> to minimize the severity of median		Large Municipa	alities	N √	L	C	Ρ
Crossover collisions and run-off-road collisions. High tension cable barriers are intended to reduce the risk of cross-median collisions and run-off-road collisions with significant hazards. While they have recently been implemented successfully in median applications in Alberta, greater use for roadside applications is encouraged (to protect a roadside hazard such as a fixed object, steep embankment or a water body). The feasibility of removing or relocating hazards should be considered prior to providing a barrier.		Small Municipa	alities	\checkmark	,		
		Highways √					
		Documented Benefits 44% reduction of run-off-road fatal collisions (roadside guardrail) ¹⁶ 90% reduction of head-on injury collisions (median barrier) ¹⁷					
Detailed application guidance is provided in <i>Guidelines for</i> <i>the Application of High Tension Cable Barrier Systems</i> , prepared by Opus as part of the study <i>Methods of</i> <i>Reducing Collisions on Alberta Roads (Section 3.6)</i> . For median applications, the need is based on a combination of traffic volume and median width. For roadside applications, factors that are to be considered include: • Clear zones		91% reduction of head-on fatal collisions (median barrier) ¹⁸ 15% - 35.2% reduction of run-off- road injury collisions (roadside) 36% - 72% reduction of head-on					f
		injury collisions (median)					
 Presence of hazards Steepness of sideslopes 	Presence of hazards Steepness of sideslapes			anau		051	
 Presence of obstacles and water bodies 		Retrofit	Units m m	Cost Low \$110	t Rang	ge High \$250 \$220))
Further Guidance	Other Effectiv	e Strategi	es and E	nhai	ncen	nents	S
Alberta Transportation's <u>Roadside</u> <u>Design Guide (</u> 2007) [Ch H-5] TAC <u>Geometric Design Guide for</u> <u>Canadian Road</u> s [Section 3]	dvance curve w orizontal and ve near delineatior emoval of fixed	arning sign ertical reali n systems objects fro	ns gnments om the cle	ear zo	one		

¹⁶Bahar, G., Parkhill, M., Hauer, E., Council, F., Persaud, B., Zegeer, C., Elvik, R., Smiley, A., and Scott, B. "Prepare Parts I and II of a Highway Safety Manual: Knowledge Base for Part II". Unpublished material from NCHRP 17-27. (2007)
 ¹⁷Washington State Department of Transportation, Washington State Cable Median Barrier In-Service Study (2003)
 ¹⁸Chandler, Brian: Eliminating Cross-Median Fatalities: Statewide Installation of Median Cable Barrier in Missouri (2007)

Methods of Reducing Collisions on Alb	erta Roads Off-Road	Road Movements Sept. 2010 Page 37						
Horizontal and V	/ertical							
Healightiet			Urban		an √			
			Suburk	ban				
State.			Rural		\checkmark			
A State of the sublements								
			Posted	Spee	eds			
	A STATE	MAXIMUM	≤50 km	/h				
		9	60-70 k	m/h				
		•	80-90 K	m/n n/h	$\sqrt{1}$			
Application Guida	Ince		Alberta	Stat	tus			
				N	1	С	P	
Objective: to reduce the likel	ihood of run-off-	Large						
road movements by addre	essing roadway	Municipa	lities		N			
angriment issues.		Small Municipal	litios		\checkmark			
A high proportion of single-vehicle fatal	and injury collisions	Liebweve						
others along uphill and downhill gra	nizontal curves, and indes. A significant	Highways	5			γ	N	
proportion of these involve driver-relation	ted factors, such as	N=None; L=Limited; C=Common; P=Proven						
speeding, fatigue and loss of control due to road surface conditions or swerving manoeuvres to avoid other collisions. Most of these cannot be prevent through road		Documented Benefits						
	73% all collisions along curve ⁷							
The most effective method for road a collisions on curves is to avoid introduc	agencies to address ing sudden changes	50% of all collisions along curve ¹⁹						
drivers. Where significant clusters opportunities can be taken to smooth th	of collisions occur, ne curves.	50% - 73%	6 of all in	njury	collis	sions		
Horizontal and vertical alignments shou	uld provide sufficient	 .				.		
sight distance based on the design sp	eed. Simultaneous	Гурі	cai insta	allati	on C	ost		
avoided wherever possible. Also.	design consistency		Linite	ite Cost Ra		ange*		
should be provided as much as p	possible, i.e. avoid	Rotrofit	km	Low	/	⊡igh	1	
providing curves with successively tight	er radii.	New	-	- φ7:5r	<u>۱</u>	>50 -	VI	
Realignments are typically costly to i result in the most significant collision re	*New projec additional ca	ts should r apital costs	not re: 3.	sult in	any			
Further Guidance	Other Effectiv	e Strategie	es and E	nhai	ncen	nents	S	
Alberta Highway Geometric	 Delineator posts Edgelines and co 	ntrolines						
Design Guide [B.3/4]	 High-visibility pay 	/ement mar	kinas					
	Advance curve w	arning sign	S					
TAC <u>Geometric Design Guide for</u>	Rumble strips (sh	noulder/cen	treline)					
Canadian Roads [Section 2.1.2-4]	Removal of fixed	objects from	m the cle	ear zo	one			
				_		_		

¹⁹ Agent, K. R., Stamatiadis, N., and Jones, S., "Development of Accident Reduction Factors." *KTC-96-13*, Kentucky Transportation Cabinet, (1996)

Methods of Reducing Collisions on Alberta Ro	ads Off-Road	d Movements	Sept. 2010	Pa	ge 38			
Impact Attenuators	S	Land Use						
			Urban		MAIN ST			
	-		Suburban		ME			
			Rural	\checkmark				
		F	Posted Spe	eds				
		MAXIMUM	≤50 km/h 60-70 km/h					
and the second second		2	80-90 km/h	\checkmark				
			≥100 km/h	\checkmark				
			Alberta Sta	tus				
Application Guidance			N	L C	Ρ			
<i>Objective:</i> to minimize the severity of a run-off- road collision by absorbing its impact.		Large	tion	\checkmark				
		Small	1105	2				
An impact attenuator (crash cushion)	is a safety	Municipali	ties	N .				
device intended to reduce the damage	caused to	High⊡ay		\checkmark				
movement, particularly with the end o	f a barrier.	N=None; L=Limited; C=Common; P=Proven						
Collisions with the side of a crash attenua help to redirect the vehicle away from structure	tor can also a roadside	Documented Benefits						
		75% of fata	al collisions	with fixe	ed			
If a hazard (such as a bridge pier), eliminated, full barriers should be provided	cannot be Where full	object						
barriers cannot be provided to reduce the	e severity of	35% - 75% of injury collisions						
recommended that crash impact atte	nuators be							
provided along all highways with an A/	ADT greater							
minimum of 50,000 by the TRANS Road	side Design							
Guide for QuadGuard barriers.		Typical Installation Cost						
			Jnits Cos	t Range				
		Retrofit e	Lo Each \$15	<u> </u> k\$	iigh 30k			
		New e	each \$15	k \$	25k			
Further Guidance C	ther Effectiv	ve Strategies	s and Enha	nceme	nts			
• Cat	ble barrier sys	stems						
Alberta Transportation Roadside Design Guide [Section H3.2.3.2]	noval of fixed	objects from	n the clear z	one				

Methods of Reducing Collisions on Alberta Roads Off-Roa			Movements	t. 2010 Page 39					
Removal of Fixed Objects			Land Use						
and the second second	for st			Urban					
and some statistics	Discourt GAS & DIES			Suburb	an	\checkmark			
				Rural		\checkmark			
				Posted	Sper	eds			
			MAXIMUM	≤50 km/	/h				
			2	60-70 k	m/h				
			Ŀ	80-90 k ≥100 kr	km/h √ km/h √				
				Alberta	Stat	tus			
Application Guida	nce				Ν	L	С	P	
Objective: to minimize the likelihood	d of colliding with a roadway and enter rity collisions. Most	Large	lition		\checkmark				
fixed object once drivers leave the i		d enter	Small						
		Municipalities		v	<u> </u>				
Fixed objects can result in high-sever road agencies have policies and/		s. Most es that	Highways				\checkmark	\checkmark	
discourage the design and constructi	on of fixed	objects	N=None; L=L	imited; C=C	ommo	on; P=	Prover	n	
near the roadside. Policies and proces remove fixed objects that end up at construction are, however, not as comr	sses to <i>ider</i> the roadsi non. <i>Guide</i>	ntify and de after lines for	Documented Benefits						
<i>the Removal of Fixed Objects</i> have now part of the study on <i>Methods of Rea</i>	w been prep <i>lucing Collis</i>	ared as sions on	50% of all fatal collisions ⁷						12
Alberta Roads (Section 3.7).			30% of all injury collisions ⁷						
The Guidelines build on the existing objects to include other hazards, such	definitions as culverts.	of fixed ditches.	88% of fixed object collisions ⁷						
steep slopes and water bodies. They	recommend	that the	15% - 30% of all injury collisions						
be followed to mitigate hazards, starting with removal.		emoval.	Турі	ical Insta	Ilati	on C	Cost		_
Since removal is the most effective v	way of deal	ing with	Г 🂲 Т	Units	Cost	t Ran	ge*		
trigger the removal process. A "roadside safety assessment" is one of the tools recommended as part of the ongoing maintenance program. The document lists the		Rotrofit		Low	<u> </u>	High	1 M		
		New	LS	\$100	<u>,</u>	>\$1	M		
		*Large cost	ranges due	e to va	ariabi	ility of			
types of changes in the roadway environment that would			objects with	IN Clear ZOI	ies. (Gene	rally lo	ower	
trigger such an assessment, and	provides (example		··· projecta.					
collision thresholds for removal, protect	ion and prev	ention.	• Chucha et		<u></u>			_	_
Further Guidance	Other		e Strategie	es and E	nnar	ncer	nents	S	

Alberta Transportation Roadside	Cable barriers
<u>Design Guide (</u> 2007) [Ch H-3]	Delineator Posts
	 Horizontal and vertical realignments
<u>Alberta Highway Geometric</u>	Rumble strips (shoulder)
Design Guide [Section C5]	, ,

Methods of Reducing Collisions on Alberta Roads Off-Road Movements Sept. 2010 Pa	age 40			
Shoulder Rumble Strips Land Use				
Urban	MAIN ST			
Suburban				
Rural √				
Posted Speeds				
MAXIMIM ≤50 km/h				
60-70 km/h √				
80-90 km/h √				
Application Guidance Alberta Status				
	CP			
Objective:to reduce run-off-road collisions by alerting drivers when they begin to travel off-road.Large Municipalitiesn/a				
Along highways, shoulder rumble strips provide an auditory warning to drivers who have veered out of the travel lane				
and are encroaching on the shoulder. Since many run-off- Highways	$\sqrt{\sqrt{1}}$			
provides drivers the opportunity to regain their alertness and take the necessary corrective action.	N=None; L=Limited; C=Common; P=Proven			
Bumble strips have proven highly cost-effective in British Documented Benefit	s 👘			
Columbia and Alberta. They are relatively inexpensive to implement and reduce the likelihood and coverity of run off. 18% of all injury collisions ²⁰	18% of all injury collisions ²⁰			
road collisions. Therefore, they should be provided	0000 reduction (Off read right			
should first be provided along highways with higher speed collisions) ²⁰	collisions) ²⁰			
limits, greater curvature, steeper side slopes, and where fixed objects are located within the clear zone. 10% - 18% of all injury collisi	ons			
Along highways, they should only be avoided along bridge				
decks and overpasses, or where there are no paved				
shoulders. In residential areas or other parts of urban	ost			
be avoided.	•*			
Shoulder rumble strips can be greeved or milled. They can	e High			
also be painted to provide added visual delineation.	\$3000 \$2000			
Shoulder rumble strips need to be re-applied regularly to *Assumed two strips	φ2000			
Further Guidance Other Effective Strategies and Enhance	omonte			
• Delineator posts	CIIICIIIS			
Alberta Highway Geometric Design • Edgelines and centrelines				
Guide [Section C.3.1] • Linear delineation systems				
High-visibility pavement markings Advance survey warries sizes				
<i>Implementation of Shoulder</i>	zone			
and Centreline Rumble Strips [Section 1] • Centreline rumble strips	_0110			

²⁰ Sayed, de Leur and Pump "Impact of Rumble Strips on Collision Reduction on BC Highways: A Comprehensive Before and After Safety Study", TRB 2010 Annual Meeting

Methods of Reducing Collisions on Albe	erta Roads Off-Roa	d Movements	Jan. 3	2011	Page 41
Centreline Rumbl	Controlino Rumble Strins		Land L	Jse	
			Irban		MAIN ST
		S	uburba	เท	And Residence
		F	lural	\checkmark	
		Po	sted S	peeds	
			50 km/h		
		? 80)-90 km	i/h √	
			00 km/	′h √	
Application Guida	ince	AI	berta S		
<i>Objective:</i> to reduce run-off-roa	d-left and head-	Large	r	/v ∣ ∟ n/a	
to travel across the centreline.	men they begin	Municipalitie Small	S '	-/	
Along highways, centreline rumble strip	s provide an	Municipalitie	s r		
auditory warning to drivers who have veered out of the travel lane and into the path of opposing traffic. Since		Highways			$\sqrt{\sqrt{1-1}}$
many head-on and off-road-left collision	ns involve fatigue, ne opportunity to	N=NONE; L=LIN	nited; C=C	Jommon;	P=Proven
regain their alertness and take the necessary corrective action.		Documented Benefits			J_
Rumble strips are relatively inexpensive to implement and		26% reduction (all head-on injury collisions) ²⁰			
should be provided continuously along	all undivided	68% reduction (all head-on fatal			
along highways. In terms of priority, they sho	uld first be provided s, greater curvature,				
steeper side slopes, and where there is on collisions.	a history of head-	18% reductio	n (all in	jury col	lisions) ²¹
Along highways, they should be avoided	d along sections	Turnical	Install	lation (<u>`aat</u>
that permit passing (broken centreline), residential areas or other parts of urban	that permit passing (broken centreline), as well as in		Install	lation C	
are noise concerns.		υ 🥋	nits —	Cost I Low	Range High
Centreline rumble strips need to be re-applied regularly to maintain their effectiveness		Retrofit Retrofit	km km	\$1000 \$800	\$1500 \$1000
Further Guidance Other Effective Strategies and Enhancement			nents		
TAC Synthesis of Practices for the	• High-visibility pavement markings				
Implementation of Centreline Rumble Strips	 Wider pavement markings Edgelines and centrelines 				
TAC Best Practices for the	varning signs				
Implementation of Shoulder					

²¹ Sayed, Deleur and Pump "Impact of Rumble Strips on Collision Reduction on BC Highways: A Comprehensive Before and After Safety Study", TRB 2010 Annual Meeting

METHODS OF REDUCING COLLISIONS ON ALBERTA ROADS

BASIC APPLICATION GUIDELINES FOR ROADWAYS (LINKS) COLLISION REDUCTION MEASURES

Delineator posts	45
Edgelines and centrelines	46
High-visibility pavement markings	47
Increased sign retroreflectivity	48
Linear delineation systems	49
Wider pavement markings	50

Methods of Heducing Collisions on Alb	ys (Links) Sept. 2	010 Page 45			
Delineator Po	Lan	d Use			
		Urbar	MAIN ST		
Although and the second states of the second	1	Subu	rban		
	Alexandream and a second	Rural			
Contraction of the second second	Contraction of the local division of the loc				
Constants States		Poster	l Sneeds		
and the second			n/		
	3	60-70	km/h √		
		80-90	km/h √ m/h √		
Application Guida	nco	Albert	a Status		
		Large	N L C P		
<i>Objective:</i> to emphasize the roadway alignment, particularly during dark conditions.		Municipalities	n/a		
		Small Municipalities	n/a		
Delineator posts, sometimes referred to as roadside		Highways $$			
posts with reflectorized strips mo	N=None; L=Limited; C=Common; P=Proven				
locations along a horizontal curve o	r at an intersection				
particularly effective during snow-c	overed conditions,	Documented Benefits			
provide lighting.	It is inteasible to	67% of head-on collisions ⁷			
	67% of sideswipe collisions ⁷				
but it is suggested that their use	e be reserved for	25% of night-time collisions ⁷			
horizontal curves, or along straight	sections where the	11% of all collision	ns ⁷		
road alignment is unclear at hight.		5% - 11% of all in	jury collisions		
They are not to be used in place of	any warning signs.				
chevron alignment signs for further emphasis.		Typical Installation Cost			
Installation details, such as the recommended spacing			Cost Range		
in advance of and along horizontal curves, are		Retrofit each	LOW High \$75 \$100		
provided in Table A3-4 of the MUTC	New each	\$75 \$100			
Further Guidance	Other Effectiv	e Strategies and	Enhancements		
	• Edgelines				
MUTCDC [Section A3.4.12]	Increased sign re Increased sign re	etroreflectivity			
Alberta Highway Pavement	vement markings				
Marking Guide [Section C7.2.2]	tems				

Methods of Reducing Collisions on Alberta Roads Roadways (Links) Sept. 2010			Page 46		
Edgelines and Cen	La	and Use	A		
		Urb	an [^]		
		Sut	ourban -		
	Anton a Contraction	Rur	al ⁻		
			L.		
	and the second	Post	ed Spee	ds	
		MAXIMUM ≤50	km/h		
	Na Na	9 60-7	0 km/h 0 km/h	$\frac{N}{}$	
	+) km/h		
		Albe	rta Stati	91	
Application Guida	ince		N		
		Large			
<i>Objective:</i> to enhance the delineation of lanes and the roadway.		Municipalities			
		Municipalities		\checkmark	
undivided roadways, and along I	ow-volume roads,	Highways		$\sqrt{\sqrt{1-1}}$	
particularly during dark conditions	and when drivers	N=None; L=Limited; C=Common; P=Proven			
within the travel lane.					
Based on TRANS' Listway Coometric Design Cuide		Documented Benefits			
lane (Section C.2), and shoulder (S	Section C.3) widths	24% of injury collisions ²²			
vary depending on the Design Designation, and		10% - 19% of all iniury collisions			
should be marked accordingly.	1078 - 1378 01 4	n ngury c	0111310113		
Centrelines should always be yellow	w, while edgelines				
the road, and yellow when on the le	ft side of a divided				
highway.					
Where paved shoulders of adequate width cannot be provided, edgelines can provide very effective delineation, even adjacent to raised curbs in urban situations.		Typical Ir	stallatio	on Cost	
		│┌ 🌰 ────	Cost	Bange	
		Units	Low	High	
		New km	\$850	\$2600	
Further Guidance	Other Effectiv	e Strategies and	d Enhan	cements	
	Rumble Strips (S	Shoulder & Centre	eline)		
MUTCDC [Section C1.4.2]	Delineator posts		,		
Alberta Highway Pavement Marking	 Linear delineation High-visibility pay 	n systems vement markings			
Guide [Figure TCS-C-201]	Wider pavement	markings			
	Wider sidewalk o	or paved shoulder	•		

²² Elvik, R. and Vaa, T., "Handbook of Road Safety Measures." Oxford, United Kingdom, Elsevier, (2004)

Methods of Reducing Collisions on Albert	ta Roads	Roadwa	ys (Links)	Sept. 2010)	Page 47
High-visibility Pavement Markings			Land L	Jse	E	
			Urban	N		
				Suburba	n v	AND DESCRIPTION
				Rurai	N	
· · · · · · ·				Posted S	peeds	1
			MAXIMUM ≤50 km/h √ 60-70 km/h √ 80-90 km/h √ ≥100 □ km/h √			
Application Ovider				Alberta S	status	
Application Guidan	ce			Λ	/ L	C P
<i>Objective:</i> to improve delineation of lanes and roadways during night-time and/or wet conditions.		Municipa Small Municipa	alities		√ √	
High-visibility pavement markings (HVPMs) are more		e more	Highway	/S		\checkmark
applicable to rural locations, but can also be used in urban areas. HVPMs better define opposing lanes		ised in lanes	N=None; L=Limited; C=Common; P=Proven			=Proven
HVPMs are very low cost, especially if implemented			Documented Benefits			
HVPMs are particularly useful in dark areas, such as locations with no street or ambient lighting. "Wet night" HVPMs provide better visibility of pavement markings on wet pavement.			No specific provide a reduction collisions markings 10% - 19	fic studies, l t least the s factor (24%) as regular 22 % of injury	but exp same c % of inj paver collisio	bected to ollision ury nent <i>ns</i>
			Тур	oical Install	ation	Cost
			- 🏐 -	Units	Cost Rar	nge
			Retrofit	km\$.ow 51000	High \$3000
Further Guidence	Other	Effortiv	New	km \$	1000	\$3000
	Uther		e Strateg	ies and En	lance	ments
MUTCDC [Section C1.4.2]	 Delineato Linear de Edgelines 	or posts lineation s and ce	n systems enterlines			
Alberta Highway Pavement Marking Guide• Wider pavement markings • Cable barrier systems • Removal of fixed objects from the clear zone						

Methods of Reducing Collisions on Alberta Roads Roadways (Links) Sept. 2010					Page	48	
Increased Sign Retro-	reflectivity		Land	l Use)		
			Urban		\checkmark	M	NN ST
and the second se			Subur	ban			H
			Rural				
STOP STOP ST	OP						
			Posted	Spee	eds		
DG HI F	-G	Printer and	≤50 ⊡rr	ı/h	\checkmark		
		MAXIMUM	60-7□ km/b		\checkmark		
© 3M 2005 Photo courtesy of 3M Canada Comp	bany	?	80-90 k	m/h			
DG=Diamond Grade; HI=High-Intensity; EG=En	gineering Grade		≥100 kr	n/h			
Application Cuida			Alberta	Stat	tus		<u>. </u>
Application Guida	IIICe	Lorgo		N	L	С	Ρ
Objective: to improve visibility of signs in low-		Municipa	alities			\checkmark	\checkmark
light conditions.		Small	alitice		\checkmark		
Highly reflective sheeting improves night time sign		Highway	/9			N	
conspicuity and visibility in all driving conditions.		N=None; L=Limited; C=Common; P=Proven				<u> </u>	
Diamond Grade signs provide the best retro-							
warning signage. High Intensity signs provide the		Documented Benefits					
next highest retro-reflectivity, and sh	25-42% c	of all collis	ions	23			
		25% 40% of all injuny callingers					
retro-reflectivity: however, the U.S.	MUTCD specifies.	25% - 42	% of all in	ijury	COIIIS	sions	
in Table 2A.3, minimum sigr	n retro-reflectivity						
MUTCDC specifies new requ	egory. Until the uirements, it is						
recommended that the U.S MUTCI	D requirements be						
TOIIOWED. Typical Installation Cost							
Highly reflective sheeting is relative	vely cost-effective.	_ 🌰 _	r	0	. D		
identify how to measure retro-reflectivity and replace			Units	Low	(Ran	ge High	1
signs that do not meet the requirements.		Retrofit New	each ea⊡h	\$250 \$400	<u>)</u>)	\$4 □ \$800	0)
Further Guidance	Other Effectiv	e Strategi	es and F	nhai	ncer	nente	s
							-
MUTCDC [Section A1.6.7]	 Delineator posts Edgelines and ce 	enterlines					
	Linear delineation	n systems					
2A.08)	U.S. MUTCD 2009 (Section 2A.08) • Wider payament		Irkings				
, ,	Cable barrier sys	tems					

²³ Ripley, D. A., "Safety Effects of Traffic Sign Upgrades" ITE (2004)

Linear Delineation Systems

Application Guidance

Objective: to provide enhanced delineation along horizontal curves.

Linear delineation systems (abbreviated as "LDS"), are reflective aluminum strips mounted longitudinally along raised barrier systems, to emphasize the roadway alignment. They are unique in their ability to provide continuous delineation above the roadway surface. They are particular useful for low-light conditions, and in winter climates where pavement markings are covered or ineffective.

Since LDS' are typically mounted along median or roadside barriers, they are inexpensive to implement where these barriers are already in place.

Yellow reflective strips should be used on median barriers. If linear delineation is to be provided along roadside barriers, they should be white in colour.

Companies such as 3M Canada have installed LDS at various locations in Alberta, and road agencies are receiving positive feedback.

Page 49

Posted Speeds

MAXIMUM	≤50 km/h	
	60-70 km/h	
171	80-90 km/h	
	≥100 km/h	\checkmark

Alberta Status

-	C	Ρ
\checkmark		
\checkmark		
\checkmark		
	√ √ √	√ √ √

Documented Benefits

Typical Installation Cost

- 55 -	Linite	Cost Rang	ge*	
	Units	Low	High	
Retrofit	km	\$15k	\$30k	
New	km	\$300k	\$800k	
"Potrofit' annumen barrier already in place				

	*'Retrofit' assumes barrier already in place.			
Further Guidance	Other Effective Strategies and Enhancements			
FHWA <u>Low Cost Treatments for</u> <u>Horizontal Curve Safety</u> (2006) [Chapter 4]	 Delineator posts Edgelines and centrelines High-visibility pavement markings Wider pavement markings Cable barrier systems 			

²⁴ Haas, Kevin. "Evaluation of 3M Scotchlite Linear Delineation System". Oregon Department of Transportation, (2004).

Methods of Reducing Collisions on Alberta Roads	Roadways (Links)	Sept. 2010	Page 50
---	------------------	------------	---------

Wider Pavement Markings

Application Guidance

Objective: to improve the visibility of edgeline and centreline pavement markings.

Although the current Alberta standard is 100 mm, the MUTCDC indicates that longitudinal pavement markings (edgelines, lane lines, centrelines) are typically 100 mm to 150 mm wide.

Wider pavement markings, particularly when applied using water-based paints, will likely show up better than narrower ones as the markings deteriorate.

It is suggested that 150 mm wide pavement markings should be provided at all locations where roadway width allows. Although unlikely, ensure that the reduced width between lines will not result in substandard lane widths. The wider markings are particularly important for centrelines and edge lines, including freeway ramp locations.

Wider pavement markings can be implemented at a relatively low cost, especially if implemented during routine maintenance.

	Sept. 2010		Faye JU
Land Use			
	Urban	\checkmark	MAIN ST
	Suburban	\checkmark	
1.	Rural	\checkmark	
	Posted Spe	eds	
MAXIMUM	≤50 km/h		
	60-70 km/h		
?	80-90 km/		
	≥100 km/h		

Alberta Status

	Ν	L	С	Ρ
Large Municipalities		\checkmark		
Small Municipalities		\checkmark		
Highways				

Documented Benefits

20% reduction (all injury and fatal collisions)²⁵

10% - 16% of all injury collisions

Typical Installation Cost

_ 📥 _				
Units	Lipite	Cost Range		
	Units	Low	High	
Retrofit	km	\$1000	\$3000	
New	km	\$1□00	\$3000	

Further Guidance	Other Effective Strategies and Enhancements
MUTCDC [Section C1.4.2]	 Delineator Posts Edgelines and centrelines Linear delineation systems
<u>Alberta Highway Pavement Marking</u> <u>Guide</u> [Figure TCS-C-201]	High-visibility pavement markings

²⁵ <u>Midwest Research Institute and Missouri Department of Transportation, "Benefit-Cost Evaluation of MoDOT's Total</u> <u>Striping and Delineation Program", November 2008.</u>

METHODS OF REDUCING COLLISIONS ON ALBERTA ROADS

BASIC APPLICATION GUIDELINES FOR VULNERABLE ROAD USERS COLLISION REDUCTION MEASURES

New or upgraded intersection lighting 53

- Pedestrian countdown signals 54
- Wider sidewalk or paved shoulder 55

Methods of Reducing Collisions on Alb	erta Roads Vulnera	ble Road Us	ers Sep	ot. 201	0	Page	ə 53
New or Upgraded Int	ersection		Lanc	l Use			
Lighting			Urban		\checkmark	M	NN ST
			Subur	ban			H
			Rural				
)	·			
			Posted	Spee	ds		
	1-1-	MAXIMUM	≤50⊡kr	n/h			
		2	60-70 k 80-90 k	(m/h m/h			
1	1	Ŀ	≥100 kr	n/h			
			Alberta	Stat	us		
Application Guida	ince			Ν	L	С	Ρ
Objective: to increase the visibility of		Municipa	alities			\checkmark	
Intersections and vulnerable road	users.	Small Municipa	alities		\checkmark		
Proper illumination at intersections	s provides greater	Highway	S				
should be provided at intersections	where pedestrian	N=None; Lim	nited; C=Cor	nmon;	P=Pro	oven	
there is a trend of night time collision	onditions, or where ns.					<i>Г</i> .	
Illumination should also be provide	ed at intersections	Do	cumente	ed Be	enefi	its 🧧	T
that meet the following criteria:		700/ ()					16
Where the potential for wron	q-way movements	78% of injury pedestrian collisions"					
is indicated through cras	h experience or	42% of fatal pedestrian collisions ¹⁶					
Where shifting lane alignment	ent, turn-only lane	39% - 78% of all injury collisions					
assignment, or a pavement forces a path-following adju	nt-width transition stment at or near						
the intersection.	fived chiests in the						
 where raised island or other roadway exist. 	іур	ical insta	allatic	on C	ost		
Signalized intersections should alwa		Units	Cost Low	Rang	ge High	1	
	Retrofit New	each each	\$100 \$500	0 0	\$100 \$700)00)0	
Further Guidance	Other Effectiv	e Strategi	es and E	nhan	cen	nents	 S
Alberta Highway Lighting Guide	Bemoval of obstr	uctions wit	hin siaht	trianc	nlee		
[Section E4.2.2]	Smart right-turn c	channel			,		
TAC Illumination of Isolated Rural	 Horizontal and ve Wider sidewalk o 	ertical realiq r paved sh	gnments oulder				
Intersections [Section 3.0]							

Methods of Reducing Collisions on Alberta Roads Vulnerable Road Users Sept. 2010 Page 54

Pedestrian Countdown Signals

Application Guidance

Objective: to providing real-time meaningful information to crossing pedestrians.

Pedestrian Countdown Signals (PCS) provide a real-time countdown informing pedestrians how much time remains to cross at an intersection. They clear up much of the confusion that is associated with the traditional "Flashing Don't Walk" display. They have generally become very well received by the public and their implementation is becoming much more widespread. While PCS is generally encouraged at every new traffic signal, more specific guidance was prepared to assist particularly in the prioritization of retrofits, in the document entitled *Guidelines for the Application of Pedestrian Countdown Signals*, as part of the study on *Methods of Reducing Collisions on Alberta Roads (Section 3.8)*.

In general, pedestrian countdown signals should be provided wherever pedestrian signal heads are provided. However, PCS should *not* be installed in rural areas, on roadways with speed limits of above 70 km/h, or where the crossing distance is very short. The priority for retrofits is as follows, using a risk-based approach:

- 1. History of Pedestrian Collisions/Conflicts
- 2. High "Vulnerable" Pedestrian Volumes
- 3. Locations with critical flashing do not walk intervals
- 4. Complex geometric or operational characteristics

Land Use						
	Urban		\checkmark	MAIN ST		
	Suburb	an	\checkmark			
	Rural					
	Posted	Spe	eds			
MAXIMUM	≤50 km/	'n,				
9	60-70 k	m/h m/h	V	-		
Ŀ	≥100 kn	n/h				
	Alberta	Sta	tus			
		Ν	L	C P		
Large	alities			\checkmark		
Small						
Municip	Municipalities		'			
Highwa	ys					
N=None; L=	Limited; C=C	omm	on; P	=Proven		
D	ocumente	ed B	ene	fits		
25% of a	III pedestria	an c	ollis	ions ²⁶		
15% - 25% of all pedestrian collisions						
Typical Installation Cost						
_ 🔆 т			:0st	Range		
\	Units	L	.0W	High		
Retrofit New	<u>□ntersectio</u> Signal	n \$ \$	4,00 400	0 \$8,000 \$900		
ve Strateg	ies and E	nha	nce	ments		

Further Guidance	Other Effective Strategies and Enhancements
TAC <u>An Informational Report on</u>	 Wider Sidewalk or Paved Shoulder
Pedestrian Countdown Signals	 Smart Right-turn Channel
<u>(PCS)</u> (2008)	 New or upgraded intersection lighting
Manual of Uniform Traffic Control	 Removal of Obstructions from Sight Triangle
<u>Devices</u> [Sec 4E.7]	

²⁶ Markowitz, F., Sciortino, S., Fleck, J. L., and Yee, B. M., "Pedestrian Countdown Signals: Experience with an Extensive Pilot Installation." *Institute of Transportation Engineers Journal*, Vol. January 2006, ITE, (1-1-2006) pp. 43-48

Methods of Reducing Collisions on Alb	erta Roads	Vulnera	ble Road Use	ers Se	pt. 20	010	Pa	ge 55
Wider Sidewalk or	Paved			Lan	d Us	e		
Shoulder				Urbar	1	\checkmark		MAIN ST
6)		Suburban 🗸					
			Rural √					
				Posted	l Spe	eds]	
			MAXIMUM ≤30 km/n √ 60-70 km/h √ 80-90 km/h √ ≥100 km/h √					
No side walk or shoulde	er.			Albert	a Sta	atus		
Application Guida	ince				N	1	C	Р
<i>Objective:</i> to provide greater se pedestrians and vehicles along ro	paration be bad segmen	etween nts.	Large Municipa Small	lities				
With the increase in pedestrian acti	vitv and inc	reased	Municipa	lities			v	
diversity of non-auto modes that use	e the sidewa	alk, it is	Highways √					
recommended that wider sidewalks	be provided		N=None; L=Limited; C=Common; P=Proven			ven		
The pedestrian through zone should have a minimum clear width of 1.8 m. In urban centres, sidewalk widths should be increased to allow for groups of			Documented Benefits					
			65 - 89% of all pedestrian collisions ⁷					
In particular, in areas where there is a high pedestrian demand, such as schools, commercial areas, transit or residential areas, boulevards should provide 3.0 m clearance width for arterial streets, and 2.0 m for local streets in pedestrian districts.			65% -89%	5 of all p	edes	strian	n col	lisions
The increased sidewalk corridor wi	dth should	provide		Туріс	al Co	ost		
adequate space for pedestrians with	n reduced n	nobility, se who	г 🌰 —		Co	et Rai	200	
are confined to a wheelchair of	or a scoo	ter, to	\	Units	Lov	V N	Hi	gh
comfortably use the sidewalk with other pedestrians.			Retrofit New	m m	\$15 \$11	50 10	\$5 \$3	00 00
Where a sidewalk cannot be shoulders, clearly separated with a be provided.	provided, In edgeline	paved should						
Further Guidance	Other	Effectiv	e Strategie	es and I	Enha	ince	mer	nts
Alberta Highway Design Guide [Section C.7.1.2]	Edgeline Horizonta	s and ce al and ve	entrelines ertical realig	nments	a			
TAC <u>Geometric Design Guide for</u> <u>Canadian Roads</u> [Section 3.3.4.4]	Removal	of fixed	objects fro	m clear	zone	9		

THIS PAGE WAS INTENTIONALLY LEFT BLANK

3.0 DETAILED APPLICATION GUIDELINES

Of the 33 *Highly Effective* Measures, eight were evaluated to be highly effective and costeffective, but without sufficient application guidance to maximize the potential benefits. These are referred to in this study as "Priority 1" measures:

- Gateway Treatments;
- Variable Speed Limits;
- Conversion of Stop-controlled Intersections to Roundabouts;
- Positive Offset Left-turn Lanes;
- Protected-only Left-turn Phasing;
- High-tension Cable Barrier Systems;
- Removal of Fixed Objects; and,
- Pedestrian Countdown Signals.

The following eight sub-sections describe these eight Priority 1 measures in detail. They contain significantly greater detail than the basic guidelines:

- Several photos showing the range in applications;
- Definitions of common terms associated with the measure;
- As part of the current Alberta status, listing specific jurisdictions with experience;
- Benefits and costs, including rationale for them as well as the non-safety benefits or disbenefits;
- Implementation considerations, to keep in mind to maximize the potential benefits;
- Human factors implications, as review by a human factors expert; and
- Maintenance considerations, to maximize the safety benefits over time.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

ALBERTA TRANSPORTATION

METHODS OF REDUCING COLLISIONS ON ALBERTA ROADS

APPLICATION GUIDELINES FOR GATEWAY TREATMENTS

FINAL

Opus International Consultants (Canada) Limited

THIS PAGE WAS INTENTIONALLY LEFT BLANK

3.1 Gateway Treatments

Unsafe speeds were the second leading cause of fatal collisions and one of the leading causes of major injury collisions in Alberta in 2007. Higher speeds typically result in higher severity collisions, particularly if vulnerable road users are involved. Speed-related collisions are frequently concentrated at transition and fringe areas, where motorists fail to make the correct adjustment to their speed and level of alertness. Gateway Treatments are aimed at reducing vehicle speeds and increasing alertness at transition points in the road network.

Gateway treatments are common in countries outside of Canada, such as the United Kingdom, New Zealand, and to a lesser extent, the United States. They have typically been applied for aesthetics or promoting community identities. This document is intended to provide systematic guidance for traffic engineers to review opportunities for gateway treatments to improve road safety, and in particular which gateway treatments are applicable for the range of conditions in Alberta. There are currently no clear guidelines in Canada or the United States for the scientific application of gateway treatments.

FIGURE 3.1 GATEWAY TREATMENT

3.1.1 Definitions

A "gateway" is a location along a roadway where there is a transition in the land use and/or speed environment. In some parts of the world gateways are referred to as "thresholds". A "gateway treatment" (FIGURE 3.1) is a traffic calming measure that is designed to define a transition to an environment requiring a reduction in speed and an increase in attentiveness.

Gateway treatments are appropriate at most locations where the road environment or function changes. For the purpose of this document, which is aimed at selecting the locations with the highest collision reduction benefits (i.e. where the upstream speed is high and/or where the difference between the safe upstream and downstream speed is significant), gateways will refer to the following two location types:

- *Rural to Urban/Semi-Urban Transition:* the threshold between a rural and urban environment, such as the entrance to a city, town or hamlet; and
- Urban to Suburban Transition: the entrance to a suburb community, typically within a larger city.

This guideline refers to three different speed zones that are typically in place in the vicinity of gateways:

- Upstream Speed Zone: the higher-speed zone, from which a speed reduction is required;
- *Transition Speed Zone:* a short, intermediate speed zone between the upstream and downstream speed zones. A transition speed zone is generally used when large reductions in speed are required.
- Downstream Speed zone: the lower-speed zone, within the more urbanized area.

The two primary features that *together* constitute a gateway treatment by creating a "gateway effect" are:

- *Road Narrowing*: Road narrowing is a proven technique for reducing vehicle speeds. Sometimes referred to as a "Pinch Point", the narrowing of a roadway over a short distance causes drivers to slow down as they perceive a change in the roadway ahead. Road narrowing can be effectively accomplished with physical measures (such as curb extensions), or visual measures (such as pavement markings). Narrowings can be accomplished along highways without creating hazards or reducing capacity.
- Conspicuous Roadside Vertical Elements: Vertical elements (including speed limit signs mounted on both sides of the roadway) are used to identify and improve the visibility of the gateway to approaching drivers. It has also been shown that drivers will travel at slower speeds when the height of the vertical elements is greater than the width of the roadway. As with any roadside appurtenances, crashworthiness must be maintained within the clear zone.

The modern roundabout can be an effective device to encourage lower speeds at the entry to a more urbanized area, and is therefore sometimes considered a gateway treatment. However, since roundabouts are traffic control devices and their installation involves the consideration of a number of other factors, it is not formally covered in this document. Some brief guidance on how to make roundabouts function as gateway treatments is provided below. This guideline document focuses on treatments that create a "gateway effect".

3.1.2 Current Status in Alberta

Gateway treatments, based on the above definition, are currently not in use in Alberta. Some existing locations provide one of the two required treatments, but not both. Many jurisdictions and developers in Alberta have installed decorative welcome signs at the entrance of their cities, towns and communities; however, their main function is for information and aesthetics, not for speed reduction or safety. Some jurisdictions in Alberta (including Edmonton, Calgary and Strathcona County) are currently using physical road narrowing measures at entrances to subdivisions, but again primarily for community identification or aesthetics; quantifiable speed reductions have not been observed or measured at these locations.

3.1.3 Example Applications

In addition to road narrowing and conspicuous roadside vertical elements, there is a wide range of treatments that have been used in different countries to create a gateway effect. Examples of possible treatments are listed below:

- Architectural or decorative welcome signs;
- Coloured surfacing or change in pavement type;
- Overhead elements spanning the roadway;
- Countdown signs in advance of the gateway;
- Illumination;
- Distinctive vegetation; and
- Walls, rails and fences.

Example applications of gateway treatments are shown in FIGURE 3.2 to FIGURE 3.9.

²⁷ <u>http://www.th.gov.bc.ca/seatosky/Preliminary Design/Pinecrest-Blacktusk/Preliminary Design/Landscape</u> Options.pdf

²⁸ Transportation Infrastructure Management System (TIMS), Alberta Transportation, Accessed April 26, 2010.

3.1.4 Benefits and Costs

Benefits

Providing gateway treatments can increase safety by reducing vehicle speeds. A driver might exceed the posted speed limit for the following reasons:

- Lack of conspicuity of the posted speed limit or downstream conditions;
- Posted speed limit does not match with the driver's perception of the roadway; or
- Other human factors such as aggression, frustration, distraction or impatience.

Gateway treatments aim to address the first two of these three concerns. The effect on the third concern is limited; this issue is more effectively mitigated through education and enforcement.

An extensive literature review was conducted regarding the proven benefits of gateway treatments.

November 2010

²⁹ LTSA

Collision Reduction

The collision reduction factors associated with the implementation of gateway treatments are summarized in TABLE 3.1.

			TREATMENTS	
COLLISION TYPE	REDUCTION FACTOR	COUNTRY	CONTEXT	SOURCE
All injury collisions	25%		Before-After study of	International Road Safety Engineering Countermeasures
All fatal and serious injury collisions	50%	United Kingdom	schemes installed at 56 villages in the UK. 5-10 years of before collision data, 2-4 years of after collision data.	and their Applications in the Canadian Context Changes in Accident Frequency Following the Introduction of Traffic Calming in Villages (Wheeler and Taylor 2000)

TABLE 3.1 SUMMARY OF COLLISION REDUCTION FACTORS ASSOCIATED WITH GATEWAY TREATMENTS

Speed Reduction

Documented speed reductions are summarized in TABLE 3.2.

	SPEED						
TREATMENT TYPE	REDUCTION	COUNTRY	CONTEXT	SOURCE			
Simple	2 - 4 km/h	United		International Road			
signing/marking		Kingdom		Safety Engineering			
Comprehensive		United	Before-After study of	Countermeasures and			
signing/marking with	8 - 11 km/h	Kingdom	schemes installed at 9	their Applications in			
high visual impact		Kingdom	villages in the UK. 5 years of	the Canadian Context			
Physical measures	Up to 16 km/h	United Kingdom	before collision and speed data, 1-3 years of after collision and speed data.	Traffic Calming in Villages on Major Roads: Final Report (Wheeler and Taylor 1999)			
Layered Landscape	11.7 mph						
Gateway* with Lane Narrowing	11.9 mph		Nonsurad from a EE mah cira	Determining Effective			
Control 2 Lane with Center Lane	12.1 mph	United	to a 35 mph sign. This data	Treatments for			
Median Only	13.1 mph	States	is based on observed	Transitioning from			
Median with Gateway*	14.2 mph	(Oregon DOT)	(Oregon DOT)	(Oregon DOT)	(Oregon DOT) sin	measurements from a simulator of rural to urban	Rural Areas to Urban Areas on State
Medians in Series** No Crosswalks	13.1 mph			transitions	Highways (Dixon and 7bu 2008)		
Medians in Series** with Crosswalks	13.7 mph			2.13 2000)			

TABLE 3.2 SUMMARY OF SPEED REDUCTIONS ASSOCIATED WITH GATEWAY TREATMENTS

*Gateway was defined as "a physical or geometric landmark on an arterial street, which indicates a change in environment from a major road to a lower speed residential or commercial district." **Medians in Series were defined as "a group of medians".

It should be noted that in larger towns and cities, vehicle speeds may increase as vehicles travel away from the gateway. In this case, certain traffic calming or other speed reduction measures may be continued through the municipality.

Costs

The costs of gateway treatments are highly variable depending on the type of treatment selected and can exceed \$500,000. Roadside signs can be installed at the low end of the cost range. Using TRANS' 2010 Unit Price Averages Report, the cost of supplying and installing two signs and posts was estimated to be \$2000. Annual maintenance and operation (M&O) costs were assumed to be \$2500.

3.1.5 Existing Application Guidance

Existing guidance provided for the application of gateway treatments is summarized in this section.

Provincial Guidance

Alberta Transportation

Alberta Transportation's <u>Welcome Sign Recommended Practice</u> (2006) provides guidance on the standards for welcome signs, the eligibility of a community to install a welcome sign, as well as guidelines for the sign's placement. Alberta Transportation has also published a document entitled <u>Decorative Features on Street Lights and Signal Poles Recommended Practice</u> (2007) which provides a list of criteria that must be met in order to install decorative features on lights and poles. Their document <u>Highway Beautification - Landscape Projects in the Highway Right-Of-Way Recommended Practice</u> (2006) provides guidance on the standards for landscaping projects, as well as guidelines for the placement of the landscaping.

No guidance on gateway treatments has been established by Alberta municipalities.

National Guidance

Transport Canada

Transport Canada's (TC) <u>International Road Safety Engineering Countermeasures and Their</u> <u>Applications in the Canadian Context</u> (2009), section 5.1 provides a description of various gateway treatments and their applicability in the Canadian context. This report also includes collision reduction factors for gateway treatments from various studies around the world.

US Guidance

Federal Highway Administration

The Federal Highway Administration's (FHWA) <u>Determining Effective Roadway Design</u> <u>Treatments for Transitioning from Rural Areas to Urban Areas on State Highways</u> (2008) provides details on a study conducted in Oregon on various speed reduction measures, including gateway treatments.

November 2010

A study sponsored by the National Highway Cooperative Research Program (NCHRP) synthesizing current practices regarding gateway treatments (*Effective Speed Reduction Techniques for Rural High to Low Speed Transitions*) is currently being conducted by Intus Road Safety Engineering, based in Ontario. While the study is not yet complete, Intus provided a wealth of information to Opus for the benefit of this study.

International Guidance

New Zealand

Land Transport Safety Authority

Some of the recommended guidance in this document is based on the New Zealand Land Transport Safety Authority's (LTSA) <u>Guidelines for Urban-Rural Speed Thresholds RTS 15</u> (2002). It outlines the principles of urban-rural speed thresholds. The guidelines provide a comprehensive list of design considerations, such as location, lighting, conspicuity and traffic signs.

New Zealand Transport Agency

The New Zealand Transport Agency's (NZTA) <u>Manual of Traffic Signs and Markings (MOTSAM)</u> (2007), provides details about threshold speed signs, including the size and positioning of the sign.

United Kingdom

UK Department for Transportation

The UK Department for Transportation's (DfT) <u>Road Safety Good Practice Guide ()</u> appendix A.9 provides a brief description of various gateway treatments. It also provides detailed information on two before-after studies that were conducted on the effectiveness of gateway treatments.

Some of the above guidance has been incorporated as appropriate into the recommended guidelines for Alberta.

3.1.6 Recommended Application Guidance

Recommended guidance for the appropriate application of gateway treatments in Alberta, with the objective of improving safety, has been developed by Opus, considering leading practices in other jurisdictions, road safety engineering and human factors principles, and the Alberta road and driving environment.

Applicability

Land Use

Gateway treatments are particularly applicable at the interface between urban and rural areas. Features that indicate the transition to an urbanized area include: more built-up, buildings located closer to the roadway, signage regarding facilities, closer intersection and access spacing, pedestrian/cyclist activity, and changes in roadway cross-section, landscaping and other roadside features. It is recommended that most highways that go through (do not bypass) small towns in Alberta are candidates for gateway treatments; however, some gateway treatments are also applicable for the entrances to mid-size and large cities.

Gateway treatments can also be applied at the transition of a higher roadway design class to a lower roadway design class, such as from an arterial to a collector road. Another example of such a transition is the interface of an urban and suburban environment, such as at the entrance of a suburban neighbourhood within a city. This could be characterized by a transition from a commercial or industrial land use to a residential land use. Residential land use typically includes increased pedestrian/cyclist activity, densely spaced residential buildings and driveways and increased on-street parking.

Posted Speed Limit

Gateway treatments are recommended for situations where the posted speed limit decreases by 20 km/h or greater. This may include a transition zone where the speed limit drops to an intermediate limit between the upstream limit and the downstream limit. For most Alberta highways, this will apply to most towns that have development on both sides and the speed limit typically drops from 100 km/h to 70 km/h or below.

The 20 km/h criteria is only applicable where the upstream speed limit is 60 km/h or greater. Transitions from 50 km/h to 30 km/h are rare and provide limited injury reduction benefits.

November 2010

Government	Methods of Reducing Collisions on Alberta Roads
of Alberta 🗖	Phase 2 Final Report
Transportation	· · · · · · · · · · · · · · · · · · ·

For school or playground zones, the required speed reduction extends over a short segment; therefore, gateway treatments are not applicable, but other targeted forms of traffic calming devices (such as road narrowings and crosswalks) may be considered.

Gateway treatments are also appropriate where vehicle speeds at the edges of the community or through the urban area are well in excess of the posted speed limit. Generally, average speeds in the reduced speed zone that are consistently greater than 15 km/h above the posted speed limit constitute excessive speeds. However, cases of extreme speeding may be indicative of an inappropriate speed limit that is failing to elicit respect from drivers.

The typical land use and speed environments where the installation of gateway treatments should be considered are summarized in TABLE 3.3.

Ι ΔΝΟ LISE TRANSITION	UPSTREAM POSTED SPEED LIMIT (km/h)						
	50 or less	60 - 70	80-90	100 or more			
Rural to Urban	х	√*	\checkmark	~			
Urban to Suburban	Х	√*	\checkmark	\checkmark			

TABLE 3.3 TYPICAL LAND USE AND SPEED RANGES FORGATEWAY TREATMENTS

*Gateways where the upstream limit is 60 km/h zones are expected to be rare since the speed limit on most major roads is 50 km/h or more; therefore the 20 km/h difference requirement will not be met.

Collision Characteristics

Collision experience itself can indicate the extent of the risks that may be present at a given speed reduction zone. In particular, gateway treatments can be considered if:

- the reported injury or fatality rates in the vicinity of the speed reduction are higher than average, or an overall reduction is desired;
- the proportion of speed-related collisions is higher than average; or
- vulnerable road users feature in the collision analysis.

In the case of a town or hamlet, a collision analysis can include the length of the highway through the community. In the case of a larger municipality, it can include the edges of the municipality. If the overall injury and fatality rate is significantly higher than the provincial averages for segments with similar characteristics, gateway treatments should be considered. Similarly, if the proportion of collisions involving vulnerable road users is greater than a provincial average, gateway treatments should also be considered.

Summary of Criteria

The applicability criteria are summarized in this section. It is recommended that gateway treatments be considered at transitions of land use and speed context where the speed limit is reduced by 20 km/h or greater, and when one or more of the three conditions below are met.

- 1. Vehicle speeds at the edges of the community or through the urban area are well in excess of the posted speed limit.
- 2. The reported injury or fatality rates in the vicinity of the speed reduction are higher than average, or an overall reduction is desired.
- 3. Vulnerable road users feature in the collision analysis.

Placement

Once it is established that a gateway treatment is necessary based on the above criteria, the selection of the appropriate treatment type can be conducted; but this depends in part on the placement of the treatment.

Gateways are located at the threshold of two speed zones. In the case where there are two thresholds due to a transition zone, the gateway may be located at:

- the threshold between the upstream speed zone and the transition speed zone; or
- the threshold between the transition speed zone and the downstream speed zone.

In the case with two possible speed zone transitions, an analysis of the historical collision trends, current travel speeds and the risks to vulnerable road users should be performed to establish the more specific location of the problem. Other placement considerations, such as gateway visibility are presented in Implementation Considerations, below.

Government	Methods of Reducing Collisions on Alberta Roads
of Alberta –	Phase 2 Final Report
Transportation	·······

Treatment Types

This section presents gateway treatments that can be used to create the "gateway effect". To maximize its effectiveness, it is strongly recommended that at least one treatment be chosen from the Horizontal Elements category and one (in addition to the speed limit signs) be chosen from the Vertical Elements category for every gateway. Details and implementation considerations for each treatment are available below.

Gateway Speed Zone						
<50 km/h	60 km/h	70 km/h	80 km/h	90 km/h		
\checkmark	\checkmark					
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
\checkmark	\checkmark					
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Required	Required	Required	Required	Required		
×	<u>\</u>	1	1	1		
•	v	•	v	v		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
0	0	0	0	0		
1	1	1	1	1		
Ŷ	v	v	v	v		
0	0					
0	0	0	0	0		
0	0	0	0	0		
0	0	0	0	0		
0	0	\checkmark	\checkmark	\checkmark		
	<50 km/h	Gate <50 km/h	Gateway Speed 2 <50 km/h 60 km/h 70 km/h ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Required Required Required Required ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	Gateway Speed Zone <50 km/h 60 km/h 70 km/h 80 km/h · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·		

TABLE 3.4 SUGGESTED APPLICATION OF TREATMENTS BY SPEED LIMIT

 \checkmark Strongly recommended enhancement

O Optional enhancement

*Required if curb build-outs and/or a raised median are used.

A number of treatment combinations, or "packages", have been developed for standard speed reduction cases. The packages are meant as a starting point only; context-sensitive treatments may be considered using the guidance provided in TABLE 3.4.

Rural - Urban Transition on Undivided Highways

In Alberta, most primary highways that are undivided and on relatively level terrain are posted at 100 km/h. At many towns and villages in the province, the posted speed limit is often reduced to 70 to 50 km/h. The following table presents three packages that may be considered for these types of transitions.

Gateway	Gateway Speed Zone						
Treatment	<50 km/b	60 km/b	70 km/b				
Categories							
Horizontal	Curb Build-Outs	Curb Build-Outs	Pavement Hatching				
Gateway	Paised Median Island	Paised Median Island	Painted Median Island				
Elements	Raised median island	Raised median island	Fainted Median Island				
	Speed Limit Signs*	Speed Limit Signs*	Speed Limit Signs				
Vertical	Architectural or Decorative	Architectural or Decorative	Architectural or Decorative				
Gateway	Name Signing**	Name Signing**	Name Signing**				
Elements	Illumination	Illumination	Trees, Flag Poles and Other				
	Overhead Elements	Overhead Elements	Vertical Features				
Pavement	Payament Colour	Payament Colour	Bayamant Calaur				
Surface	Pavement Colour	Pavement Colour	Favement Colour				
Other							
Gateway			Advanced Countdown Signs				
Treatments							
Examples	Total Alexandre	E Congview					

TABLE 3.5 GATEWAY TREATMENTS FOR TRANSITIONS ON UNDIVIDED HIGHWAYS

*Note that the different speed limit sign configurations are shown as an example. One is not preferred over the other based on the downstream speed zone.

**The architectural and decorative name signing in the lower gateway speed zones is achieved with the overhead sign. It is not shown in the 70 km/h downstream speed zone because it would likely be located outside the clear zone

Rural - Urban Transition on a Divided Highway

In Alberta, most primary highways that are divided and on relatively level terrain are posted at 110 km/h. At many cities and towns in the province, the posted speed limit is often reduced to anywhere from 90 to 70 km/h. The following table presents three packages that may be considered for these types of transitions.

Gateway	Gateway Speed Zone						
Treatment Categories	70 km/h	80 km/h	90 km/h				
Horizontal Gateway Elements	Pavement Hatching	Pavement Hatching	Pavement Hatching				
Vertical Gateway Elements	Speed Limit Signs* Architectural or Decorative Name Signing Trees, Flag Poles and Other Vertical Features**	Speed Limit Signs* Architectural or Decorative Name Signing Trees, Flag Poles and Other Vertical Features**	Speed Limit Signs* Architectural or Decorative Name Signing Trees, Flag Poles and Other Vertical Features**				
Pavement Surface	Pavement Colour	Pavement Colour	Pavement Colour				
Other Gateway Treatments	Advanced Countdown Signs	Advanced Countdown Signs	Advanced Countdown Signs				
Examples							

TABLE 3.6 GATEWAY TREATMENTS FOR TRANSITIONS ON DIVIDED HIGHWAYS

*Note that the different speed limit sign configurations are shown as an example. One is not preferred over the other based on the downstream speed zone.

*Note that the different vertical elements are shown as an example. One is not preferred over the other based on the downstream speed zone.

Urban - Suburban Transition

Within most Alberta jurisdictions, the speed limit on roads within residential areas ranges from 30 to 50 km/h. The following table presents a package that may be considered for transitions between urban and suburban areas.

Gateway Treatment	Gateway Speed Zone		
Categories	<50 km/h		
Horizontal Gateway	Curb Build-Outs		
Elements	Raised Median Island		
Vertical Gateway Elements	Speed Limit Signs Architectural or Decorative Name Signing* Illumination** Trees, Flag Poles and Other Vertical Features Walls, Rails and Fences		
Pavement Surface	Pavement Colour		
Example	Community Community		

TABLE 3.7 GATEWAY TREATMENTS FOR URBAN - SUBURBAN TRANSITIONS

* In the example, the community name is mounted on the wall to create the decorative effect.

** Illumination would likely already be present in urban and suburban areas. If illumination is not already present it should be considered.

3.1.7 Recommended Procedure

A four-step procedure has been developed to systematically determine the need for gateway treatments in Alberta, taking into consideration the criteria described above.

Step 1: Determine if gateway treatments are needed.				
Α.	Is there a transition of land use and speed context with a reduction in the posted			
	speed limit as determined by legislation or engineering analysis of at least 20 km/h?			
	Yes		Continue to 1.B.	
	No	Gateway treatments are not needed.	•	

Β.	Are the vehicle speeds at the edges of the community or through the urban area				
	excessively high?				
	Are the reported injury collision rates higher than average or is an overall reduction				
	desired?				
	Are there many c	ollisions involving vulnerable road users?			
	Yes to any of		Continue to Step		
	the above		2.		
	No to all of the	Gateway treatments are not needed.			
	above				
Ste	p 2: Determine the	e gateway speed zone.			
Α.	Is there a transition zone between the upstream speed zone and the downstream				
	speed zone:		Continuo to 2 P		
	No	The gateway should be located at the	Continue to 2.D.		
	NO	threshold of the unstream speed zone and	continue to 2.C.		
		the local speed zone.			
Β.	Refer to historio	cal collision data and travel speed data and	assess the risks to		
	vulnerable road	users. Are there more challenges due to exce	essive speeds in the		
	transition speed :	zone or in the downstream speed zone?			
	Downstream	The gateway speed zone should be located at	Continue to 2.C.		
	Speed Zone	the threshold of the transition speed zone			
		and the downstream speed zone.			
	Transition	The gateway should be located at the	Continue to 2.C.		
	Speed Zone	threshold of the upstream speed zone and			
		the transition speed zone.			
	Faual in Both	The gateway should be located at the	Continue to 2 C		
	Zones	threshold of the upstream speed zone and			
	201105	the transition speed zone.			
С.	Will a gateway at	this location block sightlines to nearby intersec	tions or driveways?		
	Yes	Consider sight lines when choosing gateway	Continue to 2.D.		
		treatments, use Hidden Driveway and/or			
		Hidden Intersection signs as required.			
	No		Continue to 2.D.		
D.	Does this locatio	n allow the gateway to be visible from the Sto	pping Sight Distance		
	as determined using the 85 th percentile approach speed?				
	Yes		Continue to Step		
			3.		
	No	Consider removing obstacles and using very	Continue to Step		
		conspicuous treatments as necessary to	3.		
		increase the visibility of the gateway.			

Step 3: Choose Gateway Treatments that are suitable for the land use and speed context. Refer to Implementation Section for implementation considerations for each treatment.

- A. Refer to TABLE 3.4 to determine which treatments should be used. Note that the *Gateway Speed Zone* refers to the downstream speed zone or transition speed zone, as determined in Step 2.B.
- **B.** Alternatively, choose one of the treatment combinations shown in TABLE 3.5 to TABLE 3.7.

Step 4: Once the treatments are chosen, the benefit-cost can be computed and the potential layout verified.

3.1.8 Implementation Considerations

These application guidelines are intended to assist practitioners in determining when gateway treatments are warranted. The design and implementation of the treatments are not covered in this document. Additional general guidance regarding the implementation of these treatments are available in various provincial and national documents such as the Alberta Highway Geometric Design Guide, the Alberta Roadside Design Guide and the Manual of Uniform Traffic Control Devices for Canada. More specific installation guidance may be provided in municipal guidelines.

General implementation considerations are as follows:

- It is imperative that all roadside features (posts, trees, etc.) be located outside the clear zone, be of a breakaway construction or be protected.
- Pavement markings are not favoured for use in Alberta due to the climate. Pavement markings would likely be covered by snow for several months of the year. If they are necessary, it is recommended that high visibility/durability markings are selected.
- Generally, the more measures that are used, the greater the speed reduction. However there has been some argument that too many treatments constitute a visual intrusion and may be counterproductive to road safety³⁰.
- Vehicle travel speeds should be measured at various locations (before, at, and past the threshold) before and after the implementation of the gateway treatments to determine if the desired speed reduction has been achieved. If not, additional treatments may be considered.

³⁰ International Road Safety Countermeasures and their Applications in the Canadian Context

More specific considerations for different types of treatments are outlined below.

Placement

Speed Limit Sign Location

The posted speed limit signs must be located within 20 m of the start of the warranted speed reduction.

Transition Zones

At the approaches to some towns there exist progressive speed limits. This includes a transition zone speed limit that is in place for a short distance before the lower speed limit. In this case, an analysis of the historical collision trends, current travel speeds and the risks to vulnerable road users must be performed to assess the location of the problem. If the problem is within the transition zone, or within both the transition zone and the local speed zone, then the gateway must be located in the transition zone. If the problems occur primarily in the local speed zone, then the gateway should be located there.

Property Accesses, Intersections and Traffic Control Devices

When a gateway is located near an intersection or access to properties, it is imperative that the visibility of the intersection or access and associated traffic control devices not be impeded. Every effort should be made that any conspicuous vertical roadside elements do not obstruct sight distances to intersections and driveways, including traffic signals, pedestrian crossings and other traffic control devices.

Gateway Visibility

Gateways are most effective when they can be seen in advance by drivers, and drivers can adjust their speeds accordingly. Gateways should be visible from at least the stopping sight distance (as determined by Section B.2.3 of the <u>Alberta Highway Geometric Design Guide</u> (1998), Section 1.2.5.2 of the <u>TAC Geometric Design Guide for Canadian Roads</u> (1999), or municipal equivalent) of a vehicle travelling at the 85th percentile approach speed at that location.

Care should be taken to ensure that gateways located on large-radius curves are not outside of a driver's cone of vision.

Horizontal Gateway Elements

Creating a "pinch point" is one of the essential characteristics of a gateway. The feeling of a reduced roadway width encourages drivers to slow down. As previously mentioned, this can be done with physical or visual road narrowing measures. Painted visual narrowing measures are less appealing in Alberta, due to the fact that the hatching would likely be obscured my snow for several months of the year. In addition, the wear from ploughs and de-icing agents will require a rigorous maintenance schedule.

The road narrowing should be done over a length of approximately 10 to 20 metres. The minimum roadway width to allow for the passage of oversized vehicles should be considered if the roadway is along a truck route. Parking should be prohibited within the pinch point.

Curb Build-Outs

It is recommended that wherever the roadway width permits, built-out curbs should be considered. Curb build-outs are not appropriate for higher speed roads as they have the potential to launch vehicles that hit them at high speeds into the air. Curbs shall be built to the standards as outlined in the <u>Alberta Highway Geometric Design Guide</u> (1998), <u>Alberta</u> <u>Roadside Design Guide (2007)</u>, TAC <u>Canadian Guide to Neighbourhood Traffic Calming</u> (1998) or local standards such as the <u>City of Calgary Traffic Calming Policy</u> (Revised 2007).

Pavement Hatching

In the case where the roadway width does not permit built-out curbs, longitudinal hatching along the side of the roadway may be used to visually narrow the roadway. Optical speed bars are also shown to be effective at creating an illusion of higher speeds and reducing vehicle speeds. Highly visible and durable pavement markings are recommended due to Alberta's climate.

Raised Median Islands

Raised median islands can be considered to reduce the width of the roadway. However, they should only be used at gateways where the reduced speed limit is 60 km/h or lower, and must be properly marked. A minimum island width will ensure motorists can see the median.

Painted Median Islands

In the case where the roadway width does not permit a raised median island, one may be painted to visually narrow the roadway. As with pavement hatching, highly visible and durable pavement markings are recommended due to Alberta's climate.

Vertical Gateway Elements

It is recommended that vertical elements (including speed limit signs mounted on both sides of the roadway) always be used whenever the gateway effect is desired. Vertical elements identify and improve the visibility of the gateway to approaching drivers. It has also been shown that drivers will travel at slower speeds when the height of the vertical elements is greater than the width of the roadway³¹ as shown below in FIGURE 3.10.

The minimum width to allow for the passage of oversized vehicles through the gateway should be considered if the roadway is along a truck route. In the case where vertical elements restrict the width of the gateway, they should either be mounted on pivoting bases to allow them to swivel out and increase the available width between them, or be easily removable.

³¹ LTSA

As with any roadside appurtenances, crashworthiness must be maintained within the clear zone as stated in Section C.5.2 of the Alberta Highway Geometric Design Guide (1998), Sections 3.1.3 and 3.1.4 of the TAC Geometric Design Guide for Canadian Roads (1999) or local municipal standards.

Speed Limit Signs

It is recommended that speed limit signs be installed on both sides of the roadway as a treatment whenever the gateway effect is desired. Common practice in other parts of the world is to combine a speed limit sign with a place name sign. This should be considered if a speed limit sign within another sign is enforceable (the Alberta Traffic Safety Act does not appear to contradict such a practice, but this should be verified). Another issue may be the possible interpretation of the sign to imply that the speed limit shown applies to all roads within the named jurisdiction (i.e. the cross streets).

The appropriate sign colour for the larger sign also needs to be determined; in other countries a single colour has been reserved for gateway application (e.g. green in New Zealand). FIGURE 3.11 below presents a generic schematic. An alternative to the "sign within a sign" approach is providing oversize speed limit signs and a tab beneath to identify the town.

FIGURE 3.11 SPEED LIMIT SIGN DISPLAY OPTIONS

As previously mentioned, the speed limit signs must be within 20 m of the start of the warranted speed zone.

Architectural or Decorative Welcome Signing

It is recommended that an architectural or decorative place name sign be installed on the right or both sides of the roadway whenever the gateway effect is desired. This will alert motorists that they are entering a community and therefore a low-speed environment in which vulnerable road users might be present. In addition, a decorative welcome sign provides an opportunity to advertise community identity. Additional guidance on architectural and decorative place name signs can be found in Alberta Transportation's <u>Welcome Sign</u> <u>Recommended Practice</u> (2006).

Illumination

It is recommended that illumination be provided at all gateways where raised medians and curb build-outs are used. This will not only improve the conspicuity of these features at night, but the light standards themselves will also serve as vertical features during the day, and will contribute to the optical height of the gateway.

Walls, Rails and Fences

The benefits of walls, rails and fences as gateway treatments are uncertain; however, they have been briefly mentioned as possible supplementary treatments in existing guidelines. They may be added to increase the conspicuity of the gateway. They may create the "closing-in" effect that is known to cause drivers to slow down. However, walls, rails and fences are considered fixed objects and must be included with caution.

Walls, rails and fences located outside of the clear zone may not serve to provide the desired "closing-in" effect due to their distance from the roadway. In these cases, they are less effective. Walls, rails and fences are likely more effective at lower speed gateways, where the clear zone requirements are less, and they can be positioned more closely to the roadway.

Trees, Flag Poles and Other Vertical Features

It is recommended that vertical features of a height greater than the width of the travelled roadway be used whenever the gateway effect is desired. Trees that provide vertical height may be supplemented with smaller shrubs to provide a "closing-in" effect, where the driver feels as though the pinch point is quite narrow. Coniferous trees and shrubs are preferable as the seasonal loss of leaves on deciduous trees can reduce the conspicuity of the gateway.

Layered landscaping (shown in FIGURE 3.12) may be effective at creating a gateway feeling with the advantage of having smaller, breakaway shrubbery in the clear zone and keeping larger trees outside of the clear zone³². Additional guidance on landscaping can be found in Alberta Transportation's <u>Highway Beautification - Landscape Projects in the Highway Right-Of-Way Recommended Practice</u> (2006).

FIGURE 3.12 LAYERED LANDSCAPING

Trees, flags and other features shall be positioned so as to avoid creating sight obstructions or excessive shading of the road surface (which may cause ice build up during the winter). Consideration should also be given to maintenance requirements of the feature chosen, and the ease of accessibility to these features. Trees and shrubs need to be pruned regularly to ensure that they do not obstruct sightlines. Additional guidance on decorative elements on poles can be found in Alberta Transportation's <u>Decorative Features on Street Lights and Signal Poles</u> <u>Recommended Practice</u> (2007).

Overhead Gateway Elements

Overhead elements (sometimes referred to as "banners") represent perhaps the most emphatic gateway treatment. The benefits of overhead elements as gateway treatments are moderate, although they have not been rigorously evaluated. They have been briefly mentioned as possible supplementary treatments in existing guidelines. Overhead elements increase the conspicuity of a gateway tremendously; however, those safety benefits may be outweighed by the significant cost of these treatments. To ensure that they are of a height and width to properly allow access of all vehicle types is impractical on multilane highways, especially those with large medians.

³² Determining Effective Roadway Design Treatments for Transitioning From Rural Areas to Urban Areas on State Highways, Final Report, FHWA Report No. FHWA-OR-RD-09-02, September 2008.

These features can be considered for low speed applications on roadways with a narrower right of way, for example, at the entrance of a residential neighbourhood, where heavy vehicles are prohibited. In this context, the clear zone requirements are less stringent (due to the lower speeds and/or the presence of curbs) which increases the feasibility of this feature.

Pavement Surface

A change in the pavement surface adds to the conspicuity of a gateway by making it stand out from its surroundings. Changes to pavement colour or surface type can be considered.

Pavement Colour

A change to the pavement colour through the length of the gateway can be considered to increase the conspicuity of the threshold. The pavement colour cannot be white or yellow and must be selected in accordance with the MUTCD Section 3G.

Additionally, the speed limit can be painted onto the roadway surface in the direction of the decreasing speed limit. This should be done in accordance with the MUTCDC Section 3.

Pavement Surface Change

Bricks or other decorative cobblestones can be used to achieve the same result as coloured pavement. However, care should be taken to ensure that the skid resistance of the pavement is not compromised. In addition, these types of treatments have been found to cause an increase in noise level. In cases where a gateway is near to residences within a city or town, this may pose a problem to residents.

Other Gateway Treatments

Roundabouts

Roundabouts are not specifically mentioned in existing guidelines since they are intersection traffic control devices. However, they can be adapted to function more as a gateway treatment by adding vertical elements and other community identifying features in the centre of the roundabout. Other roadside gateway treatments may be used on the leg that approaches the community, provided that they do not interfere with the sightlines and the operation of the roundabout.

Although roundabouts have a much higher capital cost than many of the other features presented, they also serve a traffic control purpose. This multifunctional solution to traffic control and speed reduction may be quite cost-effective in some situations. Separate guidelines are currently being prepared by the Province to encourage the application of roundabouts at current stop controlled intersections along highways.

Advance Signage

It is recommended that advance warning signs be installed prior to all gateway locations, particularly if sight distances are an issue or if the reduction in speed is greater than 20 km/h. Standard advance speed limit signs (RB-5) can be used on both sides of the road in advance of the required speed reduction to inform drivers that it is approaching. The exact locations of these signs should be determined as per Section A3.6.9 of the Manual of Uniform Traffic Control Devices for Canada (MUTCDC).

In addition, standard Destination Distance guide signs (IA-4) can be used on both sides of the road in advance to remind drivers that they will soon be entering a local community. Multiple signs at various distances may be used to indicate to drivers that they are approaching a community. Signs should be implemented as per Section A4.2.2 of the MUTCDC and using Alberta Transportation's <u>Calculation of Distances to Communities Recommended Practice</u> (2007).

Provisions for Vulnerable Road Users

There exist locations where there is a demand for pedestrian and cyclist facilities. In these locations, the preferred course of action is to construct a path around the "pinch point". This allows vulnerable road users to bypass the location where there would be an increased likelihood of collisions due to the narrower right-of-way. An example of such a path can be seen below.

FIGURE 3.13 PEDESTRIAN AND CYCLIST PATH TO BYPASS PINCH POINT

3.1.9 Human Factors

Gateway treatments have highly positive human factors implications in terms of all of the key principles: expectancy, clarity/simplicity, conspicuity, and sensory influence.

If designed properly, the sight distances to gateways should make them visible from a distance. Although there are many features used in one place, they are all features that should be familiar to drivers, and thus are unlikely to catch most drivers off guard.

There has been some argument that too many treatments constitute a visual intrusion and may be counterproductive to road safety³³. The presence of multiple treatments may appear to have negative impacts for simplicity. However, the only driver action that is required is a reduction in speed; therefore, the message to the driver is simple and clear. Nonetheless, care should be taken that the combination of treatments chosen does not cause distractions to drivers.

Gateway treatments are designed to be conspicuous and highly visible to drivers. The contrast of the features from the surroundings in size, shape, colour, texture and position all serve to make the gateway perceptible to drivers.

November 2010

³³ International Road Safety Countermeasures and their Applications in the Canadian Context
The sensory influence of gateway treatments is provided by the "closing-in" effect caused by the narrow road and high vertical elements. The "feel" of the roadway environment changes drastically as it appears much narrower than before. This effect causes drivers to subconsciously slow down.

3.1.10 Maintenance Considerations

Certain gateway treatments can be high-maintenance. Trees and other vegetation must be tended and pruned regularly to ensure that they do not obstruct sight distances. Community signs, light standards, flag poles and any other elements must be maintained in working order. As discussed above, due to Alberta's winter climate, pavement markings will likely require regular maintenance to keep them visible and effective.

Generally, the maintenance of these treatments is fairly simple. However, consideration must be given to the access of these elements, and the ease with which they can be repaired and replaced. Additionally, in the case where a municipality is seeking gateway treatments on a highway entering their jurisdiction, an agreement must be reached between them and the responsible road agency outlining the maintenance responsibilities of each party.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

ALBERTA TRANSPORTATION

METHODS OF REDUCING COLLISIONS ON ALBERTA ROADS

APPLICATION GUIDELINES FOR VARIABLE SPEED LIMITS

FINAL

Opus International Consultants (Canada) Limited

THIS PAGE WAS INTENTIONALLY LEFT BLANK

3.2 Variable Speed Limits

3.2.1 Background and Definition

A "Variable Speed Limit" (VSL) is a variation on posted speed limit traffic control in which regulatory posted speed limits can be changed. Typically, the speed limits are changed to reflect a safer driving speed along a particular road section, based on the expected or real time conditions, such as traffic, road surface and weather conditions.

Speed limits are considered safest and most appropriate when they reflect the roadway environment. Because static speed limits are set according to ideal conditions (i.e. clear weather and free-flow traffic), they become less effective during variable conditions. Variable speed limits can provide a more real-time and accurate reflection of the prevailing conditions, and hence can improve speed limit compliance, traffic flow and traffic safety.

Variable Speed limits are applied in many parts of the developed world, and most widely in Europe. They are also applied in the United States, and on a very limited basis in Canada. They are proven in leading to safety and operational benefits, which has raised the question of applicability in Canada. The Manual of Uniform Traffic Control Devices for Canada (MUTCDC) makes no reference to Variable Speed Limits as a traffic control measure. While their application in Canada has been limited primarily by the lack of guidance and enabling legislation, this has not been properly investigated for Alberta or Canada.

The Alberta Traffic Safety Plan (2006) identifies Variable Speed Limits as one of the Intelligent Transportation Systems measures to investigate as part of the objective to reduce fatal and injury collisions on rural roads in Alberta.

The purpose of this document is to identify and summarize:

- the proven benefits of Variable Speed Limits in other jurisdictions;
- the situations in which VSL can provide the greatest safety benefits in Alberta; and
- the key legislative and infrastructure requirements for implementing VSL in Alberta.

Although speed limits are typically lowered in construction zones, this application of lower speed limits is excluded from the VSL applications discussed in this document.

3.2.2 Current Status of VSL Systems

International

VSL systems are currently in use throughout the world, with the earliest implementations in Germany and France, and more recent installations in the United Kingdom, Sweden, Finland, the Netherlands, and Austria. Other international locations with VSL include New Zealand and Hong Kong. Most of the systems were installed to slow vehicles in advance of traffic congestion.

Variable speed limits are used to a much lesser extent in the United States. On Interstate 90 at Snoqualmie Pass, Washington, (near Seattle) variable speed limits are used to slow traffic in severe winter weather. This is also done on other mountain passes in Washington. Variable speed limit signs, in combination with variable message signs, have been in use since the 1960s on the New Jersey Turnpike, where officials can adjust the speed limit according to weather, traffic conditions, and construction. Other roadways with variable speed limits include the Pulaski Skyway in New Jersey, I-495 in Delaware and I-270 and I-255 in Missouri.

Canada

The Transport Canada Report International Road Engineering Safety Countermeasures And Their Applications In The Canadian Context (2009) states that VSLs have been installed in some parts of Canada. However, no specific locations were identified, and discussions with various municipalities and agencies failed to identify any locations. The MUTCDC neither discusses nor specifically discourages the use of Variable Speed Limits.

Alberta

The Alberta Traffic Safety Act, which sets out the law regarding speed limits in Alberta, states in Section 108 that a road authority may prescribe speed limits that are different from the speed limits stated in Sections 106 and 107 of the Act. For highways, a Ministerial order is required. While the Act doesn't specifically mention Variable Speed Limits, it is assumed that this applies to static speed limits. Secondly, the Act implies that signs are to be provided in accordance with prescribed guidance. The MUTCDC is the recognized national guidance, but doesn't recognize VSL. Therefore, while nothing in the Act prohibits the use of VSL, the interpretation of the existing references to speed limits need to be reviewed by lawyers, and recommendations made to TRANS to expand the definition as required to include VSL.

In Alberta, a reduction in posted speed limit from 90 km/h to 70 km/h is put into operation each year along a section of the Trans Canada Highway between approximately 5 - 6 km west of Lake Louise and 1 km east of Lake Louise. This reduction is initiated by Parks Canada during the summer and fall months (approximately from the May long weekend through to Thanksgiving) to protect the grizzly bear population in the area. Parks Canada reviewed the potential for providing VSL in conjunction with the twinning of the Trans Canada highway through Banff National Park. This objective of this installation would be to address high speeds during poor weather and/or road conditions. However, the study failed to conclusively identify the potential safety benefits of providing VSL, and it is understood that to date VSL has not been implemented on Trans Canada Highway.

A study was recently conducted by the City of Edmonton of the feasibility of applying VSL on the Whitemud Freeway. However, this did not include an evaluation that identified the Whitemud as an appropriate candidate, nor an analysis of the potential safety benefits.

3.2.3 Example Applications

Most VSL systems use electronic displays depicting either the entire sign or just the posted speed limit value. As shown in

FIGURE 3.14, there is a wide variety in the appearance of VSL. The signs may look similar in colour text to regulatory signs as shown in the United States example. Other signs may have a different background colour but are consistent with the standard speed limit sign, as shown in the United Kingdom example where the signs are shown with the standard number inside a red circle. The signs are sometimes supplemented with devices such as flashing lights, flags and message boards. In some cases, information signs in advance of road sections with VSL notify motorists that the speed limits are variable. The change in speed limits can be made with human control (typically based on information provided to a manned control centre) or automatically using sensors (such as loop detectors or temperature gauges).

Aberdeenshire, Scotland

FIGURE 3.14 EXAMPLES OF VARIABLE SPEED LIMIT SIGNS

Motorway M25, United Kingdom

3.2.4 Benefits and Costs

Benefits

The two main benefits are collision reductions and speed reductions, both of which are described below. With these two benefits, a third benefit also arises. Fewer collisions and a more uniform traffic speed results in improved mobility.

Collision Reduction

The safety benefits of VSL systems have been widely researched, with the majority of the safety studies referring to applications focused on for traffic congestion. Lind and Lindkvist found that Swedish roads with VSL reduced the rate of injury crashes by 20 percent.³⁴ Siegener et al found that in Germany, VSL reduced collisions by 15 percent, with greater reductions in sections with higher traffic volumes.³⁵ The Government of the United Kingdom has documented injury collision reductions of 15 percent along the M25 Motorway.³⁶

³⁴ Lind, G., and Linkvist, A. Traffic Controlled Variable Speed Limits, Sweden. TEMPO Evaluation Expert Group, European Commission, 2009.

³⁵ Siegener, W., Trager, K., Martin, K., and Beck, T. Accident occurrence in the area of route information and management systems, allowing particularly for traffic load. IVT Ingenieurburo fur Verkehrstechnik GmbH. BAST, 2000

³⁶ United Kingdom Department for Transport. M25 Controlled Motorway - Results of the first Two Years. 1998.

Government			
of Alberta 🗖			
Transportation			

There are fewer studies documenting collision reductions for lower-volume roads. A study for VSL-related lane control during wet weather along the Kolner Ring Road in Germany found wet weather crash reductions of 10 percent, of which injury crashes were reduced by 20 percent.³⁷

There have been other studies that rely on models and simulations. Abdel-Aty et al found that VSL can reduce rear-end and lane-change crash risks³⁸. The study also showed that safety benefits are more likely in congested conditions as opposed to low-volume conditions.

Vehicle Speed Reduction

The effects of VSL on vehicle speeds have been studied at various levels. Studies have shown that effectiveness appears to be higher when VSL is in the context of poor road or weather conditions, with speed reductions from 8 to 10 km/h during fog conditions³⁹, 13 to 14 km/h during severe surface conditions⁴⁰, and 7.5 mph during wet and dark conditions.⁴¹ In contrast, the speed reductions related to congestion areas is lower along areas that are not congested, unless there is visible enforcement or messages stating that congestion is ahead.

Since drivers tend to drive at what they feel is the appropriate safe speed, regardless of the posted speed limit, it appears that unless there are visible reasons to drive more slowly (such as inclement weather or poor visibility), other supplementing measures such as enforcement or messages are needed to achieve significant speed reductions. Although not all studies reviewing vehicle speed impacts explicitly note the safety benefits, it is implied that slower travel speeds will have a positive safety effect.

Costs

The cost of VSL depends on the sign structure type used. If roadside signs are used, they are estimated (based on TRANS 2010 *Unit Price Averages Report*) to cost \$1000 per new sign, plus an additional \$200 per sign to be removed. For overhead signs, the cost was estimated to be \$300,000 per sign. Annual M&O costs were assumed to be \$2500.

³⁷ United Kingdom Department for Transport. Overhead Dynamic Lane Control on the A3 Kolner Ring (Leverkusen to Heumar), Germany, 1998.

³⁸ Abdel-Aty, M., Cunningham, R.J., Gayah, V.V., and Hsia L. Considering Dynamic Variable Speed Limit Strategies for Real-Time Crash Risk Reduction on Freeways, Transportation Research Board (TRB) Annual Meetings, Washington DC, 2008.

³⁹ Netherlands Urban - A16 near Breda

 ⁴⁰ Lind, G. Effects of traffic and weather controlled variable speed limits in Sweden. Proceedings of the 6th European Congress and Exhibition on Intelligent Transport Systems and Services, 18-20 June 2007, Aalborg, Denmark.
 ⁴¹ Examples of Variable Speed Limit Applications, Speed Management Workshop, 2000 TRB Annual Meeting

Government of Alberta <mark>=</mark>
Transportation

In addition to VSL, there will be other complementing devices such as message boards, detectors, and/or cameras for real-time monitoring. Information signs advising motorists of the approaching VSL system should also be considered. Note that the costs of these extra devices were not included in the cost estimate.

3.2.5 Existing Guidance

Regulatory Guidance

Hines and McDaniel examined the legal issues in the United States that may arise from implementation and enforcement of variable speed limits. Their study found that in general the legal issues that will arise should be no different from the legal issues that have been considered by courts in adjudicating alleged violations of prima facie speed limits and other fixed maximum speed limits. Although their study was specific to the United States, the legal issues discussed may potentially be pertinent in Alberta. That said, Division 1, Section 108 of the Alberta Traffic Safety Act indicates that a road authority may set speed limits that are different from "standard speed limits" set in Section 106 and 107 given certain situations. It is expected that VSL would not only be enforceable but would sustain any legal challenges if the Alberta Traffic Safety Act is edited to include the governance and application of VSL similar to Division 1.

Application Guidance

Based on the literature review, VSL can be implemented along any location (rural or urban), road classification, prevailing posted speed limit, or terrain.

There are no clearly documented engineering guidelines for the application of VSL. However, most existing applications are provided in the following circumstances:

- Recurring congestion
- Variable road or weather conditions
- Variable surface conditions
- Incidents
- Long-term construction zones

There are no references in the literature to collision thresholds above which VSL should be considered.

November 2010

3.2.6 Recommended Guidance

Based on the findings to date, the following procedures are recommended to be addressed in Alberta to effectively implement Variable Speed Limits:

Enabling Legislation

All matters addressing the legality of VSL should be addressed to ensure that not only are VSL considered to be regulatory, but also enforceable. Consultation with legal professionals will be required. Statutes written into the Alberta Traffic Safety Act should be addressed first, such as explicitly stating that VSL signs are considered to be legal posted speed limit signs, and that the signs may display different speed limits. These clauses would be required so a Ministerial Order isn't required to change a speed limit on VSL signs. Alternatively, a pilot study with VSL could be undertaken to test its effectiveness, with the understanding that police cannot enforce the posted VSL. To ease enforcement of VSL as well as gain motorists' respect of the signs, the appearance of the VSL sign should be close to existing posted speed signs.

3.2.7 Application Guidance

Land Use and Speed Context

The recommended land use and speed environments for the application of VSL are summarized in TABLE 3.8. VSL are typically provided on freeways, where movement is free-flow outside of peak traffic periods and not influenced by traffic control devices such as traffic signals. Based on current worldwide applications, they would be most commonly provided for congestion relief in more urbanized areas, and for weather/road conditions in more rural areas.

LAND USE	POSTED SPEED LIMIT (km/h)			
	50 or less	60 - 70	80 - 90	100 or more
Rural	-	-	\checkmark	\checkmark
Urban**	-	-	\checkmark	\checkmark
Semi-Urban / Suburban	-	-	~	~

TABLE 3.8 ACCEPTABLE LAND USE AND SPEED RANGES FOR VARIABLE SPEED LIMITS

**appropriate along freeways, but not arterial roads

Application Criteria

VSL are best suited at locations where the existing posted speed limit frequently becomes unsafe due to vehicle congestion or inclement weather. Further review of the location would need to be undertaken to determine the safe and appropriate speed to display, as well as the length of the applicable section.

- Congestion Management: along roadways where recurring congestion occurs and that there is a safety issue due to unexpected lower speeds. In Alberta, this would include freeways such as Deerfoot Trail in Calgary and Whitemud Trail in Edmonton.
- Variable Road or Weather Conditions: along sections of road that have a history of encountering road or weather conditions where the safe driving speed is different than under normal circumstance. This can include locations that are prone to fog, or locations where the formation of ice significantly reduces the roadway friction factor. This can include valleys, sag curves, bridge decks and locations near bodies of water.
- *Incidents*: at locations where incidents such as stopped vehicles or crashes requiring vehicles to stop along the road may result in the need for slower speeds. VSL would be particularly helpful where there are minimal shoulder facilities for the safe refuge of vehicles involved in incidents, or where rubbernecking is more likely to cause further incidents.

3.2.8 Implementation Considerations

For locations where it is deemed appropriate to provide VSL, review of the following implementation considerations is expected to maximize its effectiveness.

Appearance and Visibility

Based on the literature findings, the following practices are suggested:

- To gain respect of the VSL signs from motorists, as well as make it easier to legally enforce, the signs should be close in appearance to typical regulatory posted speed limits.
- For better driver compliance, complimentary supplemental signs and/or messages describing any road conditions should be provided. This includes circumstances such as queues, congestion, incidents, or poor road/weather conditions.
- Information signs in advance of sections with VSL should be provided to inform motorists that the speed limits can change.
- To maximize sign visibility, especially for multi-lane roads, the signs should be provided on both sides of the road or overhead.

FIGURE 3.15 EXAMPLE OF SIGN INFORMING MOTORISTS OF VSL

Other Installation Considerations

Other more specific installation considerations are as follows:

- Policies as to when and for how long the posted speeds displayed in the VSL systems change is typically determined to the road agency.
- In general, the minimum speed zone length is approximately 1 kilometre. Therefore any VSL system should be enforceable for at least that distance.

November 2010

- Studies indicate that differences in posted speed limit zones should not be greater than 20km/h. Therefore unless there are unusual or severe circumstances, it is suggested that the lower speed in a VSL system not be greater than 20km/h difference from the previous posted speed. Conversely, the VSL system could be set up to include step-down speed zones if the section is long enough.
- Whether the posted speeds displayed in the VSL system is manually controlled or not will depend on the road agency. However, it is understood that various other devices such as cameras (if monitoring real-time congestion or incidents), road sensors (if monitoring temperature or queues) will likely need to be installed.
- Studies have documented that some type of visible enforcement will be required from time to time.

Issues Limiting Safety Effectiveness

While VSL have proven and potential safety benefits, they also bring a set of issues that may increase the liability of the road authority and possibly limit their effectiveness:

- Drivers come to rely on variable speed limits to warn of dangers. Should the speed limits fail to operate, the driver will proceed unaware of the danger or expect that no danger lies ahead.
- Potential liability issues as the system places a greater amount of responsibility for proper selection of speed under prevailing conditions on the engineers and less on the drivers.
- The benefits of variable speed limits, like static speed limits, will be limited by the ability of the police to enforce them. As well, issues such as conflicting documentation of the posted speed limit displayed at the time of the infraction will further hinder enforcement.
- Situations where there are advisory speed limits (such as along a sharp curve) within a section where VSL may be implemented may make the posted VSL at those locations unsafe. These issues would need to be reviewed on a site-specific case, and may potentially exclude the use of VSL at that location.
- Public education will need to be provided to clarify to the driving population that variable speeds limits are regulatory, not advisory. Drivers will still need to drive to the conditions.

3.2.9 Human Factors Considerations

A well designed and managed VSL is based on good human factors design, since it reflects the speed that drivers typically consider reasonable. As well, they provide warning of upcoming change in conditions, which supports expectancy and reduced surprises, as well as provides legitimacy to the reduced speed limit. As long as the information provided on the VSL is reliable and reasonable, it can substantially reduce driver stress, which in turn can improve safety. As well, the appearance of VSL should be of signs that are legitimate and enforceable; therefore the signs displaying the posted speed limit should be close in appearance to typical posted speed limit signs.

3.2.10 Maintenance Considerations

As motorists rely on VSL systems to notify them of the appropriate speed limit, the maintenance of VSL systems is important. Any need to repair or service the system should be made promptly. Scheduled inspection of such systems, continual monitoring when operating, and testing is also generally suggested.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

ALBERTA TRANSPORTATION

METHODS OF REDUCING COLLISIONS ON ALBERTA ROADS

APPLICATION GUIDELINES FOR CONVERSION OF STOP-CONTROLLED INTERSECTIONS TO ROUNDABOUTS

FINAL

Opus International Consultants (Canada) Limited

THIS PAGE WAS INTENTIONALLY LEFT BLANK

3.3 Conversion of Stop-controlled Intersections to Roundabouts

3.3.1 Background

A high proportion of the major injuries and fatalities in Alberta occur at stop-controlled intersections. The results of treatments to enhance the stop control (such as oversize signs and flashing beacons) have been mixed, but the benefits are generally limited. Therefore, modern roundabouts, although historically more commonly applied in lower-speed or urbanized situations in Alberta, have recently been more seriously considered at two-way stop-controlled highway intersections. However, no clear guidance was provided in industry documents for this specific application until Design Bulletin 68 was issued in May 2010.

Source: Federal Highway Administration Roundabouts Technical Summary (2010)

Roundabouts have been successfully implemented in numerous countries, providing benefits to both road agencies and road users. Benefits include reductions in collision severity, improved traffic operations, reduced vehicle speeds, reductions in vehicular delays and reduced greenhouse gas emissions.

Government
of Alberta 💻
Transportation

Roundabouts have been proven to significantly reduce high severity collisions at intersections by reducing the number of conflict points and the risk of high speed right-angle and left-turn across path collisions.

While it is recognized that the effective application of roundabouts is highly context sensitive and therefore difficult and potentially unwise to construct roundabouts without further analysis in, the purpose of this document is to encourage their more widespread but systematic consideration where safety problems persist. It also promotes the consideration of roundabouts at all new intersections, but provides examples of exceptions. This document supplements Alberta Transportation's Roundabout Guideline.

3.3.2 Definitions

Modern Roundabout: A modern roundabout (hereafter referred to as a roundabout) is a circular intersection designed for improved traffic flow and reduced collision risks. Traffic circulates in a counter-clockwise direction around a centre island. Motorists entering the roundabout must yield to traffic already in the roundabout. Once in the roundabout, motorists must yield the right of way to vehicles on their left.

Traffic Circle: Roundabouts are often confused with older traffic circles or rotaries that have suffered from poor safety and operational performance. Traffic circles do not have specific uniform rules for driving in them. They operate differently from a roundabout as traffic in the circle is sometimes required to yield to traffic entering the circle, which can result in high entry speeds and large diameter circles. Roundabouts have been proven to have a better safety performance than traffic circles and conventional intersections.

3.3.3 Current Status in Alberta

Roundabouts have started to be implemented in Alberta over the past decade. Numerous low speed urban roundabouts have been implemented in the province and a few roundabouts have been constructed at provincial highway intersections such as:

- Highway 8 and Highway 22 near Bragg Creek;
- Highway 11A and Highway 20 near Sylvan Lake;
- Highway 63 and King Street Interchange in Fort McMurray; and,
- Highway 744, 96 Avenue and 100 Street in Peace River.

Government			
of Alberta 🗖			
Transportation			

Roundabouts are more common outside of Alberta: in other parts of Canada (such as British Columbia), the United States and abroad.

3.3.4 Example Applications

Roundabouts can be an appropriate and effective traffic control device for a wide variety of applications. Although roundabouts are more common on low speed urban roadways, they can also be applied on high speed roads and in rural contexts. TABLE 3.9 illustrates examples of roundabouts in Alberta with different road classifications and land uses.

Roundabout LocationMcKenzie Towne Blvd., Inverness Gate, McKenzie Towne Gate and Prestwick Blvd. Intersection Calgary, AlbertaRoundabout DescriptionMultilane roundabout located at the intersection of five low-speed local arterial roads. Roundabout is located in an urban area and provides provisions for pedestrians.	Source: Googlemaps.com
Roundabout Location	
Highway 8 and Highway 22 Intersection Bragg Creek, Alberta	
Roundabout Description	
Roundabout located at the intersection of two high speed (100 km/h) rural highways. Posted speed limits are reduced in the vicinity of the roundabout.	Source: Alberta Transportation

TABLE 3.9 ROUNDABOUT EXAMPLE APPLICATIONS IN ALBERTA

3.3.5 Benefits and Costs

Collision Reduction Benefits

A well designed modern roundabout can improve the safety of intersections by eliminating or altering conflict types, by reducing speed differentials at intersections, and by decreasing speeds through the intersection. The safety benefits of roundabouts include:

- traffic moves at slower speeds;
- fewer conflict points for pedestrians and motorists;
- reduced potential for right angle (t-bone) collisions; and,
- elimination of head-on and high speed collisions.

Roundabouts have a well documented history of reducing the frequency of higher severity collisions. **TABLE 3.10** provides a summary of the collision reduction factors identified in the National Cooperative Highway Research Program's (NCHRP) <u>Report 572: Roundabouts in the United States</u> (2007). The expected collision reduction varies depending on the characteristics of the roundabout, such as the previous traffic control, land use, number of legs and number of circulatory lanes. The results indicate that even in the rural context, where roundabouts are less common, 72% to 87% of collisions are eliminated following the installation of modern roundabouts.

Previous Traffic Control	Collision Severity	Land Use	Number of Circulatory Lanes (if known)	Collision Reduction
2-Way Stop Control	All	All	-	44%
2-Way Stop Control	All	Rural	1 lane	72%
2-Way Stop Control	All	Urban	-	31%
2-Way Stop Control	All	Urban	1 lane	56%
2-Way Stop Control	All	Urban	2 lane	18%
2-Way Stop Control	Fatal / Injury	All	-	82%
2-Way Stop Control	Fatal / Injury	Rural	1 lane	87%
2-Way Stop Control	Fatal / Injury	Urban	-	74%
2-Way Stop Control	Fatal / Injury	Urban	1 lane	78%
2-Way Stop Control	Fatal / Injury	Urban	2 lane	72%

TABLE 3.10 RESULTS OF BEFORE-AND-AFTER ANALYSIS OF ROUNDABOUTS

The average collision reduction for converting urban and rural intersections to roundabouts is summarized in TABLE 3.11.

Land Use	Previous Traffic Control	Reduction of All Collisions	Reduction of Injury and Fatal Collisions
Urban	2-Way Stop Control	35%	75%
Rural	2-Way Stop Control	72%	87%

TABLE 3.11 AVERAGE COLLISION REDUCTION FACTORS

Operational / Maintenance Benefits

In addition to the safety benefits of roundabouts, there are some additional benefits such as:

- Vehicles using a roundabout are not always forced to stop, which reduces delays, congestion, noise, fuel consumption and emissions.
- Roundabouts have lower operation and maintenance costs than traffic signals.
- Roundabouts can effectively and safely slow traffic while still improving traffic flow.
- Roundabouts are generally accepted as being more aesthetically pleasing than signals.
- Roundabouts can emphasize the transition from a rural to an urban environment.
- U-turn movements can be safely accommodated at roundabouts.

Costs

The cost of constructing a roundabout at an existing stop-controlled intersection was estimated to be approximately \$250,000. This does not take into account any property acquisition or service relocation costs. Annual M&O costs were assumed to be \$3000.

3.3.6 Existing Application Guidance

National Guidance

The Transportation Association of Canada's (TAC) <u>Synthesis of North American Roundabout</u> <u>Practice</u> (2008), provides a summary of best practices related to the application and implementation of roundabouts. The report is a reference document and is not intended to be a national guidance document.

The TAC <u>Geometric Design Guide for Canadian Roads</u> (2007) provides guidance for the design of roundabouts but limited application guidance.

Provincial Guidance

Guidance for the application of roundabouts on Alberta highways is documented in a recent design bulletin issued by Alberta Transportation entitled <u>Design Bulletin #68: Roundabout</u> <u>Design Guidelines on Provincial Highways</u> (2010).

http://www.transportation.alberta.ca/Content/docType233/Production/DesignBulletin68.pdf

The design bulletins supplement Alberta Transportation's <u>Highway Geometric Design Guide</u> (1999).

The design bulletin supersedes a previous bulletin (#31) concerning the policy and guidelines for the use of roundabouts on roadways under Alberta Transportation's direction and control.

Municipal Guidance

No municipal guidelines or policies for the application of roundabouts were identified in Alberta. A roundabout policy for the City of Calgary is currently under development.

International Guidance

One of the most commonly used roundabout documents is the United States Federal Highway Administration's (FHWA) *Roundabouts: An Informational Guide* (2000).

http://www.tfhrc.gov/safety/00-067.pdf

This comprehensive document provides information on roundabout policies, planning, operations, safety and design. However, detailed application guidance is not provided. A second edition of this document is planned to be published in 2010.

Other relevant resources for the application of roundabouts include:

- National Cooperative Highway Research Program's (NCHRP) <u>Report 572: Roundabouts in</u> <u>the United States</u> (2007), <u>http://trb.org/publications/nchrp/nchrp_rpt_572.pdf</u>;
- Ourston Roundabout Engineering's <u>Roundabout Design Guidelines</u> (2001);
- Austroads' Guide to Traffic Engineering Practice Part 6: Roundabouts (1993); and,
- NCHRP's <u>Synthesis 264, "Modern Roundabout Practice in the United States</u>" (1998). <u>http://trb.org/publications/nchrp/nchrp_syn_264.pdf</u>

Although the focus of the above documents is the design and implementation of roundabouts, there is some application guidance provided, such as discussing appropriate and inappropriate locations for roundabouts. The key application guidance from these documents has been incorporated into these guidelines. The references are provided in case further information is required.

3.3.7 Recommended Application Guidance

The focus of these guidelines is the reduction of high severity collisions at stop controlled intersections. As such, the focus is on higher speed roads (70 km/h or greater) where the risk of high severity collisions prevails. Although roundabouts provide similar safety and operational benefits for lower speed roads, the focus of this section will be on the high speed context.

In addition to safety, roundabouts can be implemented to improve traffic operations and/or for traffic calming (i.e. to reduce traffic volumes and/or shortcutting on lower class roads). These guidelines focus on the application of roundabouts to improve traffic safety, specifically the reduction of high severity collisions.

Guidance for the application of roundabouts to address traffic operations and/or traffic calming can be found in the following documents (note, this list is not comprehensive):

Traffic Operations

- Alberta Transportation's Roundabout Technical Guidelines (2010);
- National Cooperative Highway Research Program's <u>Report 572: Roundabouts in the</u> <u>United States</u> (2007); and,
- Transportation Research Board's *Highway Capacity Manual* (2010).

Traffic Calming

- City of Calgary *Traffic Calming Policy* (2007); and,
- Transportation Association of Canada's <u>Canadian Guide to Neighbourhood Traffic</u> <u>Calming (1998)</u>.

Guidance for the application of roundabouts with the objective of reducing high severity collisions is provided in the following subsections.

3.3.8 Land Use and Speed Context

Land Use

Roundabouts are appropriate for both urban and rural areas in the appropriate application. Their design may vary depending on the land use; this is discussed among the implementation considerations.

Speed Ranges

Roundabouts are designed to operate at low operating speeds. Therefore, the posted speed limit in the vicinity of the roundabout should be low (typically 40 km/h to 50 km/h, depending on the inscribed diameter). This does not preclude the use of roundabouts on higher speed roads, but they would require a reduced speed zone in the vicinity of the roundabout.

The land use and speed environments where the installation of a roundabout is acceptable is summarized in TABLE 3.12. All land use and speed contexts can potentially be appropriate; their use may be limited by other factors, described in subsequent sections.

TABLE 3.12 ACCEPTABLE LAND USE AND SPEED RANGES FOR ROUNDABOUTS

	POSTED SPEED LIMIT (km/h)			
LAND USE	50 or less	60 - 70*	80 - 90*	100 or more*
Rural	\checkmark	\checkmark	\checkmark	\checkmark
Urban	\checkmark	\checkmark	\checkmark	\checkmark
Semi-Urban / Suburban	✓	\checkmark	\checkmark	\checkmark

*Roundabouts can be implemented on higher speed roads. However, a reduced speed zone in the vicinity of the roundabout is required.

Locations Where Roundabouts are Discouraged

Roundabouts are generally among the preferred options for most intersections. However; there are some locations where the implementation of a roundabout is undesirable. A summary of these locations is provided below and is intended to save unnecessary analysis and debate:

- Locations where the major road carries a very high through volume, with a minimum volume of left-turn traffic, and intersecting roads have a low volume;
- Existing Freeways;
- Roads which are identified as "future freeways" (unless the use of a roundabout for an interim stage is compatible with the staging plan);
- National highway routes where the posted speed is expected to be at least 90 km/h unless the roundabout with lower speed is considered compatible with a staged plan (for example, in a low speed urban environment where the ultimate plan is to by-pass the urban centre); and,
- Where the preservation of a high speed road is both highly desirable and feasible (using options other than a roundabout).

Locations Where Roundabouts are Encouraged

Due to the safety and operational benefits associated with them, roundabouts should be considered as the first option for intersection designs where a greater degree of traffic control than a two-way stop is required (e.g. a traffic signal or a four-way stop).

If a different intersection treatment is recommended, the project documentation should clearly explain why a roundabout was not selected for that location (e.g. a geometric constraint or a capacity problem).

Locations where roundabouts are favoured include:

- Where there is a need for traffic calming such as at the boundary between urban and rural environments (gateway treatment), between high speed and lower speed roadways and/or between divided highways and undivided highway (such as interchange ramp terminals).
- Where there is a desire to provide a corridor with a series of consistent intersection layouts (all roundabouts) such as at all interchange terminals along a route or at all atgrade intersections along an arterial roadway.
- Locations where the intersecting road traffic volumes are similar and/or there is a large volume of left turns from the major road.
- Locations where the geometrics are not favourable for a conventional intersection, such as skewed intersections and intersections with five or more legs.
- Intersections with a high rate of high severity right-angle and/or left-turn across path collisions.

Further application guidance is provided in the following subsections.

3.3.9 Application Criteria

The application guidance has been separated into two categories; Existing Intersections and New or Upgraded Intersections (Design).

Criteria for the applicability of a roundabout have been considered separately for each category and are presented below.

It should be noted that there are lower cost improvements that can be implemented to reduce the risk of high severity collisions at stop controlled intersections. These improvements include, but are not limited to stop control enhancements, such as oversized stop signs, stop ahead warning signs and transverse rumble strips. Although these improvements can reduce the risk of collisions at stop controlled intersections, they are not nearly as effective as the implementation of a roundabout.

Existing Intersections

A. Application Criteria

Based on Alberta Transportation's Design Bulletin #68, the conversion of an existing stop controlled intersection to a roundabout should be triggered by any of the following:

- 1. the need to provide a higher degree of traffic control than a "two-way stop control";
- 2. a clear economic benefit based on safety and other considerations under current traffic conditions; or,
- 3. implementation of a traffic calming measure based on sound engineering judgment.

The capacity analysis and traffic calming triggers are not discussed in this document (references for these triggers are provided in the Recommended Application Guidance section). The safety criterion for the application of roundabouts (criterion #2 above) is further defined in Section B.

B. Safety Criterion

Due to the variation in existing site conditions and construction costs, it is difficult to assign a quantitative safety trigger that works in all situations. In general, the evaluation of a stop control to roundabout conversion should be considered (from a safety perspective) if:

- The intersection is stop controlled;
- The posted speed limit on the uncontrolled road is 70 km/h or greater (due to the high severity of collisions); and,
- There is a history of high severity right-angle or left-turn across path collisions.

An economic evaluation should be conducted to determine the benefits and costs associated with the implementation of a roundabout. The safety benefits of roundabouts are defined as the societal cost savings due to the reduction in the number of, and severity of vehicle collisions. The safety benefits can be determined as follows:

- Determine the existing fatal, injury and property damage only collision rates for the intersection.
- Estimate the expected collision reduction, for each severity, expected due to the implementation of a roundabout. The expected collision reductions are provided in **TABLE 3.11**
- Multiply the existing collision rate by the expected reduction in collisions to determine the collision rates expected after the implementation of a roundabout.
- Calculate the frequency of collisions expected over the life of the project by multiplying the "after" collision rate by the expected number of vehicles entering the intersection over the life of the project.
- Determine the cost of collisions after implementation of a roundabout by multiplying the number of collisions for each level of severity by the societal cost of collisions. The societal collision costs for collisions in Alberta are provided in TABLE 3.13.

SEVERITY	SOCIETAL COLLISION COST*
Fatal	\$1,345,068
Injury	\$100,000
Property Damage Only	\$12,000

TABLE 3.13 SOCIETAL COLLISION COSTS IN ALBERTA

*The societal collision costs are based on Alberta Transportation's 2009 values.

The benefits (safety, operational and environmental) and costs (construction, operation and maintenance) should be quantified on an annualized basis such that it is readily usable in a benefit-cost analysis.

Information on how the operational and environmental benefits and construction and maintenance costs can be determined is available in FHWA's Roundabouts: An Informational Guide, Sections 3.7.2.2 through 3.7.3.2.

Phase 2 Final Report

If it is determined that a roundabout is favourable from a safety perspective, an analysis of traffic operations should be reviewed to determine if a roundabout is feasible from an operations perspective.

Application at New or Upgraded Intersections (Design Stage)

A. Application Criteria

If it is determined through capacity analysis during the design stage that a two-way stop controlled intersection warrants a signal or a four-way stop control within 10 years of the proposed project, a roundabout should be considered as the first option for intersection design.

B. Safety Criterion

The safety trigger to evaluate the need for a roundabout when upgrading an intersection treatment is the same as evaluating existing intersections as collision data should be available.

In the case of new intersections, the collision history is non-existent. If local stop controlled intersection collision prediction models are available, the expected frequency of collisions could be estimated and a benefit/cost analysis conducted to determine if a roundabout is economically favourable.

The design AADT's can also be reviewed to identify potential safety issues. If the proportion of major and minor road traffic volumes are similar or there is inadequate capacity for left-turn movements from the major road, a roundabout may improve traffic operations while at the same time reducing the risk of right-angle and left-turn across path collisions.

Potential Application Constraints

These guidelines are intended to help practitioners identify when a roundabout should be considered for implementation; they do not cover feasibility or constructability issues. However, some general implementation considerations have been identified in the Implementation Considerations section, including potential constraints that could make the implementation of a roundabout unfeasible. As roundabouts have high construction costs, design constraints should be identified and evaluated, and mitigation options considered to determine if a roundabout is a feasible traffic control option in the early stages of planning.

3.3.10 Human Factors

There are some positive and negative human factors characteristics associated with roundabouts. Some of the benefits include:

- Motorists don't have to look for and judge gaps in high speed traffic, where an error in judgement could contribute to a collision;
- Reduced driver workload at each leg;
- Visibility of conflicting vehicles is improved; and,
- Lower speeds reduce the decision sight distances required by motorists, and reduce collision severity (to motorists, pedestrians, and cyclists).

Some of the drawbacks include:

- Roundabouts are still a relative new traffic control in Alberta and not all motorists are aware how to negotiate them properly, which can result in conflicts. Education may be required to inform motorists how to drive in a roundabout;
- Roundabouts create challenges for cyclists that may not know how to negotiate a roundabout. Likewise, motorists may be unaware of how cyclists are intended to use the roundabout;
- Motorists in the roundabout may not anticipate pedestrians crossing the exit leg. Likewise, motorists entering the roundabout, looking left for a gap in traffic, may not anticipate or see a conflict (pedestrian) approaching from the right; and,
- Roundabouts can present challenges for visually impaired pedestrians.

Designers should also limit the use of signage at roundabouts to just what is required. This will help to minimize clutter and information over-load.

3.3.11 Implementation Considerations

The actual design and construction of roundabouts is not covered in this document. However, some general implementation considerations are provided below:

• Roundabouts typically have a larger footprint than conventional intersections. Therefore, acquiring the right-of-way required for a roundabout could be difficult or costly.

November 2010

- Since roundabouts are relatively unfamiliar, there implementation is often resisted by the public. Studies have shown that although acceptance of a roundabout is low prior to construction, it is typically high once the roundabout is in operation.
- Capacity analysis should be conducted to evaluate how the roundabout will function and any implications it might have at other locations, such as neighbouring intersections, driveways or railway crossings.
- The vehicle types that will be using the roundabout will need to be considered. Larger vehicles may require larger roundabouts or aprons to accommodate their turning radius.
- Pedestrian and bicycle operations and safety need to be considered closely to ensure their needs can be accommodated in the design.
- Geometric conditions must be reviewed. Roundabouts are most suitable where gradients on the through alignments or approaches are less than two percent along the travelling direction within a roundabout. Sight lines on approaches should provide adequate decision sight distance in advance of the roundabout.

More detailed implementation guidelines are provided in the following documents:

- Alberta Transportations' <u>Design Bulletin #68: Roundabout Design Guidelines on</u> <u>Provincial Highways</u> (2010);
- FHWA's *Roundabouts: An Informational Guide* (2000); and,
- TAC's <u>Synthesis of North American Roundabout Practice</u> (2008).

3.3.12 Maintenance Considerations

Maintenance costs of roundabouts are typically higher than stop controlled intersections due to the additional pavement area and signs required at roundabouts. Roundabouts require night time illumination; therefore, the costs to electrify and maintain the illumination are typically higher than stop controlled intersections.

The maintenance costs associated with traffic signals are typically higher than roundabouts.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

ALBERTA TRANSPORTATION

METHODS OF REDUCING COLLISIONS ON ALBERTA ROADS

APPLICATION GUIDELINES FOR POSITIVE OFFSET LEFT-TURN LANES

FINAL

Opus International Consultants (Canada) Limited

THIS PAGE WAS INTENTIONALLY LEFT BLANK

3.4 Positive Offset Left-turn Lanes

3.4.1 Background

Left-turns are one of the most challenging manoeuvres that exist in the road network, and are among the leading causes of collisions, including fatalities and injuries, at intersections. During a left-turn at a signalized intersection, vehicles in the opposing left-turn lanes can impede the view of conflicting through traffic. All drivers (aging drivers in particular) have difficulty gaining an effective view of opposing traffic and successfully selecting a gap in traffic.

It is possible to remove opposing traffic as an obstruction by offsetting the left-turn lanes laterally. When the two opposite left-turn lanes are directly aligned with each other, the offset is zero. A negative offset is achieved when the left-turn lanes are moved to the right of one another, and a positive offset (FIGURE 3.16) is achieved when they are moved left.

While this practice is encouraged, it is not standard in any Alberta jurisdictions. The purpose of this document is to encourage their more widespread and systematic consideration at *signalized* intersections. The literature on safety benefits of positive offset left turn lanes at *unsignalized* intersections is limited and has not been addressed in this guideline.

3.4.2 Definitions

Positive Offset: The arrangement of left-turn lanes to the left of one another, i.e.: when positioned in the left-turn lane, the left edge of the opposing left-turn lane is offset to the right.

Negative Offset: The arrangement of left-turn lanes to the right of one another, i.e.: when positioned in the left-turn lane, the left edge of the opposing left-turn lane is offset to the left.

3.4.3 Example Applications

Positive offset left-turn lanes are in place in several Alberta municipalities and along provincial roadways, most commonly at high volume urban and suburban intersections; however, also applied in rural situations. Example applications of positive offset left-turn lanes are shown below. FIGURE 3.17 shows a dual left-turn lane application while FIGURE 3.18 and FIGURE 3.19 show a single left-turn lane application in urban and rural environments.

FIGURE 3.17 DUAL POSITIVE OFFSET LEFT-TURN LANE (SUBURBAN)

FIGURE 3.18 SINGLE POSITIVE OFFSET LEFT-TURN LANE (URBAN)

FIGURE 3.19 SINGLE POSITIVE OFFSET LEFT TURN LANE (RURAL)

3.4.4 Benefits and Costs

Benefits

The benefits of providing positive offset left-turn lanes can be expressed in terms of safety, capacity, and truck operations. The safety benefits are highlighted here.

November 2010

Positive offset left-turn lanes situate vehicles further to the left on the approach, which enhances safety for permissive left-turn movements by providing additional sight distance to aid in the gap assessment aspect of the decision making process. Moreover, positive offset left-turn lanes have been found to be particularly beneficial for older drivers⁴² due to the decrease in the critical gap required by a driver making a left-turn from a left-turn lane at a signalized intersection when the offset is zero or larger, and the fact that older drivers tend to require slightly longer clearance times when making left turns.

Therefore, positive offset left-turn lanes reduce the risk of left-turn across path collisions, which typically result in injury. However, in the presence of a protected-only left-turn phase, the safety benefits may be reduced due to the protected nature of the crossing which does not involve the decision making aspect related to gap acceptance. The relationship between left-turn phasing, laning and relative safety benefits is outlined in TABLE 3.14.

TABLE 3.14 RELATIVE SAFETY BENEFIT OF POSITIVE OFFSET LEFT-TURN LANES WHENUSED WITH PROTECTED/PERMISSIVE LEFT-TURN PHASING

	PROTECTED	PERMISSIVE
1 Left-Turn Lane	Low Safety Benefit	High Safety Benefit
2 or More Left-Turn Lanes	Low Safety Benefit	Not Recommended*

*Permissive phasing should not be provided at locations with 2 or more left-turning lanes. Consult Protected-Only Left-Turn Phasing Guideline" for more information.

Aside from the left-turn across path collisions, positive offset left-turn lanes typically reduce the rear-end and sideswipe collision risk on the approach as a result of:

- Clearly defined turning paths within an expansive median opening; and,
- Elimination of lane changes in the immediate area of the intersection because of the divisional island (from left to through and vice versa).

The positive offset geometry increases the angle between the approach path and exit path to and away from the intersection which results in capacity improvements to the left-turn movement at signalized intersections due to decreased crossing distance and time to make the manoeuvre. This may have a positive impact on congestion related collision upstream of the intersection. The increased angle also improves truck operations and safety, and is particularly

⁴² Tarawneh, M.S.; Rifaey, T.; McCoy, P.T. "Effects of Intersection Geometrics on Driver Performance:. *Transportation Research Record*, 1998. p. 30:1-10.

Government	Methods of Reducing Collisions on Alberta Roads
of Alberta 🗖	Phase 2 Final Report
Transportation	

effective where log haul trucks with long rear overhangs routinely turn left. The separation provided from the adjacent through lane assists in preventing the swept path of the rear overhang from conflicting with the adjacent through traffic.

The collision reduction factors associated with the implementation of positive offset left-turn lanes at signalized intersections are shown in TABLE 3.15. No information on the phasing before or after implementation was provided in the sourced material.

COLLISION TYPE	REDUCTION FACTOR	COUNTRY	CONTEXT	SOURCE
All intersection collisions	34%	US	Geometric, traffic and crash data were	FHWA TechBrief: "Safety
Urban injury collisions	36%	(Wisconsin, Nebraska, Florida)	compared for a total before period of 852 site-years* and a total after period of 474 site-years*.	Evaluation of Offset Improvements for Left-Turn Lanes". FHWA Publication No.: FHWA-HRT-09-036.

TABLE 3.15 COLLISION REDUCTION FACTORS FOR OFFSET LEFT-TURN LANES

*a site year is defined as the number of intersections studied times the number of years the treatment was in place.

Costs

The costs of retrofitting an existing intersection with positive off-set left-turn lanes depends greatly on whether or not the current road width is sufficient or if land will have to be purchased. Assuming the road is sufficiently wide; the cost for installing the lane (median island and remarking) was estimated to be \$10,000 to \$100,000 (depending on the length and width of the median). Annual M&O costs were assume to be \$3000.

3.4.5 Existing Application Guidance

Provincial Guidance

Alberta Transportation <u>Highway Geometric Design Guide - Urban Supplement</u> (November 2003) [Section U.D.1.4], provides guidance on the implementation of positive offset left-turn lanes. It promotes the use of offset left-turn lanes should be applied to all new intersections in the initial stages of a freeway/expressway design when the median width is sufficient, due to the safety benefits associated with the improved visibility for left-turning vehicles. In Alberta, the median is typically wide enough in the initial stages to accommodate this design.

Additional guidance pertaining to channelization is provided in Alberta Transportation's *Highway Geometric Design Guide* (1996) [Section D.6.3].

The Recommended Application Guidance is based on that information and other sources.

The City of Calgary favours the use of slotted left turn bays where there is sufficient right of way, with similar standards as TAC.

National Guidance

The Transportation Association of Canada's (TAC) <u>Geometric Design Guide for Canadian Roads</u> (1999) has a section on offset left-turn lanes (referred to as slot left-turn lanes). Section 2.3.8.7 of the manual provides warrants for offset left-turn lanes, as well as design considerations and qualitative safety and operational benefits. The four warrants include geometric, volume, safety and systems components.

Recommended Application Guidance

This section provides guidance for the systematic application of positive offset left-turn lanes, for both new installations and upgrades.

General Guidance

Positive offset left-turn lanes should be applied to all new signalized intersections in the initial stages of a freeway/expressway design when the median width is sufficient, due to the safety benefits associated with the improved visibility for left-turning vehicles. In Alberta, the median is typically wide enough in the initial stages to accommodate this design.

Generally, it is not cost-efficient to retrofit an existing parallel left-turn lane with a narrow or no median, to an offset left-turn lane due to the high costs of reconstruction and acquiring right-of-way⁴³. Providing a protected-only left-turn lane may be considered instead (see Application Guidelines for Protected-Only Left-Turn Phasing).

⁴³ TAC 1999

In general, positive offset left turn lanes can be considered at any intersection where an intersection approach exhibits a "high left-turn across path" collision history resulting from parallel left-turn lane having been constructed in a wide median. In addition, opposing truck left-turning volumes of over 10 percent create a significant sightline obstruction and may require the provision of positive offset left-turn lanes.

In Alberta, 12.5 percent of all casualty collisions in 2008 were left-turn across path collisions (<u>TRANS Alberta Traffic Collision Statistics 2008</u>). A percentage significantly higher than this average at a particular intersection may be indicative of the need for a positive offset left-turn lane.

Land Use and Speed Context

Positive offset left-turn lanes can be considered at any signalized intersection in urban, suburban or rural context. Signalized intersections are more common in urban and suburban environments where through and in particular turning traffic volumes are higher, but are also present in rural areas at intersections where there are intolerable delays for left-turning and crossing side street traffic.

Positive offset left-turn lanes at signalized intersections may be particularly appropriate at higher speeds because the gap required to execute a left-turn is greater, and the consequences of misjudging such a gap are more severe at higher speeds. The applicability for various speed limit ranges is shown in TABLE **3.16**.

Locations where positive offset left-turn lanes might be particularly appropriate are:

- Near seniors complexes or in areas with a large senior demographic: this provides a margin of safety for aging drivers who do not position themselves in the intersection before initiating a left turn⁴⁴.
- Near logging sites or other heavy producers of truck traffic⁴⁵: the separation provided from the adjacent through lane assists in preventing the swept path of the rear overhang from conflicting with the adjacent through traffic.

⁴⁴ Aging Road Users Guide 2006

⁴⁵ TĂC 1999

TABLE 3.16 TYPICAL LAND USE AND SPEED RANGES FOR POSITIVE OFFSETLEFT-TURN LANES

	SPEED LIMIT (km/h)			
	50 or less	60 - 70	80-90*	100 or greater*
Rural	\checkmark	\checkmark	\checkmark	
Urban	\checkmark	\checkmark	\checkmark	

* This applies to roads posted at 80 km/h. Signalized intersections will not be present along 90 km/h or greater roads.

Roadway Characteristics

Offset left-turn lanes are appropriate on major arterials and expressway with wide medians. The minimum median widths are presented in TABLE 3.17. Offset left-turn lanes may also be considered at the early stages of a major road's ultimate development. The median width available for four-lane divided arterials is often great enough for offset left-turn lanes, and allows for the future expansion.

TABLE 3.17	MINIMUM MEDIAN WIDTH REQUIREMENTS
-------------------	-----------------------------------

LANES	MEDIAN WIDTH (Metres)		
Single Positive Offset Left-Turn Lane	10.8		
Double Positive Offset Left-Turn Lanes	13.0		

As mentioned earlier, generally it is not cost-efficient to retrofit an existing parallel left-turn lane with a narrow or no median, to an offset left-turn lane due to the high costs of reconstruction and acquiring right-of-way. Providing a protected-only left-turn lane may be considered instead (see Application Guidelines for Protected-Only Left-Turn Phasing).

Intersection Characteristics

In addition to the land use and speed context and roadway characteristics, the applicability of offset left-turn lanes is a function of multiple intersection and safety-related parameters.

Positive offset left-turn lanes are applicable to all signalized intersections ranging from urban to rural environments. The maximum collision benefit is achieved when a permissive left-turn phase is present. In urban environments the intersections typically feature raised medians and lower speeds.

Positive offset left-turn lanes are strongly recommended at rural signalized intersections. The speeds are typically higher (70-80 km/h) and large crossing distances make it more difficult to successfully assess and accept gaps in traffic. There is also a lower tolerance for left-turn vehicles crossing the path of through vehicles in rural areas. Rural signalized intersections can feature rolled curb medians or depressed medians. Painted medians are also used in some jurisdictions; however, due to the climate in Alberta, pavement markings are less durable and can be covered by sand, snow, or ice during the winter months.

3.4.6 Implementation Considerations

Consistent implementation is important to achieve the maximum safety benefits of positive offset left-turn lanes by meeting driver expectations. FIGURE 3.20 shows the typical design based on the Alberta Transportation guidelines.

Source: Alberta Transportation Highway Geometric Design Guide - Urban Supplement (November 2003)

There are a number of other items which should be considered prior to the implementation of positive offset left-turn lanes:

- 1. Channelization should be clearly visible and should not be introduced where sight distance is limited. When an island must be located near a high point in the roadway profile, or near the beginning of a horizontal curve, the approach end of the island must be extended so that it will be obvious to the approaching drivers.
- 2. Longer walking distance, time and exposure for pedestrians. Ensure medians/islands are wide enough to act as a refuge for pedestrians and that ramps are provided where required.
- 3. Adequate signage and pavement markings should achieve positive guidance to avoid potential wrong-way movements by opposing direction vehicles entering the left-turn roadway. The implementation of DIVIDED HIGHWAY CROSSING, WRONG WAY, DO NOT ENTER, KEEP RIGHT, and ONE WAY signs (FIGURE 3.21) is recommended at intersections with positive offset left-turn lane applications. Signs should be placed as per <u>MUTCDC</u> specifications or local guidelines in a consistent manner. In addition, oversized signs (sizes larger than <u>MUTCDC</u> specified standard sizes for conventional roadways) are recommended, where practical and where they do not represent sight obstructions.

FIGURE 3.21 POSITIVE OFFSET DUAL LEFT-TURN LANE SIGNAGE

4. To reduce the likelihood of wrong-way movements (both main road through movements and minor road left turns), it is suggested that retroreflective pavement marking laneuse arrows be painted at locations where positive offset left-turn lanes are provided (FIGURE 3.22). The pavement markings should be in accordance with the Alberta <u>Highway Pavement Marking Guide</u>.

FIGURE 3.22 TURNING LANE PAVEMENT ARROWS

5. Retroreflective guide lines (shown in FIGURE 3.23) which scribe a turning path through the intersection, are recommended. The pavement markings should be in accordance with the Alberta <u>Highway Pavement Marking Guide</u>.

FIGURE 3.23 TURNING LANE GUIDE LINES

Government	
of Alberta 🗖	
Transportation	

FIGURE 3.24 presents the combination of signage and pavement markings that will help to delineate the correct path through the intersection and prevent wrong way manoeuvres.

[Note: Median ONE WAY signs are optional where left-turn lanes result in narrowing of the median, and engineering judgment indicates a potential for motorist confusion.]

FIGURE 3.24 SIGNING AND DELINEATION FOR POSITIVE OFFSET LEFT-TURN LANES

3.4.7 Human Factors

Positive offset left-turn lanes provide a margin of safety for aging drivers (among others) who have difficulties judging the speeds of approaching vehicles and accepting gaps. Some drivers position themselves incorrectly in the intersection before initiating a left turn⁴⁶; positive offset left-turn lanes make this process easier.

⁴⁶ Aging Road Users Guide 2006

This provides the opportunity for drivers to focus on the task of accepting gaps since they can already clearly see oncoming traffic. This results in greater comfort, less frustration, and a shorter turning manoeuvre.

3.4.8 Maintenance Considerations

An intersection with positive offset left-turn lanes requires some additional maintenance in terms of salting, sanding and snow removal due to the physical separation of the left-turn lane from the through lanes.

Additional traffic signal maintenance includes routine cleaning and inspections to ensure the units are functioning and to replace any burnt out lights (which is relatively infrequent with the new LED technology).

ALBERTA TRANSPORTATION

METHODS OF REDUCING COLLISIONS ON ALBERTA ROADS

APPLICATION GUIDELINES FOR PROTECTED-ONLY LEFT-TURN PHASING

FINAL

Opus International Consultants (Canada) Limited

THIS PAGE WAS INTENTIONALLY LEFT BLANK

3.5 Protected-only Left-turn Phasing

3.5.1 Background

Left-turn collisions are among the highest severity collisions that occur at signalized intersections. The left-turn movement at a signalized intersection is typically the most challenging to safely accommodate because it inherently has the highest conflict potential. Protected left-turn phasing is a proven method of reducing left-turn collisions at signalized intersections.

While the use of dedicated left-turn phases is common in most jurisdictions, encouragement of their application is expected to make a significant impact on reducing left-turn collisions. Their application needs to be carefully considered in the context of other engineering objectives, most notably, the intersection capacity. This document is intended to provide systematic guidance for traffic engineers to review the need for protected left-turn phasing, and in particular *protected-only* left-turn phasing, by summarizing and supplementing the existing guidance that is available on this subject.

FIGURE 3.25 Protected Left-Turn Phase

3.5.2 Definitions

A protected left-turn phase (FIGURE 3.25) provides a dedicated interval within the signal cycle during which left-turn manoeuvres can be made without encountering conflicting vehicular or pedestrian movements.

The two most common variations of protected left-turn phasing are:

```
November 2010
```


- **Protected-Permissive Left-Turn Phasing** is comprised of two sub-phases: (1) a dedicated left-turn phase without conflicting movements; and (2) a permissive left-turn phase when left-turn traffic must yield to opposing through traffic. The permissive-protected left-turn phase is a variation in which the sequence of sub-phases is reversed.
- **Protected-only Left-Turn Phasing** (sometimes also referred to as "protectedprohibited" or "fully protected" left-turn phasing): left-turns are only permitted during the display of the green arrow and may not be undertaken at any other time. During the protected only left-turn phase, opposing through traffic is not permitted to proceed.

This guideline covers the application of protected-only left-turn phases, which may have the following sequential variations:

- *Leading left-turn phase:* protected left-turn phase starts before the beginning of the through green phase for the opposing direction of travel;
- Lagging left-turn phase: protected left-turn phase starts after the end of the through green phase for the opposing direction of travel; and
- *Concurrent left-turn phase*: left-turning vehicles from opposing directions are permitted to turn at the same time.

3.5.3 Current Status in Alberta

Protected-only left-turns are common in Alberta, particularly at high volume urban intersections where the absence of such a phase would result in a poor level of service for the left-turning traffic. Most analysis for the justification of left-turn phasing is therefore based on peak hour conditions. In other cases, less commonly, protected-only phasing has been provided to provide additional safety, particularly at locations with a history of left-turn crashes.

Protected-only left-turn phasing is common at signalized intersections along highways, due to the high approach speeds, but less common in smaller towns, where traffic volumes and the tolerance for signal delays are generally much lower.

3.5.4 Example Applications

Example applications of protected-only left-turn phases are shown in FIGURE 3.26 and FIGURE 3.27.

FIGURE 3.26 DUAL LEFT-TURN LANE WITH A PROTECTED-ONLY LEFT-TURN PHASE

FIGURE 3.27 SINGLE LEFT-TURN LANE WITH PROTECTED-ONLY PHASING

3.5.5 Benefits and Costs

Benefits

Providing protected-only left-turn phasing increases safety by removing the decision making element of the left-turn movement and providing assured gaps in traffic. A motorist might accept an inadequate gap as the result of:

- Misjudgement of opposing vehicle distance, speed or intention;
- Sight obstructions, caused by the road geometry or other vehicles;
- Sun glare, inadequate acceleration or other weather/road/vehicle related factors; or
- Other human factors such as aggression, frustration, distraction or impatience.

Providing a protected-only left-turn phase removes these safety risks from the equation. While these conditions are exacerbated during high traffic conditions, they may be present at any time of the day. A significant proportion of left-turn collisions at signalized intersections are known to occur outside of the conditions where an intersection is at its operational capacity. The collision reduction factors associated with the implementation of protected-only left-turn phases from the most recent, reliable, comprehensive study on the subject are summarized in TABLE 3.18.

TABLE 3.18 SUMMARY OF COLLISION REDUCTION FACTORS FOR THE INSTALLATION OF PROTECTED-ONLY LEFT-TURN PHASING

COLLISION TYPE	REDUCTION FACTOR	SOURCE		
Conversion from permissive only to				
All intersection collisions	15 - 36%	Gan, A.; Shan, J. and		
Left-turn collisions	35 - 70%	Rodriguez, A. Update of		
Urban fatal and injury left-turn	16%	Florida Crash Reduction		
across path collisions	10/0	Factors and Countermeasures		
Urban fatal and injury right-angle	19%	to Improve the Development		
collisions	1 7/0	of District Safety		
Conversion from protected-permissi	ve to protected-only phasing	Improvement. Florida		
All intersection collisions	10%	Department of Transportation		
All intersection collisions		(2005).		
Left-turn collisions	40%			

In many cases, agencies will be looking at converting from protected-permissive to protected only phasing, and can rely on the values in the bottom of TABLE 3.18. However, the conversion

from permissive-only to protected-only phasing is expected to provide *higher* collision reduction values than any of those indicated in TABLE 3.18.

Costs

The costs of retrofitting an existing intersection with protected only phasing is minimal when the signals are already in place. In some cases, the existing signals can be reprogrammed to allow for the protected only phase for the labour cost of reprogramming only. Annual M&O costs were assume to be \$1000.

3.5.6 Existing Application Guidance

Existing guidance provided on the use of protected-only left-turn phases is summarized in this section.

Transportation Association of Canada

The Transportation Association of Canada (TAC) <u>Manual of Uniform Traffic Control Devices for</u> <u>Canada</u> (MUTCDC) (1998), Section B4.4 provides a Detailed Assessment of the Requirement for a Left-Turn Phase to determine if a left-turn phase of any kind (protected-only or protected/permissive) should be installed. The analysis involves the evaluation of a specific set of criteria that reflect capacity, safety, geometric and operational characteristics; but the procedure does not provide any specific guidance for the application of protected-only leftturn phasing.

Alberta Transportation

Alberta Transportation has jurisdiction over the primary highways in Alberta. Although most primary highway intersections are grade-separated or unsignalized, several provide protectedonly phasing. Alberta Transportation follows the MUTCDC in determining the need for left-turn phasing.

Municipalities

Several Alberta municipalities have their own warrants as identified below:

- <u>City of Red Deer</u>: The City's *Warrant for Left-Turn Phasing*, contained in their *Traffic Signal Warrant Standards*, relies on the guidance of the MUTCDC Detailed Assessment to determine the need for a left-turn phase, but provides additional guidance for determining the need for a *protected-only* phase with 24 hour per day operation. The 24-hour method is based on a paper published in the Transportation Research Record entitled "Selection Criteria for Left-Turn Phasing and Indication Sequence"⁴⁷.
- <u>City of Edmonton</u>: The City's *Left-Turn Guidelines* outline a number of considerations for determining the need for *protected-only* left-turn phasing which is based on the collision experience, and a high level consideration of speed, laning and sight distance.
- <u>City of Calgary</u>: The City's *Traffic Control Policy Manual* outlines the methodology used in the progression of traffic signals from permissive to protected/permissive to protected only.

3.5.7 Recommended Application Guidance

Recommended guidance for the appropriate application of protected-only left-turn phasing at signalized intersections in Alberta, with the objective of improving safety, is provided here.

It is recommended that before reviewing the operational capacity during the peak hours, that factors other than traffic conditions that have an influence on safety be considered. The key considerations are described here. For the peak hour analysis, the current method prescribed by the MUTCDC (and summarized in the attachment at the end of this section) can be applied.

Land Use and Speed Context

Land Use

Protected-only left-turn phasing can be considered at any signalized intersection. Signalized intersections are more common in urban and suburban environments where through and in particular turning traffic volumes are higher, but are also present in rural areas at intersections where there are intolerable delays for left-turning and crossing side street traffic.

Protected-only left-turn phasing is strongly recommended at rural intersections where signals are warranted. The typically higher speeds and larger crossing distances make it more difficult to successfully assess and accept gaps in traffic. There is also a lower tolerance of left-turn vehicles crossing the path of through vehicles in rural areas.

⁴⁷ Asante, S.A.; Ardekani, S.A.; Williams, J.C. Selection Criteria for Left-Turn Phasing and Indication Sequence. Transportation Research Record No. 1421 p. 11-20. Washington DC. 1993.

Posted Speed Limit

Traffic signals are typically only present where the posted speed limit is 80 km/h or less. Therefore, this measure does not pertain to roadways posted at 90 km/h or above. Left-turn collisions in higher-speed locations are typically high impact, and can result in severe injury or fatality. Therefore, protected-only left-turn phases are strongly recommended at locations with posted speeds of 70 km/h or 80 km/h. The need for protected-only phasing on 50 km/h or 60 km/h roads will likely only be present in urban areas, but should be considered together with geometric factors, described below.

In low speed environments (such as on collector roads in urban areas where the posted speed limit may be less than 50 km/h) protected-only left-turn phases are generally not considered, due to the lower left-turn demand and the lower tolerance for long cycle lengths along lower-volume roadways.

The typical land use and speed environments where the installation of protected-only left-turn phasing should be considered are summarized in TABLE 3.19.

LAND USE	POSTED SPEED LIMIT (km/h)				
	50 or less	60 - 70	80-90***	100 or more	
Rural		√**	\checkmark		
Urban	√*	\checkmark	✓		
Semi-Urban / Suburban	√*	\checkmark	\checkmark		

TABLE 3.19 TYPICAL LAND USE AND SPEED RANGES FOR PROTECTED-ONLY LEFT-TURN PHASING

*This applies for roads posted at 50 km/h. Roads posted at anything less are likely to be low volume and provide adequate sight distance.

** This applies primarily for roads posted at 70 km/h. 60 km/h roads are likely to be low volume with sufficient gaps.

*** This applies to roads posted at 80 km/h. Signalized intersections will not be present along 90 km/h roads.

The following sections outline other geometric, operational and collision characteristics to be considered in the application of protected-only left-turn phasing.

Geometric Characteristics

Visibility

Visibility can be severely impaired by any of the following conditions:

- Approach curvature. Left-turn drivers may be unable to see opposing vehicles around the curve. Appropriate crossing sight distance needs to be provided. This can be determined based on Section D.4.2.2.1 of the TRANS Highway Geometric Design Guide.
- Offset left-turn lanes. An adequate view of opposing traffic may not be achieved without encroaching into the oncoming vehicle path, due to the alignment of the opposing left-turn lanes.
- Large trucks in opposing left-turn lane. The visibility can be further constrained by large trucks in the opposing left-turn lane, particularly if they are not properly aligned.

Through Lanes

The number of lanes influences both the crossing distance for the left-turn movement and the degree of complexity in assessing gaps in the traffic stream. Generally, as the number of opposing through lanes increases, the collision risk also increases. Whenever three lanes or more are present, it is recommended that protected-only left-turn phasing be provided.

Studies have also shown that crossing two lanes of traffic can have an increased risk at higher speeds. It is recommended that whenever the speed limit is 70 km/h or higher, protected only left-turn phasing be provided.

Dual Left-Turn Lane Operation

Where dual left-turn lanes are provided, left-turn vehicles can sometimes restrict the view for drivers in the adjacent lane. In addition, the gap acceptance behaviours of one left-turn vehicle sometimes influences the other, and can lead to sudden or unsafe decisions or collisions with each other. It is recommended that whenever dual left-turn operation is present, that protected-only left-turn phasing is provided.

Collision Characteristics

While the above considerations relate to the left-turn collision risks at an intersection, collision experience itself can indicate the extent of these or other risks that may be present. Therefore, if there is a pattern of permissive left-turn collisions, it is strongly recommended that the permissive phasing be removed.

There are few examples of what constitutes a "pattern" of left-turn collisions under protectedpermissive operation. The City of Red Deer has selected 7 left-turn collisions per 3 years as a threshold, based on a TRB report. The City has indicated that very few protected-permissive intersections in the City meet this threshold. It is recommended that this threshold be used for each approach in question.

Recommended Procedure

The application guidelines for protected-only left-turn phases have been divided into the following two steps, which are discussed in detail in the following subsections.

Step 1: Determine the need for a full-time (24 hour) protected-only left-turn phase (considering the factors described in the Recommended Application Guidance section).

Step 2: Determine the need for a part-time protected-only or a protected/permissive left-turn phase

A. Step 1: Determine the Need for a Full-Time Protected-Only Left-Turn Phase

The first step is to determine if a full-time (24 hour) protected-only left-turn phase is required. For locations in the appropriate land use and speed context, the full-time protected-only leftturn phase is warranted if one of the following conditions is met:

- i. Visibility for left-turn movements does not allow for adequate gap assessment;
- ii. Left-turns cross three (3) or more opposing through lanes where the speed limit for opposing traffic is equal to or greater than 70 km/h or;
- iii. Left-turns are permitted from two or more left-turn lanes on one approach; unless there is no opposing through traffic or the opposing through traffic volume is extremely low.

- iv. Left-turn across path collisions exceed seven (7) over a three-year period for an approach where protected/permissive phasing is in use.
- B. Step 2: Determine the Need for a Part-Time Protected-Only or a Protected/Permissive Left-Turn Phase

The second step is to determine if a part-time protected-only or a protected/permissive leftturn phase is required. This is done using the methodology outlined in Section B4.4 of the MUTCDC and reproduced below. The need for a left-turn phase is evaluated using the procedure in TABLES A through C (in attachment):

- Criteria A1 and A2 indicate special conditions for which a left-turn phase is recommended independent of the results of Parts B and C of the assessment;
- Criteria B1 to B3 describe negative impacts which may indicate that a left-turn phase is undesirable; while,
- If neither Part A nor Part B are satisfied, Criteria C1 to C3 describe conditions under which a left-turn phase is warranted.

The MUTCDC method does not distinguish between protected-permissive and protected-only left-turn phasing. In cases where protected left-turn phasing is warranted, it is recommended that strong consideration be given to providing protected-only left-turn phasing. Analysis can be conducted to confirm that the loss in overall intersection or approach capacity due to protected-only phasing is still within the tolerable level of service limits. If after implementation, operational problems exist and the addition of the permissive phase is expected to resolve these without significantly impacting safety, the permissive phase can then be added.

For new traffic signal installations in particular, the sequence of progressing from protectedonly to protected-permissive phasing is expected to provide a safer transition; in the reverse scenario, there may be a risk of vehicles running the amber or red light at the end of the protected-only phase. In such a conversion, the infrastructure needs that support protectedonly left-turn phasing, including the provision of a median-mounted left-turn signal, could simply be retained with the protected-permissive phasing, as they provide superior signal visibility than overhead displays during the permissive phase.

3.5.8 Implementation Considerations

These application guidelines are intended to assist practitioners in determining when a protected-only left-turn phase is warranted. The design and implementation of the hardware and signal timings are not covered in this document. Additional general guidance regarding the implementation of protected left-turn phases is provided in Division 3 of the MUTCDC, Section D.4.3 in the Highway Geometric Design Guide. More specific installation guidance may be provided in municipal guidelines.

General implementation considerations are as follows:

- Median-mounted left-turn displays are favoured for protected-only phasing.
- Pedestrian signals should be provided when a left-turn phase operation is in place for any conflicting crosswalk, in order to avoid conflict between pedestrians and the exclusive left-turn phase. Pedestrian phasing must be examined prior to implementation of protected-only left-turn phasing.
- The timing of a protected-only left-turn phase can be determined through vehicle detectors or by time-of-day.
- Care should be taken to ensure that as phase sequencing changes, all clearance requirements are met such that entrapment is not created.
- Fully protected operations should be implemented on a consistent basis throughout the day, as well as widespread implementation throughout the community, except when, based on engineering judgement, an unacceptable reduction in capacity will result.
- Generally, an increase in the number of phases tends to decrease intersection capacity.
- Protected-only left turn phases require a longer storage bay for left-turning vehicles.
- If a protected-only left-turn phase is not warranted, consideration may be given to the applicability of positive offset left-turn lanes to improve sightlines and safety (refer to *Application Guidelines Positive Offset Left-Turn Lanes* for more details).
- The selection of the type and length of left-turn protection will need to be considered in the context of any signal coordination provided on either or both intersecting roadways.

3.5.9 Maintenance Considerations

Protected-only left-turn phasing is a low-maintenance measure. Any maintenance additional to regular traffic signal maintenance would be negligible, with the exception of routine cleaning and inspections to ensure the units are functioning and to replace any burnt out lights (which is relatively infrequent with the new LED technology).

ATTACHMENT: MUTCDC PROCEDURE FOR DETERMINING THE NEED FOR PROTECTED LEFT-TURN PHASING

TABLE A SPECIAL CONDITIONS CRITERIA

PART A: SPECIAL CONDITIONS CRITERIA	YES	NO	
A1: Are railway or public transit vehicles operating in an exclusive right-of-way median which is parallel to the left-turn lane?			
A2: Are double left-turns permitted where there is an opposing through movement?			
ls a left-turn phase recommended? (If either A1 or A2 are YES, answer YES)			
If the answers to both A1 and A2 are NO, proceed to PART B - Negative Impact Criteria			

TABLE B NEGATIVE IMPACT CRITERIA

PART B: NEGATIVE IMPACT CRITERIA	YES	NO
B1: Is there insufficient green time within the current cycle length to accommodate the proposed left-turn phase?		
B2: Will the left-turn phase encourage neighbourhood traffic infiltration?		
B3: Does an assessment of the proposed left-turn phase demonstrate that significant undesirable effects in terms of stops, delay or increased fuel consumption will result?		
ls a left-turn phase undesirable? (If either B1, B2, or B3 are YES, answer YES)		
If the answers to all three are NO, proceed to PART C - Warrant	Criteria	

PAR	T C: Warrant Criteria	DATA	CRITERION	YES	NO	
(a)	What is the average left-turn demand per cycle		≥3 pcu* per cycle			
(b)	What percent of the left-turn volume is delayed more than one cycle		>25% Delayed One Cycle			
(c)	What is the total number of left-turn collisions that have	e occurred				
	(i) during the two-hour left-turn study period within the past five years?		>6 within past 5 years			
	(ii) during the two-hour left-turn study period within the past 12 months		>2 within past year			
	(iii) on a daily basis within the past five years		>20 within past 5 years			
	(iv) on a daily basis within the past 12 months		>5 within past year			
(d)	What is the average volume of left-turns which clear during the intergreen per cycle?		≥2 pcu* per cycle			
(e) Over the course of an hour, what is the percentage of cycles during which the queue from an exclusiv left-turn lane spills back and blocks the adjacent through lane:				exclusive		
	(i) Where there is only a single through lane?		>10%			
	(ii) Where there are two or more through lanes?		>30%			
(f)	What is the left-turn in-service transit demand per hour?		>3 per hour			
Are	Are any of the following criteria satisfied?					
C1:	C1: If both (a) and (b) are YES, left-turn phasing is WARRANTED					
C2: If both (a) and (c) are YES, left-turn phasing is WARRANTED						
C3:	C3: If both (a) and any two of (d), (e), or (f) are YES, left-turn phasing is WARRANTED					
	If the answers to all three are NO, left-turn phasing is NOT WARRANTED					

TABLE C WARRANT CRITERIA

*pcu = passenger car unit. Convert using factors (1.5 for single unit trucks, 2.5 for multi-unit trucks, and 3.5 for heavily-loaded multi-unit trucks.

November 2010

THIS PAGE WAS INTENTIONALLY LEFT BLANK

ALBERTA TRANSPORTATION

METHODS OF REDUCING COLLISIONS ON ALBERTA ROADS

APPLICATION GUIDELINES FOR HIGH-TENSION CABLE BARRIER SYSTEMS

FINAL

Opus International Consultants (Canada) Limited

THIS PAGE WAS INTENTIONALLY LEFT BLANK

3.6 High-tension Cable Barrier Systems

3.6.1 Background

Run-off-road collisions account for a significant proportion of major injury and fatal collisions on Alberta roads. Measures to reduce the severity of run-off-road collisions can therefore have a potentially significant impact on road safety in Alberta.

High Tension Cable Barrier Systems (hereafter referred to as cable barriers) have been successfully applied in the United States, Australasia and Europe for a number of years. More recently, the concept has been applied in Alberta - in the median of Highway 2 in Calgary, with preliminary results showing a substantial reduction in median crossover collisions. Vehicle impacts with cable barrier are typically less severe than other barrier types due to the higher energy absorbing properties of cable barriers.

The primary purpose of a barrier is to reduce the collision severity when the vehicle leaves the roadway and encounters hazards that are less forgiving than striking the barrier system. Traffic barriers do not reduce the frequency of collisions because they represent fixed objects themselves. A traffic barrier should only be installed where it is expected to reduce the severity of potential collisions.

Cable barriers are designed to minimize the impact on vehicle occupants when an errant vehicle collides with the cable barrier. The posts of a cable barrier are designed to break-away upon impact, which results in significant deflection of the cable barrier. The break-away posts help absorb the energy of the impact, which reduces the amount of energy absorbed by the vehicle occupants. Reducing the impact on vehicle occupants typically results in fewer injuries and fatalities.

There is the common perception that cable barriers are dangerous for motorcyclists, but recent tests have proven that they are no more dangerous than other barrier types.

Plans to expand the use of cable barriers in median applications are being considered. Guidelines for median applications are well documented. However, the purpose of this document is to encourage the present systematic guidelines for the application of cable barriers for both median and roadside application, and in particular to further investigate the applicability for roadside applications.

November 2010

3.6.2 Definitions

Cable barriers are longitudinal barrier systems designed to reduce the risk of vehicle collisions with roadside hazards. Hazards may include fixed objects, steep embankments, pedestrian/bicycle facilities, water bodies, ditches, and opposing traffic streams.

Some common terminology related to cable barriers is provided below:

Cable Barrier: For the purpose of this guide, cable barriers refer to high tension cable barriers. High tension cable barriers are crash worthy barriers designed to protect motorists from hazards. Low tension cable barriers (also referred to as "post and cable fence") are also commonly used at the roadside. However, these are not crash worthy and are intended to discourage undesirable movements rather than provide protection.

Roadside Cable Barrier: A roadside cable barrier is a barrier intended to protect a roadside hazard such as a fixed object, steep embankment or water body. A roadside cable barrier could be located on the right side of the road or on the left side of a divided roadway.

Median Cable Barrier: Median cable barriers are intended to reduce the risk of cross-median collisions.

Note that the same physical cable barrier in the median can meet both the "median" and "roadside" applications as defined above.

3.6.3 Current Status in Alberta

Cable barriers have only recently been applied in Alberta. The first median application was on the north section of Deerfoot Trail (Highway 2 within Calgary), with additional installations between Calgary and Red Deer. Although roadside cable barriers are used within Alberta, they are relatively new so the associated collision reduction is currently unknown.

3.6.4 Example Applications

Cable barriers are typically used on higher speed roadways, due to their effectiveness at reducing the impact absorbed by vehicle occupants. Cable barriers can be implemented along the roadside (FIGURE 3.28) or within the median (FIGURE 3.29).

FIGURE 3.28 EXAMPLE OF ROADSIDE CABLE BARRIER IN NEW ZEALAND

FIGURE 3.29 MEDIAN CABLE BARRIER: DEERFOOT TRAIL, CALGARY

Some cable barriers may be installed primarily as a physical obstruction to prevent undesirable movements. FIGURE 3.30 shows an example of a cable barrier that was installed to prevent dangerous lane changes between a highway exit ramp and a left-turn lane. The cable barrier physically restricts lane changes while posing less of a collision risk to through traffic compared to other barrier types.

FIGURE 3.30 CABLE BARRIER USED TO DISCOURAGE UNSAFE LANE CHANGES 16 AVENUE N.E., CALGARY

3.6.5 Benefits and Costs

Collision Reduction Benefits

Cable barriers like other barriers types, are likely to increase collision frequency (collisions with the barrier), but can significantly reduce collision severity of run-off-road movements by absorbing the impact and preventing collisions with other hazards.

As stated in Alberta Transportation's Roadside Design Guide, "Longitudinal traffic barrier systems that are more forgiving are preferred because they may reduce injuries and fatalities when crashes occur, provided that suitable operating space is, or can be made, available". The cable barrier is identified in the guide as the most forgiving of the acceptable barrier systems used in Alberta.

Since roadside cable barriers are relatively new, there is limited documentation of their effectiveness. However, an indication of the potential benefits is provided by looking at the benefits of 1) roadside barriers of all types and 2) median cable barriers.

Roadside Barriers

Limited research is available regarding the collision reduction benefits of cable barriers used along the roadside. However, based on experience and on the forgiving characteristics of cable barrier systems, they are expected to provide a benefit equal to or greater than other roadside barrier types when used in the right application. A summary of the crash reduction factors associated with the implementation of roadside barriers (all types), as identified in the Federal Highways Association's (FHWA) <u>Desktop Reference for Crash Reduction Factors</u> (2007), is summarized in TABLE 3.20.
Countermeasure	Collision	Collision	Collision
	туре	Sevenity	Reduction Factor
Install Guardrail (as shield for rocks and posts)	All	All	14%
install Guardian (as smell for focks and posts)	All	Injury	31%
Install Guardrail (as shield for trees)	All	Fatal	65%
install Guardian (as sinely for trees)	All	Injury	51%
	All	All	27%
Install Cuardrail (at subject)	All	All	24%
	All	All	30%
	All	Injury	26%
Install Guardrail (at ditch)	All	Injury	42%
	Run-off-road	All	7%
Install Guardrail (at embankment)	Run-off-road	Fatal	44%
	Run-off-road	Injury	47%
Install Guardrail (inside curves)	All	Fatal/Injury	28%
Install Guardrail (outside curves)	All	Fatal/Injury	63%

TABLE 3.20 DOCUMENTED ROADSIDE BARRIER (ALL TYPES) COLLISION REDUCTIONS

The reduction of high severity collisions is expected to be lower for roadside cable barriers compared to median cable barriers, due to the typically high severity of cross-median collisions.

The expected reduction of run-off-road collisions associated with the implementation of roadside cable barriers in Alberta is:

- Property Damage Only Collisions: 10% increase
- Injury Collisions: 40% reduction
- Fatal Collisions: 50% reduction

The expected injury and fatal collision reduction factors in Alberta were estimated as the average of the collision reduction factors identified in TABLE 3.20. The frequency of property damage only collisions is expected to increase by approximately 10 percent based on information found in other literature.

Median Cable Barriers

Median cable barriers have been found to be an effective collision reduction countermeasure in several jurisdictions. Documented collision reduction values are summarized in TABLE 3.21.

Location	Collision Soverity	# of 0	Difference		
Location	Collision Sevenity	Before**	After	Difference	
	All	49	100	+104%	
Washington State ¹	Disabling Injury	3	0.3	-90%	
	Fatal	3.6	1.6	-55%	
	All	4,685	4,934	+5.3%	
North Carolina ²	Injury	1,772	1,420	-20%	
	Fatal	63	36	-43%	
Missouri ³	Fatal	22	2	-91%	

TABLE 3.21 DOCUMENTED MEDIAN CABLE BARRIER COLLISION REDUCTIONS

* Before and after time frames are the same for each location. However, the time frames for each location differ. ** All locations had no median barrier prior to the installation of the cable barrier.

- 1. <u>Washington State Department of Transportation</u>, <u>Washington State Cable Median Barrier In-Service Study</u> (2003). <u>http://www.transportation.org/sites/aashtotig/docs/North%20Carolina%20Mediam%20Barrier%20Evaluatio</u> n.pdf
- 2. <u>Chandler, Brian: Eliminating Cross-Median Fatalities: Statewide Installation of Median Cable Barrier in</u> <u>Missouri (2007).</u>

The results of TABLE 3.21, indicate a reduction in injury and fatal collisions after the implementation of a cable barrier. As discussed earlier, the implementation of a cable barrier did increase the total number of collisions due to the increase in property damage only collisions.

A median cable barrier was recently installed along an 11 kilometre stretch of the Deerfoot Trail in Calgary in 2007. During the 34 months after installation there were 135 incidents of vehicles hitting the cable barrier. No fatal cross-median collisions occurred over the 34 months, compared to seven fatal cross-median collisions in the seven year period prior to the installation of the barrier.

The expected collision reduction of run-off-road collisions associated with the implementation of median cable barriers in Alberta is indicated below. The actual reductions for the recent implementation on the Deerfoot Trail are indicated in brackets (based on a before-after study)⁴⁸:

- Property Damage Only Collisions: 10% increase (48% increase)
- Injury Collisions: 55% reduction (30% decrease)
- Fatal Collisions: 65% reduction (100% decrease)

November 2010

⁴⁸ High Tension Median Cable Barrier Evaluation Study, EBA Engineering Consultants Ltd., Calgary, Alberta, 2010.

Government of Alberta =
Transportation

The expected injury and fatal collision reduction factors in Alberta were estimated as the average of the collision reduction factors identified in TABLE 3.22. The frequency of property damage only collisions is expected to increase by approximately 10 percent based on information found in other literature.

Operational / Maintenance Benefits

In addition to the reduction in the average collision severity, cable barriers provide additional benefits in terms of operations and maintenance, versus other barrier types. Cable barriers:

- accumulate less snow than other barrier types;
- don't impede overland drainage;
- can improve sight distances along curvilinear sections and reduce view obstructions;
- can be fixed quickly after a collision by replacing the breakaway posts; and
- can be less expensive to implement and maintain compared to other barrier types.

Costs

The cost of a cable barrier was derived from the TRANS *Roadside Design Guide*. The base price (\$110 per metre) was used as a low estimate, while the high estimate (\$220 per metre) assumed premium pricing due to rocky conditions in a remote area (and short length: \$200 metres). Annual M&O costs were assumed to be \$2500.

The capital construction cost of the median cable barrier on the Deerfoot Trail was \$92,000 per km (2007 dollars), with an annual maintenance cost of \$60,500 for a 10.75 kilometre section (2007 dollars).

3.6.6 Existing Application Guidance

National Guidance

The Transportation Association of Canada's <u>Geometric Design Guide for Canadian Roads</u> (2007), provides guidance for the application of roadside barriers. However, the guide clearly states that there is no simple "recipe" for determining the appropriate barrier type given the complexity of the road environment.

Provincial Guidance

Guidance for the application of barriers on Alberta Highways is documented in Alberta Transportation's *Roadside Design Guide* (2007).

http://www.transportation.alberta.ca/3451.htm

The guidelines identify when a roadside or median barrier should be used as well as general recommendations on the appropriate barrier type. Detailed design drawings are also provided in the Appendix of the Roadside Design Guide.

Municipal Guidance

No municipal guidelines or policies for the implementation of cable barriers were identified in Alberta. Therefore, the most relevant guideline for both urban and rural applications in Alberta is the Alberta Transportation *Roadside Design Guide*.

International Guidance

An important supplementary document to the Alberta <u>Roadside Design Guide</u> is the National Cooperative Highway Research Program's (NCHRP) <u>Report 350: Recommended Procedures for</u> <u>the Safety Performance Evaluation of Highway Features</u> (1993).

http://trb.org/publications/nchrp/nchrp_rpt_350-a.pdf

This document outlines the testing criteria for each of the test levels that are referenced in Alberta Transportation's *Roadside Design Guide*.

The NCHRP Report 350 has recently been superseded by the American Association of State Highway and Transportation Officials (AASHTO) <u>Manual for Assessing Safety Hardware</u> (MASH) (2009), which contains revised criteria for impact performance evaluation of virtually all highway safety features.

In the United States, the implementation plan for MASH is that all highway safety hardware accepted prior to the adoption of MASH, using criteria contained in NCHRP Report 350, may remain in place and may continue to be manufactured and installed. In addition, highway safety hardware accepted using NCHRP Report 350 criteria is not required to be retested using MASH criteria. However, new highway safety hardware not previously evaluated must utilize MASH for testing and evaluation.

The various publications identified above provide general guidance on the application of roadside barriers. However, due to the importance of site specific characteristics, the guidelines do not provide specific guidance on the application of particular barrier types, including cable barriers.

Other relevant resources for the application of cable barriers include:

• AASHTO <u>Roadside Design Guide</u> (2002); and,

• Silvestri, Ph.D., et al., <u>Experience with Cable Median Barriers in the United States:</u> <u>Design Standards, Policies, and Performance</u> (2009).

3.6.7 Recommended Application Guidance

Land Use and Speed Context

Land Use

Cable barriers can be implemented in both urban and rural areas. However, implementing cable barriers in urban areas presents its own design challenges due to the increased presence of design constraints discussed in the Implementation Considerations section.

Speed Ranges

Cable barriers are not commonly used on lower speed roads. The primary benefit of cable barriers is their ability to absorb the impact of high speed collisions. At lower speeds, the benefits of a flexible cable barrier over a more rigid barrier are less pronounced.

However, there still may be some low speed environments where a cable barrier might be beneficial such as locations with a high occurrence of run-off-road collisions involving vehicles exceeding the speed limit or locations where an out of control vehicle may travel faster than the design speed, such as the bottom of a steep incline (particularly during icy conditions).

The land use and speed environments where the installation of a cable barrier is acceptable is summarized in TABLE 3.22.

	POSTED SPEED LIMIT (km/h)						
	50 or less	60 - 70	80 - 90	100 or more			
Rural		\checkmark	\checkmark	\checkmark			
Urban		\checkmark	\checkmark	\checkmark			
Semi-Urban / Suburban		\checkmark	\checkmark	\checkmark			

TABLE 3.22 ACCEPTABLE LAND USE AND SPEED RANGES FOR CABLE BARRIERS

In general, cable barriers are acceptable for all land uses and speed ranges. However, the need for such a device at lower speeds should be reviewed as the collision reduction benefits are not as pronounced.

Determine the Need for a Cable Barrier

The need for a cable barrier has been separated into two categories:

- Roadside; and,
- Median

A roadside barrier is intended to reduce the risk of vehicle collisions with hazards, such as fixed objects or steep sideslopes, at the roadside. This includes hazards that may be located within the median.

The need for a median barrier can also be evaluated separately based on the risk of crossmedian collisions.

The guidelines for cable barriers contained in this document are primarily based on the Alberta Transportation <u>Roadside Design Guide</u> (2007), with some modifications to account for all road types, including lower speed urban roads. For easy reference, all figures reproduced from the Roadside Design Guide will maintain the same figure number. The guidelines provided below are intended for cable barriers only. For other barrier types please consult the Roadside Design Guide.

The steps for assessing whether a cable barrier is recommended are outlined in the following subsections. A summary of the steps is provided in FIGURE 3.31 as a flow chart. The general process is to first determine if there is a collision risk that justifies the implementation of a barrier. The next step is to determine if a cable barrier is the most appropriate barrier type. Typically a cable barrier is the most desirable barrier type as it has the lowest potential for injury and fatal collisions. However, there are some road characteristics that may not be appropriate for the implementation of a cable barrier and these factors need to be considered.

FIGURE 3.31 CABLE BARRIER APPLICATION GUIDELINES FLOW CHART

For guidance on the application of alternate barrier types, see the Alberta Transportation <u>Roadside Design Guide</u> (2007).

Methods of Reducing Collisions on Alberta Roads Phase 2 Final Report

THIS PAGE WAS INTENTIONALLY LEFT BLANK

Methods of Reducing Collisions on Alberta Roads Phase 2 Final Report

Step 1: Determine if Traffic Barrier Required

The need for a traffic barrier (of any type) is assessed differently for roadside and median barriers as discussed in the following subsections.

Evaluate Need for Roadside Barrier

Ideally, the road designer should strive to provide as wide and as forgiving a roadside as possible, while still considering physical constraints and economics. In this context, a forgiving roadside is considered to be an area adjacent to the driving lane that has a relatively flat, smooth, firm surface, with no hazards, and extends laterally as far as errant vehicles are likely to encroach. This practice has been embodied in a concept which is known as the Clear Zone, and it represents the minimum recovery area which should be provided for a given design situation.

For most projects, there will be isolated locations or longitudinal segments where the Clear Zone cannot be provided in accordance with the preferred design criteria. Factors such as topography, environmental features, drainage requirements, property requirements, and financial commitments will often dictate the shape and area (size) of the space available immediately adjacent to the travelled way.

The Clear Zone concept attempts to establish a balance between the safety benefit of a flat, smooth, firm surface with no hazards, and the economic and social implications related to providing this clear area, adjacent to the travelled way.

The path of an errant vehicle is difficult to predict. It depends largely on the nature of the roadside, the circumstances that first caused the vehicle to depart the roadway, driver action during encroachment, and the characteristics of the vehicle (examples include type, mechanical condition, and height).

The ideal solution is to provide a very wide traversable area adjacent to the roadway to accommodate errant vehicles. However, road authorities can rarely accomplish this because of physical, economic, or fiscal constraints. Tests have shown that approximately 50 percent of errant vehicles leaving the road are able to recover within 3.0m from the edge of the travel lane and 85 percent will recover within 9.0m (assuming moderate sideslopes and a tangent alignment). Consequently, the return on investment to keep the roadside clear decreases as the width of the clear area is increased. This is because the additional cost needed to provide the extended clearance generally increases with Clear Zone width, while the number of vehicles that are predicted to travel to the outer reaches of the Clear Zone area is relatively low.

Government	Methods of Reducing Collisions on Alberta Roads
of Alberta 🗖	Phase 2 Final Report
Transportation	· · · · · · · · · · · · · · · · · · ·

The Clear Zone concept does not establish an exact area of responsibility for the road authority. It should be viewed as a desirable width for design and maintenance purposes, rather than as an absolute demarcation between safe and unsafe conditions.

Although the Clear Zone width is an attempt to balance the safety benefit against the potential constraints, the wide variety of constraints across the Province may still result in some situations where the full Clear Zone width is simply not achievable. In these cases, an attempt should first be made to address the constraints, whether it be the space available, environmental or property commitments, or funding, such that the Clear Zone can be achieved.

The following sections describe in detail the methods used to determine the Desirable Clear Zone and the roadside mitigation strategies.

A. Desirable Clear Zone

The Desirable Clear Zone (DCZ) is defined as the width of adjacent roadside border area specifically allocated for use by an errant vehicle.

This area, which may consist of paved or unpaved shoulders, shoulder rounding, recoverable or non-recoverable (or traversable) slopes, traversable features, and/or a clear runout area, may be located on the right hand side of the travel lanes of undivided roads or within the median area of divided roadways.

The Desirable Tangent Clear Zone (DTCZ) distance is the value provided for a tangent segment of the roadway. The DCZ may vary along the roadway depending on whether the roadway segment is on a tangent or on a curve. The radius of the curve and the location along the curve also potentially influence the DCZ.

The surface within this portion of the roadside should be relatively firm and free of hazards in order to promote vehicle stability and recovery. The DCZ for a given segment is calculated using the following formula:

DCZ = DTCZ × Kcz where: DCZ = the Desirable Clear Zone DTCZ = the Clear Zone for a tangent roadway cross section Kcz = curve correction factor

The DTCZ distances for various design speeds and traffic volumes are presented in TABLE H3.1. For divided roadways, traffic volume in one direction is to be used to establish the Clear Zone. For undivided roadways, the full (two-way) AADT is to be used.

Design Speed	Design	Fill Slopes			Cut Slopes					
(Km/h)	AADT *	6:1 or Flatter	5:1 to 4:1	3:1	3:1	5:1 to 4:1	6:1 or Flatter			
60 or less with barrier curb***	All	0.5	0.5	0.5	0.5	0.5	0.5			
60 or Less	Under 750 750 – 1500 1500 – 6000 Over 6000	2.0 - 3.0 3.0 - 3.5 3.5 - 4.5 4.5 - 5.0	2.0 - 3.0 3.5 - 4.5 4.5 - 5.0 4.5 - 5.0	** ** **	2.0 - 3.0 3.0 - 3.5 3.5 - 4.5 4.5 - 5.0	2.0 - 3.0 3.0 - 3.5 3.5 - 4.5 4.5 - 5.0	2.0 - 3.0 3.0 - 3.5 3.5 - 4.5 4.5 - 5.0			
70 –80	Under 750 750 – 1500 1500 – 6000 Over 6000	3.0 - 3.5 4.5 - 5.0 5.0 - 5.5 6.0 - 6.5	3.5 - 4.5 5.0 - 6.0 6.0 - 8.0 7.5 - 8.5	55 75 75 75 75 75 75 75 75 75 75 75 75 7	2.5 - 3.0 3.0 - 3.5 3.5 - 4.5 4.5 - 5.0	2.5 - 3.0 3.5 - 4.5 4.5 - 5.0 5.5 - 6.0	3.0 - 3.5 4.5 - 5.0 5.0 - 5.5 6.0 - 6.5			
90	Under 750 750 – 1500 1500 – 6000 Over 6000	3.5 – 4.5 5.0 – 5.5 6.0 – 6.5 6.5 – 7.5	4.5 - 5.5 6.0 - 7.5 7.5 - 9.0 8.0 - 10.0 *	** ** **	2.5 - 3.0 3.0 - 3.5 4.5 - 5.0 5.0 - 5.5	3.0 - 3.5 4.5 - 5.0 5.0 - 5.5 6.0 - 6.5	3.0 - 3.5 5.0 - 5.5 6.0 - 6.5 6.5 - 7.5			
100	Under 750 750 – 1500 1500 – 6000 Over 6000	5.0 - 5.5 6.0 - 7.5 8.0 - 9.0 9.0 - 10.0 *	6.0 - 7.5 8.0 - 10.0 * 10.0 - 12.0 * 11.0 - 13.5 *	** ** **	3.0 - 3.5 3.5 - 4.5 4.5 - 5.5 6.0 - 6.5	3.5 - 4.5 5.0 - 5.5 5.5 - 6.5 7.5 - 8.0	4.5 - 5.0 6.0 - 6.5 7.5 - 8.0 8.0 - 8.5			
110	Under 750 750 – 1500 1500 – 6000 Over 6000	5.5 - 6.0 7.5 - 8.0 8.5 - 10.0 * 9.0 - 10.5 *	6.0 - 8.0 8.5 - 11.0 * 10.0 - 13.0 * 11.0 - 14.0 *	** ** **	3.0 - 3.5 3.5 - 5.0 5.0 - 6.0 6.5 - 7.5	4.5 - 5.0 5.5 - 6.0 6.5 - 7.5 8.0 - 9.0	4.5 - 4.9 6.0 - 6.5 8.0 - 8.5 8.5 - 9.0			
120 or More	750 – 1500 ⁺ 1500 – 6000 ⁻ Over 6000 ⁺	8.0 - 9.0 9.0 - 10.0 10.0 - 11.0 *	9.0 - 12.0 10.0 - 14.0 11.0 - 15.0	** ** **	3.5 - 5.0 5.5 - 6.5 7.0 - 8.0	6.0 - 6.5 7.0 - 8.0 8.5 - 9.5	7.0 - 7.5 8.0 - 9.0 9.0 - 10.0			

TABLE H3.1 Clear Zone Distances (in metres from edge of driving lane)

* Where a site specific investigation indicates a high probability of continued crashes, or such occurrences are indicated by crash history, the designer may provide Clear Zone distances greater than the suggested range shown. Clear Zones may be limited to 9 m for practicality or to provide a consistent roadway template if previous experience with the subject roadway or similar projects or designs indicates satisfactory performance.

** Since recovery is less likely on the unshielded, traversable 3:1 slopes, fixed objects should not be present in the vicinity of the toe of these slopes. Recovery of high-speed vehicles that encroach beyond the edge of the shoulder may be expected to occur beyond the toe of slope. Determination of the width of the recovery area at the toe of slope should take into consideration right of way availability, environmental concerns, economic factors, safety needs, and accident histories. Also, the distance between the edge of the travel lane and the beginning of the 3:1 slope should influence the recovery area provided at the toe of slope.

***On a curbed readway, the Clear Zone distance should be measured from the edge of driving lane, e.g. on a 2 lane 10m read width from curb to curb, 3.5 m adjacent to centreline may be considered the driving lane and therefore, the curb is 1.5m from the driving lane. It is still prudent to place obstacles at least 0.5 m behind the curb.

+ The AADT used for this purpose shall be the daily volume on the roadway i.e. the full AADT on undivided highways and half of the AADT on divided highways.

Source: Alberta Infrastructure and Transportation's <u>Roadside Design Guide</u> (2007)

Government	Methods of Reducing Collisions on Alberta Roads
of Alberta =	Phase 2 Final Report
Transportation	

The curve modification factors, Kcz, for a variety of radii and design speeds are presented in TABLE H3.2. The curve modification factor is applicable only on the outside of a curved segment due to expected increased encroachment on the outside of the curve.

Radius	Design Speed (km/h)						
(m)	60	70	80	90	100	≥110	
>1100	10	1.0	1.0	1.0	1.0	1.0	
1100	1.0	1.0	1.0	1.0	1.1	1.1	
900		11	1.1		1.2	1.2	
700	11	1.1		1.2	1.2	1.3	
600	1.1		1.2		12	1./	
500					1.5	1.4	
450		1.2		1.3	1.4	1.5	
400	12		1.3		1.1		
350	1.2			1.4	15		
300		13	1.4	15	1.0		
250	13	1.5	1.4	1.5			
200	1.5	1.4	1.5				
150	1.4	1.5					
100	1.5						

TABLE H3.2	Curve Modification Factors (K _{cz})

Notes:

(1) Clear Zone correction factor is applied to outside of curves only.

(2) Curves flatter than 1,100 m do not require an adjusted Clear Zone.

Source: Alberta Infrastructure and Transportation's <u>Roadside Design Guide</u> (2007)

The measurement of the Desirable Clear Zone is only applicable over recoverable surfaces (firm; 4:1 or flatter slopes). The presence of a non-recoverable surface (generally considered to have a slope steeper than 4:1) requires an extension of the Clear Zone distance provided. The extension (called a recovery area), equivalent to the width of the non-recoverable slope located within the Desirable Clear Zone, is provided in recognition that an errant vehicle will likely travel to the bottom of the slope.

FIGURES H3.2 and H3.3 illustrate the measurement of the Desirable Clear Zone over a recoverable surface and a non-recoverable surface, respectively.

FIGURE H3.3 Desirable Clear Zone (DCZ) over Non-recoverable Surface

Source: Alberta Infrastructure and Transportation's <u>Roadside Design Guide</u> (2007)

The Desirable Clear Zone distance should not be considered as the maximum clear distance that needs to be provided for a facility. Mitigation of hazards beyond the Desirable Clear Zone should be considered where the combination of horizontal curvature, collision experience, and severity of hazard may pose significant concerns if hit by an errant vehicle. If a cost-effective mitigation solution to provide additional width beyond the Desirable Clear Zone is achievable, then increasing the offset to further enhance the safety of the facility should be considered.

The designer should use judgement when applying the Clear Zone offsets. Consider providing some form of hazard mitigation where the cross section or slope of the terrain or horizontal curvature tends to channel errant vehicles towards a hazard outside the Clear Zone. This would also apply for critical isolated hazards, such as bodies of water, cliffs and bridge piers, just beyond the Clear Zone where the consequences of a collision may be extremely severe, even if the probability of a collision are limited. Similarly, if isolated objects such as trees, are found to be just within the Clear Zone while other trees in the immediate vicinity are outside the Clear Zone, removal of the trees inside the Clear Zone may not significantly reduce the risk to drivers. Protection or removal may not be a cost-effective solution.

B. Hazards to be Considered

The hazards must be identified within the Desirable Clear Zone before a mitigation strategy can be formulated. Hazards can be categorized as:

- Sideslopes (see Section C)
- roadside obstacles (see Section D)
- permanent bodies of water (see Section E)

C. Sideslopes

High embankments may be considered as hazards because of the severe consequences related to errant vehicles leaving the roadway and travelling down the slope.

Sideslopes with a slope ratio steeper than 3:1 are considered to be a hazard since the possibility of a vehicle rollover will significantly increase. Similarly, steep backslopes may also be considered as a hazard due to an increased possibility of a vehicle roll-over.

FIGURES H3.4 and H3.5 provide the longitudinal traffic barrier warrants for fill slopes with AADT < 400 vpd and AADT \ge 400 vpd, respectively.

FIGURE H3.4 Warrants for Sideslopes with AADT < 400 vpd

Source: Alberta Infrastructure and Transportation's <u>Roadside Design Guide</u> (2007)

FIGURE H3.5 Warrants for Sideslopes with AADT ≥ 400 vpd

Source: Alberta Infrastructure and Transportation's <u>Roadside Design Guide</u> (2007)

Slope and height combinations on or below the curve do not warrant shielding unless they include obstacles that are within or immediately outside of the Clear Zone and present a serious hazard to the occupants of errant vehicles. If the sideslope and height of the fill relationship fall within the barrier-warranted zone, the sideslope hazard should be mitigated by either flattening out the slope or shielding it with a barrier. The preferred mitigation is flattening the sideslope versus installing a longitudinal traffic barrier, provided that the slope material is firm and that the overall height of embankment is less than 14 m. However, all slopes that are not shielded by a barrier should be free of obstacles and water hazards based on the Clear Zone criteria.

Where sideslope flattening is used to eliminate the need for a barrier on high embankments, a 4:1 sideslope is typically used. A 4:1 sideslope is generally considered satisfactory for embankment heights up to 14 m provided that the slope itself, and the area at the base of the embankment, are free of obstacles and water hazards and constructed to be firm. If the embankment height is greater than 14 m, barrier protection is suggested regardless of the sideslope ratio.

D. Roadside Obstacles

Roadside obstacles may be non-traversable hazards or fixed objects and may be either man-made or natural features. Hazards that should normally be considered for mitigation include:

- wood poles or posts with a cross sectional area greater than 10,000 mm² (100x100 mm) which do not have breakaway features;
- trees having a diameter of 100 mm or more;
- fixed objects extending above the ground surface by more than 100 mm, such as boulders, bridge rail ends, bridge abutments, piers, retaining wall ends, and bridge headwalls;
- intersecting roadways and cross slopes;
- non-breakaway signs or light pole supports;
- non-breakaway utility poles;
- vertical drops greater than 300 mm;
- mailboxes with 100 mm wood posts; or,
- 50 mm steel posts and greater drainage structures, such as culvert and pipe ends without tapered end sections or traversable grates.

The decision on the use of a longitudinal traffic barrier should be based on the size, shape and location of the hazard. These hazards should be mitigated based on the order of preference provided in the Mitigation Strategies section below.

E. Permanent Bodies of Water

Bodies of water with a depth of one metre or more located within the Clear Zone should be considered a hazard. Longitudinal traffic barrier systems are typically used to mitigate this type of hazard. Where the bodies of water are seasonal in nature, or where the depth of water varies based on the season, the designer should use engineering judgement to determine if shielding is warranted based on traffic exposure, offset from roadway, duration of hazard, length of hazard, and severity of the hazard.

Evaluate Need for Median Barrier

The Alberta Transportation <u>Roadside Design Guide</u> provides a warrant to determine when a median barrier is required based on traffic volumes and the median width. Although not stated, the median barrier warrant is intended for higher speed roads. It is suggested that median barriers be used on higher speed roads (posted speed limit > 70 km/h) where the potential collision severity is higher. The median barrier warrant is reproduced below in FIGURE H3.7.

Source: Alberta Infrastructure and Transportation's <u>Roadside Design Guide</u> (2007)

In addition to the normal warrant which is used for medians less than 15 m wide, the following warrant, based on collision experience, is used to evaluate wider medians with very high traffic volumes. The collision rate calculation requires a minimum of three crashes within a five-year period. A median barrier is required if one of the following conditions* is met:

- 0.310 cross-median crashes of any severity per kilometre per year
- 0.075 fatal crashes per kilometre per year.

* Criteria based on CalTrans crash study warrant

Step 2: Review Mitigation Strategies

The mitigation strategies recommended for roadside and cross-median collision vary and are discussed separately in the following subsections.

Roadside Mitigation Strategies

If it is determined in Step 1 that there are roadside (including the median) hazards within the Clear Zone, an appropriate mitigation strategy needs to be identified. For each hazard identified, the following strategies listed in order of priority of preference will be considered to determine the appropriate roadside mitigation:

- Remove the hazard;
- Redesign the hazard so that it can be safely traversed or contacted;
- Relocate the hazard to reduce the probability of it being traversed or contacted;
- Reduce the severity of the hazard;
- Shield the hazard (traffic barrier);
- Delineate and increase the driver's awareness of the hazard, if the other mitigation measures cannot be made to work.

If it is determined that barrier protection is the best mitigation strategy, the next step is to evaluate if a cable barrier is an appropriate barrier type for the application.

Median Mitigation Strategies

In the case of cross-median collisions, there are fewer mitigation strategies available to reduce the collision risk. Other than providing barrier protection, the only other strategy to reduce the risk of cross-median collisions is to increase the median width.

Increasing the median width is preferred over installing a traffic barrier as it is expected to provide a greater reduction in the frequency of collisions (including collisions with the barrier). However, increasing the width of the median may not be feasible due to right-of-way, topographical or financial constraints.

Step 3: Determine if Cable Barrier is Appropriate

Although cable barriers provide some safety benefits over other barrier types, they are not appropriate in all applications. Therefore, it is necessary to determine if a cable barrier is suitable for the intended application. Some potential design constraints to consider prior to implementation are discussed in the following subsections.

Transportation's Roadside Design Guide.

Operating Speeds

Α.

As discussed previously, the collision severity reduction benefits of a cable barrier, compared to a more rigid barrier, are less pronounced at lower speeds. Cable barriers are typically designed to high test levels (TL-4 or greater) that may exceed the requirements for low speed environments. TABLE H3.3 provides the minimum test level requirements based on Alberta

Design Speed (km/h)	Test Level
> 70	TL-3
$> 50 \text{ to} \le 70$	TL-2
≤ 50	TL-1

TABLE H3.3 **Barrier Test Level Requirements**

The cost effectiveness of installing cable barriers, over other barrier types, on lower speed roads (< 70 km/h) should be reviewed prior to implementation.

Β. Distance Between Barrier and Hazards

The design deflection of a barrier system is the distance the barrier will shift laterally when impacted by an errant vehicle. It must be fully considered when selecting the appropriate barrier system. The design deflection of a barrier system defines the minimum offset between the barrier system and the hazard that is being shielded. If the system is placed too close to the hazard, the impacting vehicle may deflect the barrier into the hazard. This may allow the vehicle to interact with the hazard and negate the purpose of the barrier system.

If the hazard cannot be relocated beyond the design deflection of a cable barrier (typically 2.1m - 2.4m), then a different system with a lower design deflection should be selected to ensure that the hazard will not be inadvertently contacted during a collision. The expected deflection of the barrier should be confirmed with the manufacturer based on the design speed and characteristics of the road.

С. Sideslope

Although cable barriers can be installed to protect steep sideslopes, they should not be installed on slopes greater than 6:1. Where existing slopes are steeper than 6:1 and adequate lateral distance cannot be provided, the slope should be regraded to 6:1 or flatter. The sideslope requirements should be confirmed with the manufacturer.

Phase 2 Final Report

D. Distance Between the Road and the Barrier

The distance between the edge of the travelled way and the barrier should not be less than 1.0m (this applies for all barrier types). The lateral space available adjacent to the road should be reviewed to confirm sufficient space is available between the edge of the travelled way and the barrier and between the barrier and the hazard to be protected.

E. Minimum Length Requirement

Cable barriers may not be appropriate for short sections of barrier protection. The minimum length required for a cable barrier varies up to 35m and should be confirmed with manufacturer.

In addition, short sections of cable barrier are less cost effective as the cost of installing the end anchors is relatively high. End treatments also pose an increased collision risk compared to the rest of the barrier.

F. Horizontal Curves

Cable barrier systems may not be appropriate for small horizontal radii curves. The typical minimum value is 200m. However, this should be confirmed with the manufacturer.

G. Sag Vertical Curves

The posts of some cable barrier systems are free standing and not held down by the system. Therefore, when cables in a sag curve are tightened the cable could lift the posts, resulting in an inadequate barrier height. Sag vertical curves with low K-Values should be avoided and the performance should be confirmed with the manufacturer.

H. Presence of Curbs

Curbs are often necessary for drainage purposes to collect and/or direct surface flow. Unfortunately, curbs can also adversely affect the trajectory and stability of an errant vehicle when encountered. The combination of curbs and barrier systems presents additional challenges because the vehicle may not effectively interact with the barrier after hitting the curb. The wheels of the vehicle are raised when crossing a curb such that the bumper is elevated to a point where it may be too high to interact properly with the barrier system.

In addition, crossing the curb also causes the vehicle suspension to oscillate and as a result, not only is the bumper height elevated, it is also changing position as the suspension dampens out the effect of crossing the curb.

Striking a barrier system may result in poor impact performance if the bumper and suspension system are out of position when the vehicle begins its interaction with the barrier system. For this reason, the use of curbs in conjunction with barrier systems is generally discouraged. It is often necessary, however, to use a curb for drainage or other reasons at a particular location that also requires a barrier system.

NCHRP <u>Report 537: Recommended Guidelines for Curb and Curb-Barrier Installations</u> (2009), documents a recent investigation of the safety implications of combining curbs with adjacent longitudinal W-Beam Strong Post traffic barrier systems. The primary goal of the study was to develop design guidelines for using curbs and curb-barrier combinations on roadways with operating speeds greater than 60 km/h. From this study, the trajectory of the vehicle after contact with the curb was determined. FIGURE H4.1 illustrates the vehicle trajectory based on the bumper height of the vehicle. In general, a barrier curb should not be installed on roadways with posted speeds greater than 60 km/h. For a curb installation in an area with posted speeds greater than 60 km/h, a mountable curb is desirable.

Source: Alberta Infrastructure and Transportation's <u>Roadside Design Guide</u> (2007)

Standard drawings for typical curbs used on Alberta highways are provided on the Alberta Transportation website under the Highway Design & Construction subsection of the Technical Resources for Roads, Bridges, & Water section. Acceptable combinations of curb and barrier systems are dependent on the operating speed of the highway, the cross-sectional shape of the curb, and the lateral offset of the curb from the barrier system. The desirable combinations of curb and barrier systems based on operating speed and lateral offset, adapted from NCHRP Report 537, are shown in TABLE H4.1.

$> 85 \text{ to } 100^{ 69} \xrightarrow{\text{Y}} 100^{ 70} \text{ mountable and Barrier}} = \frac{\text{system not recommended.}}{\text{Semi-mountable}} = \frac{\text{Mountable}}{\text{Barrier}} = \frac{\text{Semi-mountable}}{\text{Semi-mountable}} = \frac{\text{Semi-mountable}}{\text{Semi-mountable}} = \frac{1}{2} \times \frac{1}{2}$	Operating Speed (km/h) ⁽³⁾ > 100 ⁽⁵⁾	Allowable Offsets to Barrier Systems (m) Any Offsets	Acceptable Curb Typ	s	Cable Cable	lati	Bank Meak Meak Meak Meak Meak Meak Meak Mea	Beam Reak	M-Beam Strong Post Post	Modified Thrie Beam	Rigid Concrete Barrier
$> 85 to 100^{[9]}$ $> 85 to 100^{[9]}$ $X = 0$ $X = $			mountable and Barrier		syste	n n	iot recoi	nmende	ed.		
$> 85 \text{ to } 100^{(9)}$ $> 85 \text{ to } 100^{(9)}$ $X = 0$ $X $		•×	Mountable		Test	1-1-					-
$ > 85 \text{ to } 100^{(6)} $ $ \hline X > 0 $			Semi-mountable		syste	n n	ion of cu lot recoi	nmende	ayunctio ed.	on with ba	urief
= 0 Mountable	> 85 to 100 ⁽⁵⁾ X>0	Barrier									
= 0 Semi-mountable			Mountable		~		√	1	✓	~	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Semi-mountable		×		×	×	×	×	×
$> 70 \text{ to } 85$ $> 70 \text{ to } 85$ $\frac{1}{X \geq 4.0}$ $\frac{1}{X \geq$		X = 0	Barrier		×		×	×	×	×	×
$> 70 \text{ to } 85$ $> 70 \text{ to } 85$ $\begin{array}{c c c c c c c c c c c c c c c c c c c $			Mountable		~		✓	~	~	~	1
> 70 to 85 $ > 70 to 85 $ $ > 70 to 85 $ $ x > 4.0 $ $ x >$			Semi-mountable		×		×	×	×	×	×
$> 70 \text{ to } 85$ $> 70 \text{ to } 85$ $\begin{array}{c c c c c c c c c c c c c c c c c c c $	> 70 to 85	X ≥ 4.0	Barrier		×		×	×	×	×	×
> 70 to 85 $ = 0 cx < 4.0 $ $ = 0 semi-mountable $ $ = 0 syste n not recommended. $ $ = 0 syste n$		<u>− × -</u> \	Mountable		. .						_
$ \begin{array}{ c c c c c } \hline 0 < X < 4.0 & Barrier & I & I & I & I & I & I & I & I & I & $		Semi-mountable		syste	installation of curb in conjunction with barrier system not recommended.						
$ \begin{array}{c c c c c c c c } & Mountable & I & I & I & I & I & I & I & I & I & $		D < X < 4.0	Barrier								
$ \begin{array}{ c c c c } & Semi-mountable & \checkmark & $		X	Mountable		~		✓	~	✓	~	1
$ \begin{array}{ c c c c c } \hline X = 0 & Barrier & A & X & X & X & X & X & X \\ \hline X = 0 & Mountable & A & A & A & A & A & A & A & A & A & $			Semi-mountable		1		✓	1	~	1	1
+ 60 to 70 $ + 60 to 70 $ $ + 10 to 10 to$		X = 0	Barrier		×		×	×	×	×	×
$ > 60 \text{ to } 70 $ $ > 60 \text{ to } 70 $ $ X \ge 2.5 $ $ Mountable = Mountable =$		×-5	Mountable		1		✓	1	~	1	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Semi-mountable		~		~	1	~	~	✓
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		X≥2.5	Barrier		×		×	×	×	×	×
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	> 60 to 70	- X - I	Mountable								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		<u>_</u>	Semi-mountable		Insta syste	iati n n	ion of cu iot recoi	urb in co nmende	onjunctio ed.	on with ba	urner
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0 <x<2.5< td=""><td>Barrier</td><td></td><td colspan="5"></td><td></td><td></td></x<2.5<>	Barrier								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		×1tm	Mountable		~		✓	~	✓	~	~
$X=0$ Barrier X X X X X X ≤ 60 No RestrictionMountable, Semi- mountable and Barrier \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark			Semi-mountable		~		✓	1	✓	✓	1
≤ 60 No Restriction Mountable, Semi- mountable and Barrier ✓ ✓ ✓ ✓ ✓ ✓ ✓		X=0	Barrier		×		×	×	×	×	×
	≤ 60	No Restriction	Mountable, Semi- mountable and Barrier		1		1	1	~	~	1

TABLE H4.1 Appropriate Curb	and Barrier System Combinations	(Barrier System Behind Curb)
,,,,,		

Note: (1) Excludes application of barrier curbs on structures

Permitted × Not Permitted

(2) Adopted from NCHRP Report 537

(3) Operating Speed is defined as the highest speed at which reasonably prudent drivers can be expected to operate vehicles under low traffic densities and good weather. Typically for Alberta highways, the 85th percentile running speed in good conditions is used, provided it does not exceed the design speed. For operating speeds greater than 70 km/h, the suggested minimum offset between the edge of travelled lane and the face of curb is the shy line offset as described in Section H5.4.1.

(4) For Alberta standard curb and gutter details, refer to CB6 Standard Plates, such as CB6-4.2M89.

(5) For operating speeds > 85 km/hr, curb and barrier systems combinations are acceptable provided that the curb is installed behind the barrier system at an offset \geq than the barrier design deflection.

The critical dimensions for the semi-mountable and mountable curbs indicated in NCHRP Report 537 should be provided in order for the combination of barrier and curb to operate effectively. The standard semi-mountable and mountable curbs provided by Alberta Transportation currently meet these requirements.

The critical dimensions for semi-mountable curb are:

- curb height equal to or less than 150 mm from the gutter to the top of curb
- curb slope should be 1:3 (vertical:horizontal) or flatter.

The critical dimensions for mountable curb are:

- curb height equal to or less than 100 mm from the gutter to the top of curb
- curb slope should be 1:3 (vertical:horizontal) or flatter.

3.6.8 Implementation Considerations

These application guidelines are intended to assist practitioners in determining when a cable barrier is warranted. The actual design of the cable barrier systems is not covered in this document. Some general implementation considerations are provided below:

- The feasibility of removing or relocating hazards should be considered prior to considering a cable barrier.
- The characteristics of cable barriers vary depending on the manufacturer. Confirm all characteristics with the manufacturer prior to implementation, including:
 - Deflection distance;
 - Minimum horizontal curve radius;
 - Minimum vertical sag curve radius;
 - Minimum sideslope; and,
 - Minimum length of run
- Ensure adequate separation is provided between the cable barrier and the hazard(s) to accommodate the deflection of the cable barrier.
- Cable barriers should not be attached to a rigid object, including other barriers. Significant differences in the deflection characteristics of the two elements could cause pocketing or snagging, and potentially result in serious injuries.

Government
of Alberta 🔳
Transportation

- Cable barriers can create an impedance to maintenance vehicles. Cable barriers placed too close to the road could also impede emergency vehicles trying to use the shoulder.
- Ground conditions must have sufficient stability to support the posts
- The wake from snow ploughs can damage posts so ensure adequate lateral separation is provided.
- Avoid placing a cable barrier beyond a ditch unless the cable barrier is within 0.3m or beyond 2.4m of the bottom of the ditch. This is to reduce the risk of vehicles under riding the cable barrier.

3.6.9 Maintenance Considerations

Based on the Alberta Transportation <u>Roadside Design Guide</u> a cable barrier should typically be inspected at least every two years to confirm the system is in good working order. Manufacturers should be consulted to determine the maintenance requirements for that particular cable barrier system.

After impacts, the cable barrier may remain in tension depending on the severity of the collision and as a result, the system can still provide some protection to motorists. The system should be inspected after every impact to identify any components that were damaged, such as posts, hairpins and lock plates, such that they can be replaced. Re-tensioning of the cable may also be required.

Maintenance staff will require training to learn how to inspect and repair the cable barrier to ensure it remains up to quality standards after implementation. Spare parts, particularly posts, will need to be stored nearby to ensure repairs can be made quickly after an incident.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

ALBERTA TRANSPORTATION

METHODS OF REDUCING COLLISIONS ON ALBERTA ROADS

APPLICATION GUIDELINES FOR REMOVAL OF FIXED OBJECTS

FINAL

Opus International Consultants (Canada) Limited

THIS PAGE WAS INTENTIONALLY LEFT BLANK

3.7 Removal of Fixed Objects

3.7.1 Background

Drivers who leave the roadway may encounter fixed objects (such as trees, poles, culvert headwalls, bridge abutments, bridge rail ends, piers, retaining wall ends, sign supports, rock faces, fences, fire hydrants, and mailboxes) or other hazards (such as culverts, ditches, steep sideslopes, or water bodies) in the roadside area that generate safety issues resulting from impact, vehicle rollover, or submersion.

The most effective measures to prevent roadside crashes are those that keep road users from encroaching on the roadside area in the first place. These measures could include rumble strips, anti-skid pavement treatments, delineation and signing. However, once drivers leave the roadway and enter the roadside area, mitigation strategies must focus on minimizing injury. The Alberta Transportation <u>Roadside Design Guide</u> (2007) advises that mitigation strategies for avoiding injury due to roadside hazards include, in order of preference:

- 1. removing the hazard;
- 2. redesigning the hazard to render it less harmful;
- 3. relocating the hazard;
- 4. reducing the severity of the hazard;
- 5. shielding the hazard; and,
- 6. delineating the hazard.

These guidelines discuss the removal of roadside hazards. There are several existing design guidelines (see below) that discuss what type of fixed objects are considered hazardous and how far from the road these objects should be.

In addition to identifying fixed objects for removal during the design, road agencies should review existing infrastructure to identify pre-existing fixed object collision hazards. The need to remove fixed objects can be identified as part of a roadside safety assessment. This document identifies seven different factors that should trigger a roadside safety assessment.

3.7.2 Definitions

The Alberta *Roadside Design Guide* identifies fixed objects that should be considered for mitigation as:

- wood poles or posts with a cross sectional area greater than 10,000 mm² which do not have breakaway features
- trees having a diameter of 100 mm or more
- fixed objects extending above the ground surface by more than 100 mm, such as boulders, bridge rail ends, bridge abutments, piers, retaining wall ends, and bridge headwalls
- intersecting roadways and cross slopes
- non-breakaway signs or light pole supports
- non-breakaway utility poles
- vertical drops greater than 300 mm
- mailboxes with 100 mm wood posts or 50 mm steel posts and greater
- drainage structures, such as culvert and pipe ends without tapered end sections or traversable grates.

For the purpose of this document, the term "fixed object" will refer to items on the above list.

Clear Zone is another common term used when discussing fixed objects at the roadside. The clear zone is the area adjacent to the roadway's traveled lanes that should be free of hazards in case a vehicle runs off road. The minimum clear zone required is based on the traffic volumes, design speed, and roadside geometry. Clear zone requirements are clearly stated in Alberta Transportation's *Roadside Design Guide* (Section H.3.2.1).

3.7.3 Current Status in Alberta

Removing fixed objects at the roadside is a common practice in Alberta, particularly in rural environments. Fixed objects at the roadside are more common in urban areas where space constraints often result in fixed objects being located in close proximity to the road.

Fixed objects are most often identified and mitigated at the design and construction stage. Most road agencies have policies and/or guidelines that discourage the placement of fixed objects near the roadside. Policies and processes to identify and remove fixed objects that are installed after construction is completed are not as common in Alberta.

3.7.4 Example Applications

The removal of fixed objects can provide benefits for all road classifications and land uses. Example applications are illustrated in TABLE 3.23.

TABLE 3.23 EXAMPLE APPLICATIONS

3.7.5 Benefits and Costs

Collision Reduction Benefits

The removal of fixed objects from the roadside has been proven as an effective countermeasure to reduce both the frequency and severity of collisions. A study conducted by the Lehman Centre for Transportation Research⁴⁹ identified the collision reduction factors used by several Departments of Transportation in the United States. A summary of the collision reduction factors used for the removal of fixed objects is provided in TABLE 3.24.

State Department of Transportation	Collision Type	Collision Severity	Collision Reduction Factor	Average CRF for Collision Type
Arizona	All	All	61%	29%
California	All	All	20%	
Kentucky	All	All	30%	
Missouri	All	All	30%	
Montana	All	All	30%	
New York (AADT > 5,000/lane)	All	All	17%	
New York (AADT < 5,000/lane)	All	All	18%	
Oklahoma	All	All	25%	
Kentucky	All	Fatal	50%	- 50%
Missouri	All	Fatal	50%	
Kentucky	All	Injury	30%	- 30%
Missouri	All	Injury	30%	
New York (AADT > 5,000/lane)	Rear-End	-	44%	- 43%
New York (AADT < 5,000/lane)	Rear-End	-	42%	
Alaska	Fixed-Object	-	100%	- 88%
Michigan	Fixed-Object	-	75%	
Arizona	Run-off-road	-	71%	71%
New York (AADT > 5,000/lane)	Overturn	-	44%	- 43%
New York (AADT < 5,000/lane)	Overturn	-	42%	

TABLE 3.24 REMOVAL OF FIXED OBJECT COLLISION REDUCTION FACTOR

Operational / Maintenance Benefits

194

⁴⁹ Gan, A., Shen, J., and Rodriguez, A., "Update of Florida Crash Reduction Factors and Countermeasures to Improve the Development of District Safety Improvement Projects." Florida Department of Transportation, (2005)

Removing fixed objects from the roadside has a minimal impact on traffic operations. Operational benefits can be achieved in some circumstances by improving intersection and stopping sight distances. Removing fixed objects from the roadside provides maintenance benefits as the fixed objects will not require maintenance from being struck and damaged by a vehicle. Maintenance benefits are also derived from the lack of obstacles to avoid for mowing, paving, etc.

Costs

The cost to remove fixed objects varies greatly depending on the object to be removed. The low end of the cost range (assumed to be \$100 - \$500) would be to remove an unapproved sign or trim a bush. The higher costs (\$1.5 million) would be to demolish a large building. Annual M&O costs were assumed to be \$2500. However, depending on the nature of the fixed object, it is unlikely to return (especially to the extent that it was prior to removal). A tree may grow back, but it should be removed before growing too large.

3.7.6 Existing Application Guidance

National Guidance

The Transportation Association of Canada's <u>Geometric</u> <u>Design Guide for Canadian Roads</u> (2007), provides guidance on the appropriate clear zone required based on the road characteristics (Section 3.1.3). Sections 3.1.4 and 3.1.5 of the guide identify common fixed object hazards and recommends mitigating measures to reduce the collision risk.

Provincial Guidance

Roadside design in Alberta is governed by the *Alberta Roadside Design Guide*⁵⁰ (TRANS, 2007), which guides highway designers in how to develop cost-effective roadside environments that meet the province's safety objectives. The Alberta *Guide* outlines the general philosophy and principles of roadside design, presents TRANS's current practices and guidelines governing roadside design activities, and includes a comprehensive design process for roadside design treatments. Section H3 of the *Guide* summarizes the design process used to determine the most appropriate and cost-effective design strategies for roadside features. Figure H3.1 (*right*) outlines the roadside design process.

Municipal Guidance

No municipal guidelines or policies for the removal of fixed objects were identified in Alberta. Therefore, the most relevant guideline for both urban and rural applications in Alberta is the Alberta Transportation Roadside Design Guide.

- Reduce Severity of Hazard
- Shield Hazard
- Delineate Hazard

⁵⁰ <u>http://www.transportation.alberta.ca/3451.htm</u>
International Guidance

In addition to the *Geometric Design Guide for Canadian Roads* and *Alberta Roadside Design Guide*, guidance is available from the following documents and websites:

- *Roadside Design Guide (Third Edition)* (American Association of State Highway and Transportation Officials, 2006)
- Urban Street Geometric Design Handbook (Institute of Transportation Engineers, 2008) (Chapter 8, Roadside Design)
- Safe and Aesthetic Treatments in Urban Areas (National Cooperative Highway Research Program, Report 16-04 (Transportation Research Board, 2008) (http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_612.pdf)
- *Highway Safety Manual* (American Association of State Highway and Transportation Officials, 2010)
- FHWA Roadway Departure Safety website (<u>http://safety.fhwa.dot.gov/roadway_dept/</u>).

3.7.7 Recommended Application Guidance

Land Use and Speed Context

Land Use

Removing fixed objects within the clear zone can and should be implemented in both urban and rural environments. The AASHTO and Alberta *Roadside Design Guides* address rural, urban and "restricted" (transition and suburban) environments. While acknowledging that it is difficult for a designer to achieve an acceptable clear zone in an urban environment, the U.S. publication *Safe and Aesthetic Treatments in Urban Areas* (see previous section) provides specific advice regarding:

- minimum lateral offsets to hazardous objects in urban areas;
- positioning hazardous objects near lane merges; and,
- the appropriateness of using sidewalks and auxiliary lanes (including bike and bus lanes) as buffers or as part of the clear zone.

Government of Alberta	Methods of Reducing Collisions on Alberta Roads
Transportation	Phase 2 Final Report

Speed Ranges

Removing fixed objects is beneficial on both low speed and higher speed roads. Removing fixed objects on higher speed roads provides a greater benefit as higher speeds typically result in more severe collisions.

All land use and speed environments are considered acceptable for the removal of a fixed object as summarized in TABLE 3.25.

TABLE 3.25 ACCEPTABLE LAND USE AND SPEED RANGES FOR REMOVAL OF FIXED OBJECTS

	POSTED SPEED LIMIT (km/h)				
	50 or less	60 - 70	80 - 90	100 or more	
Rural	\checkmark	\checkmark	\checkmark	~	
Urban	\checkmark	\checkmark	\checkmark	\checkmark	
Semi-Urban / Suburban	\checkmark	\checkmark	\checkmark	\checkmark	

Policy for Removal of Fixed Objects

The following subsections outline a policy for the removal of fixed objects at the roadside.

Design

Designers should make every effort to conform to the requirements and guidelines in the *Alberta Roadside Design Guide* (TRANS, 2007) for:

- clear zones;
- grading and drainage;
- roadside and median barrier systems;
- barrier end treatments and crash cushions;
- bridges;
- signs, supports, and poles; and,
- work zones.

November 2010

Where constraints render compliance with the *Guide* costly or difficult, an assessment of the risk associated with run-off-road crashes should be conducted. The presence of any risk factors, including geometric, operational, or environmental factors that would increase the probability or severity of a run-off-road crash, will support the designer's requirement to comply with the *Guide*.

A roadside safety assessment should be part of all new road designs, and should also be conducted for all existing roads as discussed in the Policy to Conduct a Roadside Safety Assessment section.

Maintenance

Roadways and clear zones should be maintained to minimize the risks associated with run-offroad crashes.

- An abrupt pavement edge drop-off can increase the risk of a run-off-road crash by preventing drivers from safely re-entering the roadway once they have left the pavement. Abrupt drop-offs can result from repeated pavement lifts or shoulder/roadside erosion. Pavement edges should be correctly designed and maintained to allow drivers to re-enter the pavement in a controlled manner, and should be remediated if they deteriorate.
- Mowing and vegetation control guidelines may be developed and implemented to prevent trees from growing within the clear zone.
- Roadside hardware (such as sign posts, light standards, barriers, utility poles, etc.) that does not conform to existing standards should be identified and prioritized for removal and, if necessary, mitigation and replacement. Roadside hardware may no longer comply with standards for many reasons, including:
 - \circ outdated designs that do not meet updated standards;
 - poor maintenance resulting in deterioration;
 - damage due to snowploughing or vehicle crashes;
 - barrier/guardrail that is too low as a result of repeated pavement lifts (which increases the road height) or settlement of the roadside area (which decreases the barrier/guardrail height); or,
 - \circ erosion, resulting in abrupt pavement edge drop-offs or steep or unstable slopes.

• Fixed objects are commonly removed from within the clear zone during the design and construction stages. However, there is the potential for fixed objects to appear within the clear zone (with or without authorization) once the road is operational. Examples of these objects include mailboxes and advertising signs. Periodic inspections should be conducted to identify and mitigate such objects within the clear zone.

Roadside safety assessments should be conducted periodically on existing infrastructure. The Policy section identifies factors that should trigger a roadside safety assessment and the possible removal of fixed objects.

Prevention

In addition to designing a hazard-free roadside whenever possible, preventive measures may be considered on a corridor-wide or site-specific basis to reduce the risk that road users leave the roadway and enter the roadside area. These preventive measures may include:

- shoulder rumble strips;
- centreline rumble strips;
- curve delineation using post-mounted delineators;
- wide edgelines;
- enhanced pavement skid resistance;
- advance warning of curves;
- wide shoulders;
- adequate shoulder stability to prevent erosion of shoulder area;
- durable high visibility pavement markings;
- hazard marking signage; and,
- improved lighting.

Consider all road users. Adequate clear zones should be considered for multi-use trails and cycling facilities. Cyclists can easily attain speeds of 50 to 60 km/hr on sustained downhill gradients, and have little or no protection in the event of a collision.

Policy to Conduct a Roadside Safety Assessment

Roadside safety should be explicitly considered at all stages of road design and operation. Using the guidance provided in the resources listed above, a roadside safety assessment should be conducted as part of all new design projects and periodically on existing infrastructure.

A roadside safety assessment should:

- identify potential roadside hazards
- assess the degree of risk, based on
 - probability of a crash (reflecting the presence of factors that could aggravate the likelihood of a crash, such as frequent slippery road conditions or locating a hazard on the outside of a horizontal curve)
 - *exposure* (reflecting the volume of road users, so exposure is typically higher where user volumes are higher)
 - *consequence* (reflecting the likely severity of a crash, increasing with impact speed and with certain users such as motorcyclists)
- identify mitigation where necessary.

Mitigation can include the following measures, in order of preference:

- Remove the hazardous object: Removal of hazards, including non-crashworthy mailboxes, is preferable. Removal can include placement of utilities underground instead of above ground using poles or other supports that can be a roadside hazard.
- Relocate the hazardous object. Where hazardous objects cannot be removed, they should be relocated to outside the clear zone. Where a hazard is located within the clear zone and in an area of higher risk (such as on the outside of a horizontal curve or near a lane drop) and cannot be removed from within or close to the clear zone, consideration may be given to relocating it to where drivers are less likely to leave the roadway.
- Shield, cushion, or redesign the hazardous object: When a hazard cannot be removed or relocated, it should be shielded (using guardrail or barrier), cushioned, or redesigned so that out-of-control drivers collide with a less hazardous element that either redirects the vehicle or decelerates it in a slower and more controlled way. While these measures cannot reduce the frequency of a run-off-road crash (and may in fact increase the frequency by introducing a barrier that is larger than the protected hazard, or closer to the road than the hazard), they may reduce the severity of a run-off-road crash. It is important to note that curbs do not function as barriers, and are generally not capable of containing or redirecting errant vehicles. They should not be considered a substitute for barriers or guardrails.

• Mark the hazardous object: Where the risk of a run-off-road collision results from drivers' lack of awareness of a roadside hazard, rather than loss of vehicle control, the hazard can be marked (delineated). Marking the object will make drivers aware of it so they can avoid it. Markings should be conspicuous and easily visible at night.

Clear zones and the design of roadside hardware should meet or, if possible within project budgets, exceed the current TRANS design guides. In addition to new designs, a roadside safety assessment on existing infrastructure can be triggered by one or more of the seven factors discussed in the following subsections.

History of Frequent and/or Severe Run-Off-Road Crashes

Sites at which run-off-road crashes are frequent and/or severe (resulting in severe injury or fatality) can be reviewed. If a review of the crash history suggests that the presence of run-off-road hazards are a factor in the frequency and/or severity of crashes, a plan may be implemented to remove the hazards, shield drivers from them, or introduce measures to reduce the risk that drivers will leave the roadway in the first place.

A sample Lane Departure Strategic Action Plan provided by the US Federal Highway Administration (FHWA) gives five-year threshold run-of-road crash values that are likely to warrant low-, medium-, and high-cost countermeasures⁵¹. These are example values only, and should be reviewed with reference to your agency's crash experience. The threshold values are based on achieving a benefit-cost (B/C) ratio of 2.0, and show threshold crash frequencies over a five-year period.

- Because of low unit costs for *low-cost countermeasures*, it doesn't take many crashes to justify an improvement.
- *Medium- or high-cost countermeasures* may also be considered for system deployment; however, because of the higher costs, they are only considered at high crash locations as shown below.
- Because fewer crashes occur on *local roads*, and they occur over a much larger road system, the level of concentration is typically much less than that found on larger highway systems. The FHWA sample action plan identifies three countermeasures to pursue on local roads, as shown in TABLE 3.26.

⁵¹ See *Lane Departure Strategic Action Plan* (US Federal Highway Administration, 2005), available on-line at (<u>http://safety.fhwa.dot.gov/roadway_dept/strat_approach/lanedeparture/page4.cfm</u>).

Countermeasure	Target Crash Type	Threshold Target Crashes (over five years)				
Highway Low-Cost Countermeasures						
edge/shoulder rumble strips	run-off-road	0.7 crashes				
advance curve warning	run-off-road (curve)	1.0 crashes				
tree removal	tree	0.5 crashes				
guardrail upgrade	guardrail	1.1 crashes				
Highway Medium- and High-Cost Counterm	neasures					
Regrade/flatten hazardous slopes	run-off-road (ditch and/or rollover)	25 crashes in 1,000 ft (300m)				
shoulder widening to at least 1.9m (where little or no shoulder) with rumble strips	run-off-road	75 crashes in 3,000 ft (900m)				
Local Road Countermeasures	Local Road Countermeasures					
innovative signing and marking for curves	run-off-road or head-one (curve)	10 crashes per municipality				
selective tree removal	tree	6 crashes per local rural road				
selective run-off-road treatments	run-off-road	10 crashes per local rural road				

TABLE 3.26 FHWA SAMPLE ACTION PLAN

Maintenance Records Indicating Frequent Run-Off-Road Crashes

A review of maintenance records, or consultation with maintenance staff, can help identify locations where drivers are entering the off road clear zone, as well as the hazards they may encounter. Indications of run-off-road crashes may include frequent repairs to guardrail or replacement of delineator posts or other roadside hardware. Maintenance staff, who are often driving the roadways under all weather and lighting conditions, may also be able to identify locations that they find potentially hazardous.

Initiation of 3R or 1R Projects

A roadside safety assessment should be included in 3R (resurfacing, restoration, and rehabilitation), 1R (resurfacing) projects, and utility projects. The assessment should identify roadside hazards, assess the degree of risk associated with them (based on exposure, probability, and consequence), and identify opportunities to "piggyback" cost-effective improvements on the 3R/1R project to improve roadside safety. Roadside areas, both within the clear zone and near its boundary, should be as clear as practical. Other improvements that can be considered within 3R, 1R, and utility projects include widening, paving shoulders, regrading drainage ditches, and stabilizing roadside slopes.

Substantial Change in the use of a Roadway

Roadways on the urban/rural fringe may change from a rural route to a commuter route as suburbs or "bedroom communities" develop around an urban core, or may be upgraded to a highway. Where this happens, roadside conditions may not meet the standards expected by commuters and other urban/suburban road users, resulting in an increased risk of high-severity run-off-road crashes.

Substantial Geometric and/or Operational Changes to a Roadway

Agency decisions to substantially change the operating characteristics of a roadway should trigger an assessment of whether these changes will increase the risk or severity of run-off-road collisions, and, if so, an assessment of roadside hazards. Changes may include an increase in the posted speed limit, designation of a road as a hazardous goods route or bicycle route, substantial widening or narrowing of the lanes or shoulders (which may affect lateral distance to roadside hazards), addition of lanes (including auxiliary lanes), changes to the horizontal alignment, or introduction of a bike lane or multi-use trail. Cyclist safety is an important consideration, as cyclists can attain speeds of 50-60 km/hr on sustained downhills, and have little or no protection in the event of a crash.

Changes in Agency Operations or Maintenance

Agency decisions to change the operating or maintenance protocol of a roadway may have implications for roadside safety by increasing the risk of a run-off-road crash. Possible operating and maintenance changes include reduced winter maintenance, removal of night-time lighting, reduced mowing and landscape maintenance (which can allow trees to grow to a hazardous size). When these changes are planned, a roadside safety assessment should be initiated to identify impacts and initiate measures to remove or mitigate roadside hazards.

Other Factors

The removal or protection of roadside objects may also be triggered by other factors, such as:

- identification of a roadside hazard in a road safety audit,
- identification of a roadside hazard by emergency crews or police,
- substantial redevelopment of nearby lands, which may present an opportunity to piggyback safety improvements onto the roadway improvements associated with the redevelopment.

3.7.8 Human Factors

Motorists typically feel safer and more comfortable when there are fewer objects at the roadside as the risk of striking an object is reduced. Although this is a benefit for driver comfort, the down side is it may result in higher operating speeds.

Removing fixed objects reduces the potential that a fixed object will obstruct a driver's view of a potential conflict, such as a vehicle, cyclist, pedestrian or animal approaching the road. Therefore, driver expectancy is increased as there is better visibility of potential hazards. In some cases, fixed objects can create a distraction for motorists. Therefore, their removal is expected to increase motorists' attention to the road.

3.7.9 Implementation Considerations

A major consideration attached to removal/relocation of fixed objects arises in urban, suburban, and transitional environments, where the road agency is faced with long-standing situations that may be difficult to change, where right-of-way is typically constrained, and where hazards such as mailboxes and commercial signing may be located on private land outside the agency's authority. In this case, changes to planning and zoning regulations (with the aim of improving future roadside safety in newly-developed or re-developed areas) may be one of the only routes available.

Where roadside safety measures can be more readily implemented, the considerations in TABLE 3.27 may need to be taken into account.

November 2010

	SA	AFETY	' MEASUR	E*
IMPLEMENTATION CONSIDERATION	Guidance	Roadside Hardware	Geometric and Shoulder Improvements	Clear Zone
obstruction of pedal cyclists and/or pedestrians (especially in urban areas)		✓		
potentially hazardous to pedal cyclists and motorcyclists, including loss of cyclist control (shoulder rumble strips)	~			
interference with maintenance activities such as mowing and snow clearance	✓	✓		
increased maintenance requirement	✓	✓	✓	
interference with parking and stopping (including emergency stopping)		✓		
interference with road drainage (including requirement for upgraded drainage)		✓	✓	
increased road noise (rumble strips only)	~			
need to carefully target sites for most effective implementation of potentially high- cost measures		~	~	~
potential to lead to increased vehicle speeds (especially at night) resulting from increased driver confidence	~		~	~
negative reaction from the public, conservation groups, or other government departments, especially to removal of roadside trees or other aesthetic features, or introduction of features typical of a high-speed rural environment in an urban or suburban environment	~	~	~	~
increased potential for low-severity crashes associated with safety equipment close to the travel way	~	~		

TABLE 3.27 IMPLEMENTATION CONSIDERATIONS

* Safety Measures include:

- *Guidance*: delineators, edgelines, centrelines, rumble strips, audio/tactile markings, raised reflective pavement markers
- Roadside Hardware: barriers, guardrail, attenuators
- Geometric and Shoulder Improvements: shoulder installation, shoulder widening, shoulder paving, roadway realignment, improved pavement friction, cross-section reduction, safety edge
- Clear Zone: removal, remediation (e.g., slope reduction), or relocation of roadside hazards

ALBERTA TRANSPORTATION

METHODS OF REDUCING COLLISIONS ON ALBERTA ROADS

APPLICATION GUIDELINES FOR PEDESTRIAN COUNTDOWN SIGNALS

FINAL

Opus International Consultants (Canada) Limited

THIS PAGE WAS INTENTIONALLY LEFT BLANK

3.8 Pedestrian Countdown Signals

3.8.1 Background

A Pedestrian Countdown Signal (PCS) is a device that displays a numerical countdown to indicate to pedestrians the remaining time to cross a roadway at a signalized intersection or signalized midblock pedestrian crossing, often implemented where several pedestrian fatalities and injuries are reported to occur. It is a relatively inexpensive technological solution that provides more specific and meaningful information than conventional pedestrian signal displays.

It has become increasingly common in Canada and the U.S. to install PCS in addition to conventional pedestrian signal displays (i.e. "walk", "flashing don't walk" and "don't walk"). Surveys have generally found a high rate of misinterpretation of the "flashing don't walk" indication. PCS provide the necessary clarification by displaying the number of seconds remaining in the "flashing don't walk" interval. Pedestrians of all ages typically find PCS more intuitive than conventional pedestrian signals, and their use has been associated with a positive reduction in pedestrian-vehicle conflicts and collisions at many of the locations where they are installed.⁵²

While implementation guidance for PCS currently exists through the Transportation Association of Canada, there are currently no specific guidelines that dictate the application of PCS in Alberta or Canada (i.e. in what situations should PCS be provided). This document attempts to fill some of the gaps in the current guidance. In many jurisdictions, PCS are being considered for all new traffic signal installations; therefore, in more practical terms, this document may provide guidance as to when a PCS should *not* be provided at a signalized crossing.

3.8.2 Definitions

A Pedestrian Countdown Signal (PCS) is a pedestrian signal device that displays a descending numerical countdown to indicate to pedestrians the number of remaining seconds available for their crossing.

⁵² Transportation Association of Canada. "An Informational Report on Pedestrian Countdown Signals (PCS)." February 2008.

The PCS is paired with a display that shows the standard Walking Pedestrian (directing pedestrians to cross) and Hand (directing pedestrians not to enter the intersection) overlays standard on pedestrian signals currently in widespread use throughout North America.

3.8.3 Current Status in Canada and Alberta

PCS have been installed in urban municipalities in Alberta for several years, particularly in conjunction with the installation of new traffic signals. Some of the leading municipalities include the City of Edmonton (with currently over 50 PCS) and the Town of Banff since about 2001, but they have been more recently installed in Calgary and Lethbridge. In Edmonton, PCS are being considered for all new traffic signals. In Calgary, the need for PCS is evaluated at all new signals using the Transportation Association of Canada guidance. Practices regarding retrofits are more variable, and often combined with other upgrades. Alberta Transportation's Draft Signal Manual states:

"Countdown indications for pedestrian signals are recommended at locations where there is significant pedestrian activity and one or more of the following criteria is met:

- The crosswalk is longer than 25 m;
- There are significant pedestrian traffic with students and/or seniors ;
- Adjacent to schools or along major commuting pathways leading to schools;
- The duration of minimum walk is shorter than 7 seconds; or
- The amber and red clearance intervals are used, in part or full, to satisfy the walk clearance requirements."

Outside of Alberta, several large municipalities across Canada either already have PCS in place or are developing policies that encourage their use. PCS are very common in the Lower Mainland of British Columbia. The Province of Quebec and City of Burnaby, British Columbia have adopted PCS for all new traffic signals. The City of Toronto is the leading urban jurisdiction in Canada in the application of PCS's, with over 2,100 installations. The City of Toronto plans to have PCS retrofitted at every signalized intersection by 2011.

3.8.4 Example Applications

FIGURE 3.32 shows PCS's in each of the two common signal configurations, separate countdown housing (left) and side by side (right).

Source: Opus International Source: safety.fhwa.dot.gov FIGURE 3.32 PEDESTRIAN COUNTDOWN SIGNALS

3.8.5 Benefits and Costs

The safety and effectiveness of Pedestrian Countdown Signals in Canada and the United States has been studied as they have gained adoption over the past fifteen years.¹ Studies have focused on a range of issues, including their impact on pedestrian-vehicle collisions, conflicts, degree of pedestrian comprehension, and their influence on pedestrian and driver behaviour.

Benefits

Collision Reduction

In general, due to the relative infrequency of pedestrian-vehicle collisions at intersections, PCS's are typically not implemented in response to pedestrian-vehicle collisions at intersections, but rather as a proactive measure for collision and injury prevention. A review of two recent studies completed in North American cities revealed either no change or a decrease in the number of pedestrian-vehicle conflicts.

A before/after study carried out between 1999 and 2003 on 14 intersections in the City of San Francisco revealed a 25 percent reduction in pedestrian-vehicle collisions when corrected for regression to the mean.⁵³

⁵³ Transportation Association of Canada. "An Informational Report on Pedestrian Countdown Signals (PCS)." February 2008.

Factors attributed to this reduction were a decrease in the number of pedestrians still in the crosswalk when the pedestrian phase ended, and a decrease in pedestrians aborting or running during their crossings. The FHWA *Desktop Reference for Crash Reduction Factors* (FHWA, 2008) uses this finding as the estimated CRF for installing PCS at intersections previously equipped with conventional pedestrian signal heads. Based on its own and others subsequent findings, San Francisco has since installed PCS at 700 of its signalized intersections with plans to convert the remaining 400.

A 2002 study in the Region of York, Ontario found that no pedestrian related collisions were reported at three intersections with PCS's.⁵⁴ A study in San Jose, California, the same year revealed little difference between the before and after conflict rates (defined as events where either a pedestrian or a vehicle are delayed as a result of a unlawful action by a pedestrian or vehicle) at PCS outfitted intersections.⁵⁵ In a 2003 study in Maryland, pedestrian-vehicle conflicts (defined as an interaction where either a pedestrian or a driver take evasive action to avoid a collision, such as weaving, braking, or running) decreased at each of the four observed intersections.⁵⁶

No scientific studies in Canada measuring collision reductions were found. Less scientific studies have been conducted in Quebec and Toronto. A study by the Quebec Ministry of Transport indicated that there was a reduction in pedestrian-vehicle conflicts with PCS, but no supporting data was provided. The City of Toronto has reported that pedestrian fatalities in the City as a whole have remained constant since PCS were first installed in 2006, in spite of the continuing population increase.

Pedestrian Comprehension

A wide range of studies has consistently shown pedestrians understand PCS displays.⁵⁷ Moreover, pedestrians overwhelmingly prefer PCS to its conventional counterpart with the most cited reason being the knowledge of how much time was remaining to cross.

⁵⁵ Botha, J.L., et. al. (2002). "Pedestrian Countdown Signals: An Experimental Evaluation," *Pedestrian Count Signals Study in the City of San Jose; Final Report to the California Traffic Control Devices Committee, Vol. 1, pp. 1-35.* ⁵⁶ Eccles, K., et. al. (2003). *Evaluation of Pedestrian Countdown Signals in Montgomery County, Maryland.*

⁵⁴ Regional Municipality of York – Transportation & Works Committee (2002). *Pedestrian Countdown Signals; Report of the Commissioner of Transportation and Works*. Municipality of York, ON.

Washington D.C. Transportation Research Board.

⁵⁷ Rousseau, G. Davis, G. (2003). *A Comparison of Countdown Pedestrian Signal Display Strategies;* Draft Report. McLean Virginia: US Department of Transportation: Federal Highway Administration.

Older pedestrians, who typically have a slower stride and require more time versus most other pedestrians, are especially vulnerable at crossings. Laboratory studies conducted by the FHWA showed older pedestrians properly comprehended the displays as well⁵⁸. The crossing time remaining displayed on PCS eases anxiety of these slower moving vulnerable road users.

Driver Behaviour

Pedestrian countdown signals have not been shown to lead to altered driver behaviour. A number of studies have investigated whether PCS led to increases in vehicle speeds and acceleration in attempts to clear intersections before signal changes. These studies, including one completed in the City of Edmonton, have typically shown no noticeable changes in vehicle behaviour following the installation of PCS at intersections.⁵⁹

It should be noted that drivers may be misled in the case of a pedestrian clearance phase ending before the intergreen display, due to an extended green. This could cause stopped motorists to try to get a head start on traffic (thinking they will get a green at the same time the solid hand is displayed), but end up running a red light. If possible, the pedestrian lights should be positioned so as to not be visible to motorists.

Pedestrian Behaviour

The impact of countdown signals on pedestrian behaviour appears to be minimal but positive. A majority of studies completed in North America that consider PCS impacts on pedestrians running, hesitating, or turning around, found either no change or positive change. Multiple studies in California and one in Alberta showed that the number of pedestrians running during the pedestrian clearance interval actually decreased.⁶⁰ These findings are consistent with the studies that show pedestrian comprehension of PCS is high amongst all age groups.

The additional information conveyed by pedestrian countdown signals is particularly useful to vulnerable road users. Seniors and otherwise mobility challenged pedestrians are typically aware of their limitations and more likely to be concerned about their safety.

⁵⁸ Green, D. (2002). *Pedestrian Countdown Devices: The City of Edmonton's Pilot Project,* Edmonton, AB: The City of Edmonton.

⁵⁹ Leonard, J. et. al. (1999). "Behavioural Evaluation of Pedestrians and Motorists towards Pedestrian Countdown Signals," *Safety and Behaviour; Final Report,* Ref. 4723-100.

⁶⁰ DKS Associates (2001). "San Francisco Pedestrian Countdown Signals: Preliminary Evaluation Summary." San Francisco Department of Parking and Traffic.

Pedestrian crossings on wide streets with substantial traffic and complex phasing can be intimidating. The presence of countdown signals has been shown to enhance their crossing experience, leading to an increased sense of security.

Costs

The cost of a new PCS was assumed to be \$400 per signal head. A minimum of two was assumed to be required for most applications. To retrofit PCS at an intersection with standard pedestrian signals, an additional \$100 was assumed for the removal of each existing pedestrian signal. Annual M&O costs were assumed to be \$2000.

The cost of installing PCS at new signalized intersections is decreasing rapidly and is approaching the cost of using conventional pedestrian signals.

3.8.6 Existing Application Guidance

National Guidance

In Canada, national guidance for the application of pedestrian countdown signals is limited. The latest update to the Transportation Association of Canada's (TAC) <u>Manual of Uniform</u> <u>Traffic Control Devices for Canada</u> (MUTCDC, 2008) does not contain any references to PCS. Guidance for conventional pedestrian signal heads, which are used in PCS, is provided. Section B1.5.4 of the MUTCDC details the Walking Pedestrian and Hand overlays; Section B3.3.4 gives guidance on signal head location.

TAC's <u>An Informational Report on Pedestrian Countdown Signals (PCS)</u> (2008), suggests that PCS be adopted as an optional device for installation at locations where pedestrian signals are installed. The report documents the findings of a wide cross-sectional study of PCS in North America of pedestrian comprehension of the devices. The report suggests the factors most appropriate for the application of PCS:

- High percentage of seniors, children and other mobility challenged pedestrians;
- History of high pedestrian-vehicle conflicts;
- High pedestrian or vehicle traffic volumes; and
- High crossing distance (greater than 4 lanes).

November 2010

The report also includes recommendations on PCS layout, configuration, timing strategies and educational programs for successful introduction.

Provincial Guidance

No current guidance exists at the provincial level regarding the application of PCS's. The Traffic Safety Act Use of Highway and Rules of the Road Regulation, Section 98 refers to the traditional displays only, and not to PCS; therefore, the PCS does not change any of the relevant laws.

Municipal Guidance

The City of Edmonton was the only Alberta municipality for which well developed application criteria were found. Based on the 2008 TAC Informational Report, the City of Edmonton has used the following application criteria:

- Pedestrian volumes;
- Proximity to traffic generators;
- Presence of school children, seniors and the disabled;
- High Walk to Flashing Don't Walk Ratio (ample time for pedestrians to cross); and
- Low permissive left-turn volumes.

The Cities of Edmonton and Calgary now consider PCS at all new traffic signal installations, and refer to the TAC 2008 Informational Report for retrofit situations.

International Guidance

<u>Manual of Uniform Traffic Control Devices</u> (MUTCD), which documents the standards for traffic control devices in the United States, provides in Section 4E: *Pedestrian Control Features* a comprehensive set of criteria for applying pedestrian signal heads (which includes the countdown option) at signalized intersections. Section 4E.07 specifically covers PCS, and contains a requirement that:

"All pedestrian signal heads used at crosswalks where the pedestrian change interval is more than 7 seconds shall include a pedestrian change interval countdown display."

"Change interval" refers to the "flashing don't walk" phase. For locations with a change interval of 7 seconds or less, the use of PCS is optional.

The MUTCD also includes guidance on the general placement and conspicuity requirements of PCS, prescribes location and height requirements, sequencing of pedestrian intervals and pedestrian change intervals requiring PCS. These details are discussed further in the Implementation Considerations section. Part 4 of the US MUTCD can be found at http://mutcd.fhwa.dot.gov/pdfs/2009/part4.pdf.

3.8.7 Recommended Application Guidance

Land Use and Speed Context

PCS can generally be considered at any signalized intersection where pedestrian displays are provided. This is typically the case in urban and suburban environments. PCS are likely to have the greatest benefits in the most highly urban environments, such as downtown cores, and the least benefits in rural areas.

Traffic signals are provided for roads with speed limits up to 80 km/h in Alberta. However, intersections posted at 80 km/h are likely to have low pedestrian volumes and wide cross sections, and crossing is sometimes discouraged. Therefore, PCS are most appropriate across roadways posted at 70 km/h or less.

The recommended land use and speed environments where the installation of pedestrian countdown signals are summarized in TABLE 3.28.

LAND USE	POSTED SPEED LIMIT (km/h)					
	50 or less	60 - 70	80 - 90	100 or more		
Rural	-	-	-	-		
Urban	\checkmark	\checkmark	-	-		
Semi-Urban / Suburban	\checkmark	\checkmark	-	-		

TABLE 3.28 ACCEPTABLE LAND USE AND SPEED RANGES FORPEDESTRIAN COUNTDOWN SIGNALS

New or Upgraded Traffic Signals

Pedestrian countdown signals can be seen as an evolution of conventional pedestrian signals. As such, pedestrian countdown signals should be provided wherever pedestrian signal heads should be provided, subject to the acceptable land use and speed categories in TABLE 3.28. In some cases these may require an upgrade to controller equipment.

The MUTCDC acknowledges that pedestrian signal heads are typically provided at all signalized pedestrian crossings, but does not specifically require them at all signalized intersections. However, the Transportation Association of Canada (TAC) is currently preparing guidance for the application of pedestrian signal heads. Updated information on this project can be obtained directly from TAC.

The majority of application efforts to date have been focused at fully signalized intersections. While the majority of signalized crossing facilities are provided at intersections, it is recommended that the use of pedestrian signal heads and PCS be considered equally for midblock locations, such as at "Pedestrian Signals" (sometimes referred to as "half-signals") which are provided in some jurisdictions.

Retrofitted Traffic Signals

It is recognized that some municipalities have hundreds of traffic signals and limited budgets for adding PCS to existing intersections. The following guidance can assist in the prioritization of locations, based on the risk factors (exposure, probability and consequence), and hence where they are expected to provide the greatest safety benefits. This approach is particularly helpful since pedestrian collisions are rare.

- *Exposure* refers to the number of pedestrians facing the risk and the duration of the risk. This includes pedestrian volumes and vulnerable pedestrian volumes, crossing time and crossing distance.
- *Probability* refers to the severity of the risk, including the complexity of the signal operations or intersection geometry, or the ratio of the road width to the crossing time; and other factors that may contribute to making the crossing manoeuvre more difficult.
- *Consequence* refers to the likelihood of injury or fatality should a collision occur. Among other factors, this depends on the vulnerability of the road user, traffic speeds and the presence of larger vehicles.

Based on this risk-based approach and guidance from the TAC Informational Report, the latest edition U.S. MUTCD, and findings from various pilot programs throughout North America, key priorities have been developed, and are listed in TABLE 3.29. It should be noted that although PCS may have some benefits for motorists, they are to be installed primarily to serve the needs of pedestrians.

TABLE 3.29 PRIORITY LOCATIONS FOR PCS RETROFITS

Priority 1: Locations with a History of Pedestrian-Vehicle Collisions or Conflicts

If there is a history of pedestrian-vehicle crashes, this should be the number one priority. Given the rarity of pedestrian collisions, the *Traffic Conflict Technique* can also be used to quantify the collision risk.

Priority 2: Locations with High "Vulnerable" Pedestrian Volumes

The more vulnerable pedestrians, including children, seniors, and mobility challenged pedestrians, have been shown to both understand and prefer PCS for the increased information they provide. Therefore, the benefits of PCS may be highest at locations with high volumes or proportions of these users. Where pedestrian profiles are unavailable, locations within 200 metres of traffic generators, particular schools, community centres, parks and medical centres are deemed to have a higher risk. PCS have positively associated with a reduction in the number of pedestrians running to complete a crossing, which can be either hazardous or not an option for vulnerable road users.

Priority 3: Locations with Critical "Flashing Do Not Walk" Intervals

Longer crossings increase pedestrian exposure to traffic and present a higher risk for pedestrians to fail to complete the crossing movement in a timely manner. In particular locations with more than four lanes will benefit more from countdown indications.

Although the "Flashing Do Not Walk" phase should be timed to provide the necessary clearance time, based on normal walking speeds, crossings with shorter "Flashing Do Not Walk" intervals, that may require pedestrians to proceed at higher walking speeds can benefit from PCS.

Assuming the "Flashing Do Not Walk" phase has been appropriately timed, the time and distance requirements can be satisfied by considering the ratio of the "Walk" interval to the "Flashing Do Not Walk" interval. The TAC *Informational Report* states PCS should be provided where the ratio of the "Walk" interval to the "Flashing Do Not Walk" interval is 0.4 or less.

November 2010

Priority 4: Locations with High Pedestrian Volumes

Since PCS are expected to assist all pedestrians (not only the groups identified in Priority 2), locations within 200 metres of existing or planned major pedestrian generators such as schools, shopping centres, major transit stops, community centres, and parks and medical centres. Pedestrian signal control is recommended near all existing or planned major pedestrian generators.

Priority 5: Locations with Complex Geometric or Operational Characteristics

Besides the longer crossing distance and shorter crossing time factors included in Priority 3, there may be other factors that result in confusion or hesitation before or during crossing manoeuvres or in running to complete the crossing, which if done on wider, more complex crossings, increases the likelihood of pedestrian-vehicle conflicts. These factors may include complex operations, high vehicle volumes, especially high conflicting turning volumes, and obstacles in the median or skewed intersection geometry. PCS have been positively associated with greater pedestrian understanding, which helps minimize risk-taking on more complex crossings.

Based on the above guidance, the locations where PCS (or any pedestrian signal type) should *not* be installed include:

- Rural areas and or roadways with speed limits of above 70 km/h; and
- Where the crossing distance is very short, with a pedestrian change interval (clearance time) of 7 seconds or less (MUTCD guideline).

The TAC project that is currently identifying situations where pedestrian signal heads do not need to be provided may also identify other situations where it is unadvisable to provide PCS. The removal of existing PCS is not expected to be required unless the pedestrian signals are determined to no longer be required (unlikely to replace PCS with standard pedestrian signals). If the PCS is determined to be removed, a needs assessment should be undertaken to determine if the pedestrian signals should be completely removed.

3.8.8 Implementation Considerations

This section discusses practical considerations to be made when implementing PCS at new locations or retrofitting intersections with existing pedestrian signals. Consideration to signal timing, signal display configurations, location, and compatibility to existing equipment is provided. More detailed guidance is provided in Chapter 6 of the 2008 TAC Informational Report and in Section 4E the 2009 US MUTCD.

Signal Timing

Several options are available for configuring the timing on the countdown display. Pedestrians intuitively believe the timer to represent the number of seconds available for crossing. Studies and surveys suggest the most unambiguous timing strategy - and safest - for pedestrians is to display the countdown only during the flashing *Hand* symbol period. For these reasons, displaying the countdown only during the flashing *Hand* period is the recommended timing configuration.

In this configuration no countdown is displayed during the walk interval. The countdown starts at the beginning of the flashing *Hand* symbol period and ends when the *Hand* symbol stops flashing, typically at the onset of the yellow change interval, or amber phase of the signal. This provides an additional few seconds for crossing before the pedestrian clearance interval expires. FIGURE 3.33, taken from the 2009 edition of the U.S. MUTCD, shows the countdown displayed during the pedestrian change interval, with a steady *Hand* display during the yellow change interval.

In line with the U.S. MUTCD, the TAC Informational Report advises that the countdown display only during the flashing Hand interval and stop at the steady Hand interval.

220

Display Configuration

In North America, PCS are generally installed in one of two configurations:

- A. Side by Side: The *Walking Pedestrian* and *Hand* overlay are placed side by side with the numerical countdown in one signal head housing.
- B. Separate Countdown Housing: The *Walking Pedestrian* and *Hand* overlay are in one housing or separated in two housings with the numerical countdown in a separate signal head housing

A third configuration, All in One, where the *Walking Pedestrian*, *Hand* and numerical countdown overlays are housed in one signal head, is not commonly used in North America. FIGURE 3.34 shows the two common types of PCS, Side by Side (left) and Separate Countdown Housing (right).

TAC recommends that the Separate Countdown Housing configuration be used in all new locations, and in retrofitting settings wherever possible.

FIGURE 3.34 PEDESTRIAN COUNTDOWN SIGNALS Source: safeandmobileseniors.com (left); halifax.ca (right)

Compatibility with Controller

PCS are generally compatible with modern signal controller equipment, and can be implemented at most existing intersections with relative ease. Signal controllers twenty to thirty years and older however, may not be able to accurately display crossing time and replacement of controllers at these locations may be required.

November 2010

Other Implementation Considerations

It is strongly recommended that LED technology be used for all new and retrofit PCS situations, due to its superior performance and energy efficiency.

Some surveys have indicated that motorists may modify their behaviour at intersections with PCS, by accelerating or decelerating. Although no studies conclusively verify this behaviour, it should be monitored following installation. If it is concluded that this risk exists, intersections with PCS may be good candidates for the deployment of intersection safety devices.

When implementing PCS, it is also recommended that consideration be given to implementing accessible features with the pedestrian push-button operation. TAC has prepared separate *Guidelines for the Understanding*, *Use and Implementation of Accessible Pedestrian Signals* (2008).

3.8.9 Human Factors Considerations

Pedestrian countdown signals strongly promote good human factors principles. Studies have shown PCS to reduce the ambiguity of pedestrian signals for pedestrians of all ages. This increased clarity and expectancy is accomplished primarily through the provision of additional information via the countdown timer. The timer, in conjunction with the flashing Hand signal, acts to reinforce the notion that pedestrians need to finish their crossing before the signal phase changes.

The increased conspicuity of PCS is also of benefit to pedestrians, especially older road users, whom often suffer from a reduction in visual acuity. PCS typically make use of LED technology, which increases the contrast and reduces the susceptibility to glare, helping to increase the overall readability of the display.

Though not examined in these guidelines, PCS are compatible with audible pedestrian signals, which can help to promote sensory influence.

3.8.10 Maintenance Considerations

Pedestrian countdown signals are very low maintenance countermeasures. No maintenance considerations were identified, with the exception of routine inspections to ensure the units are functioning and replace any burnt out lights (which is relatively infrequent with the new LED technology). LED display technology also has the added benefit of reduced power consumption and a longer life cycle, helping to lower overall operating expenses.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

4.0 EVALUATION OF BENEFITS AND COSTS

The following sub-sections describe how the benefits (collision reduction) and costs (construction, operation and maintenance) of each of the *Highly Effective Measures* were derived, and used towards the development of an implementation strategy (Section 5.0).

4.1 Collision Reduction Estimates

The numerical benefits were estimated as the collision reduction expected with the implementation of the specific countermeasure. Although additional benefits may also result (congestion reduction, reduced travel time, etc.), these were not included in the benefit estimates. The following sub-sections explain how the collision reductions were estimated.

4.1.1 Methodology

The first step was to select an average collision reduction factor or range for the countermeasure from the documented collision reduction factors (CRFs) uncovered during Phase 1. The CRFs based on Alberta collisions were given preference when selecting the best CRF, followed by other Canadian studies. Injury collision reductions were preferred, with greater preference given to severe injuries (as opposed to minor injuries). Fatality collision reductions were generally avoided due to their even greater scarcity and randomness. Where injury reductions were unavailable, fatality reductions were taken to represent injury reductions. It should be noted that although all attempts were made to choose CRFs based on typical applications, several of the references were unclear regarding the specific target group of collisions the CRF referred to (for example, how many legs of an intersection the reduction was applied to). This potential discrepancy was accounted for in the ranges used.

The second step was to adjust the collision reduction based on the Alberta Applicability Rating from Phase 1. The higher this rating, the more likely the collision reduction would be achievable in Alberta. For countermeasures rated as "High" in Alberta (24/33), the collision reduction value from Step 1 was used. For "Moderate" Alberta applicability measures (9/33) a 20 percent reduction was applied. None of the Highly Effective Measures were rated as "Low."

The third step was to establish a range for the expected collision reductions. CRFs already presented as a range were applied as appropriate. CRFs with no explicitly stated range were taken to represent the high end of the range (in the interest of conservatism), and the low end was taken (typically approximately 50 percent of the high end). This approach is based on the assumption that the measure is applied in the optimal context (with respect to land-use and speed categories), while the low end of the range reflects application in a less than ideal context and variability in locations.

The cost per collision was assumed to be \$100,000 (as used by TRANS for injury collisions). This was used in the BCR calculation for all measures. Note that this method allows for comparisons between various treatments assuming the same number of collisions. For implementation at a specific area (i.e. roadway or intersection), the actual collision history of that area should be used to determine the actual expected collision reduction.

4.1.2 Collision Reduction Ranges for Alberta

The injury collision reduction ranges for each of the 33 countermeasures is presented in TABLE 4.2 to TABLE 4.7, below. Details regarding the calculation of the ranges are provided in APPENDIX B.

4.2 Cost Estimates

The following sub-sections describe the methodology of how the construction costs and lifecycle costs for each of the *Highly Effective Measures* were derived.

4.2.1 Methodology

In order to accurately estimate the costs, several sources were used. Where available, information was obtained first from the provincial weighted prices in the TRANS *Unit Price Averages Report* (2010). If information was not available from this source, a range of other sources were used: including municipal unit prices, and estimates previously prepared by Opus. For estimates that were a few years old, factors were applied to account for inflation.

The expected Low and High capital costs of the countermeasures were provided to attain a range of estimated costs. Also, where applicable, costs for retrofitting existing street furniture, as well as providing new items were obtained for each countermeasure.

The cost of implementing the countermeasures was assumed to be over a limited "area of influence". This was to ensure uniformly applied costs for each measure within each objective area (signalized intersections, speed related, etc.). This allows for measures within each objective area to be compared to each other. It should be noted that comparisons between measures in separate objective areas may not be accurate.

4.2.2 Life-cycle Costs

The costs for each countermeasure over its life span was determined based on the expected life span and maintenance and operations (M&O) costs. The assumed life spans for each type of measure are as follows:

- Pavement Markings: 2 years;
- Signs: 5 years;
- Hardware (gateway treatments, PCS, etc.): 10 years;
- Roadways (lanes, roundabouts, etc.): 20 years; and,
- Removals (objects, sight obstructions, etc.): 30 years.

Although 30 years was assumed for "removals", it is expected to effectively have an infinite life span so long as proper maintenance and enforcement are provided to prevent obstructions from returning.

The life-cycle costs for each countermeasure were determined by spreading the capital cost over the life span of the countermeasure, and adding the annual M&O cost. Discounting of the capital cost was not taken into consideration.

The life-cycle costs for each of the countermeasures are illustrated in TABLE 4.1, and further details are provided in APPENDIX B.

Countermeasure	Life Span (yrs)	Construction Costs	Annual M&O Costs	Life Cycle Costs Per Year
Consistent Speed Limits	5	\$250 - \$500	\$1,000	\$1,050 - \$1,100
Gateway Treatments	10	\$2,000 - \$500,000	\$2,500	\$2,700 - \$52,500

TABLE 4.1 LIFE-CYCLE COSTS

Government of Alberta Transportation

Countermeasure	Life Span (yrs)	Construction Costs	Annual M&O Costs	Life Cycle Costs Per Year
Transverse Pavement Markings	2	\$4,000 - \$10,000	\$2,000	\$4,000 - \$7,000
Variable Speed Limits	10	\$1,000 - \$300,000	\$2,500	\$2,600 - \$32,500
Advance Intersection Warning on Major Road	5	\$150 - \$800	\$1,000	\$1,030 - \$1,160
Conversion of Stop Controlled Intersections to Roundabouts	20	\$250,000 - \$500,000	\$3,000	\$15,500 - \$28,000
Dedicated Left Turn Lanes on Major Road Approaches	20	\$10,000 - \$100,000	\$2,500	\$3,000 - \$7,500
Flashing Beacon on Stop Sign	10	\$500 - \$2000	\$1,500	\$1,550 - \$1,700
Removal of Obstructions Within Sight Triangle	30	\$500 - \$500,000	\$2,500	\$2,516 - 19,166
Transverse Rumble Strips	5	\$2,000 - \$6,000	\$2,500	\$2,900 - \$3,700
Advance Intersection Warning Flashers	5	\$3,000 - \$6,000	\$2,500	\$3,100 - \$3,700
Conversion of Signalized Intersections to Roundabouts	20	\$275,000 - \$500,000	\$3,000	\$16,750 - \$28,000
Dedicated Left-turn Lanes With Phasing	20	\$5,000 - \$100,000	\$3,000	\$3,250 - \$8,000
Positive Offset Left- turn Lanes	20	\$10,000 - \$100,000	\$3,000	\$3,500 - \$8,000
Protected Only Left- turn Phase	20	\$300 - \$1,200	\$2,500	\$2,515 - \$2,560
Removal of Unwarranted Traffic Signals	30	\$2,000 - \$6,500	\$1,000	\$1,066 - \$1,216

Government of Alberta Transportation

Countermondure	Life	Construction Costs	Annual M&O	Life Cycle Costs Per	
Countermeasure	(yrs)	Construction Costs	Costs	Year	
Signal Back Plates	10	\$500 - \$12,000	\$1,500	\$1,550 - \$2,700	
Smart Right-turn Channel	20	\$15,000 - \$50,000	\$2,500	\$3,250 - \$5,000	
Advance Curve Warning Signs	5	\$450 - \$1,200	\$1,000	\$1,090 - \$1,240	
Cable Barrier	10	\$22,000 - \$50,000	\$2,500	\$4,700 - \$7,500	
Horizontal and Vertical Realignments	30	\$75,000 - \$1,000,000	\$1,000	\$3,500 - \$34,333	
Impact Attenuators	10	\$30,000 - \$60,000	\$2,500	\$5,500 - \$8,500	
Removal of Fixed Objects	30	\$100 - \$1,500,000	\$2,000	\$2,003 - \$52,000	
Shoulder Rumble Strips	10	\$300 - \$600	\$2,500	\$2,530 - \$2,560	
Centreline Rumble Strips	To be determined at a later date				
Delineator Posts	5	\$750 - \$1,000	\$1,000	\$1,150 - \$1,200	
Edgelines and Centrelines	2	\$169 - \$516	\$1,500	\$1,584 - \$1,758	
High-visibility Pavement Markings	2	\$200 - \$600	\$1,500	\$1,600 - \$1,800	
Increased Sign Retroreflectivity	5	\$500 - \$1,600	\$1,000	\$1,100 - \$1,320	
Linear Delineation Systems	10	\$3,000 - \$800,000	\$1,500	\$1,800 - \$81,500	
Wider Pavement Markings	2	\$200 - \$600	\$1,500	\$1,600 - \$1,800	
New or Upgraded Intersection Lighting	10	\$1,000 - \$10,000	\$2,500	\$2,600 - \$3,500	
Pedestrian Countdown Signals	10	\$800 - \$2,000	\$2,000	\$2,080 - \$2,200	
Wider Sidewalk or Paved Shoulder	10	\$110,000 - \$500,000	\$2,000	\$13,000 - \$52,000	

4.3 Benefit-Cost Estimates

The highest and lowest BCRs for each of the thirty-three countermeasures were determined as follows:

BCR_{Low}=Lowest Expected Benefit / Highest Expected Cost BCR_{High}=Highest Expected Benefit / Lowest Expected Cost

By determining the lowest and highest expected BCR values, a range could be provided. The BCR range for each of the thirty-three countermeasures is provided in TABLE 4.2 to TABLE 4.7. The six objective areas are separated into separate tables. Details on the calculation of the benefits and costs are provided in APPENDIX C.

Although research has shown that the benefits of collision countermeasures can decrease over time⁶¹ as motorists become accustomed to the change (benefit decay), this was not accounted for in these values.

It should be noted that although the benefit of implementing more than one countermeasure within an objective area (at the same location) is expected to be higher than if just one countermeasure is used, it is not the algebraic sum of benefits. This is due to the overlapping benefits gained by installing more than one countermeasure. This was not accounted for in the stated benefits, and the overlap would have to be determined on a case by case basis.

Collision Reduction Measure	Benefit Range	Capital Cost Range	BCR Range
Consistent Speed Limits	10% - 16% of all injury collisions	\$250 - \$500	9.1 - 15.2
Gateway Treatments	25%-50% of serious injury/fatal collisions	\$2,000 - \$500,000	0.5 - 18.5
Transverse Pavement Markings	20% - 44% of all fatal and injury collisions	\$4,000 - \$10,000	2.9 - 11.0
Variable Speed Limits	10% - 16% of all injury collisions	\$1,000 - \$300,000	0.3 - 6.2

TABLE 4.2 BENEFITS AND COSTS OF SPEED RELATED COUNTERMEASURES

⁶¹ Tarek, S., and P. de Leur. Collision Modification Factors for British Columbia. BC Ministry of Transportation & Infrastructure, 2008.

The most promising speed related countermeasure is the implementation of consistent speed limits. Gateway treatments have the potential to be extremely effective, but there is a wide variety of treatments, which explains the wide range in the BCR. Similarly, variable speeds have a relatively wide range (e.g. lower if high-cost overhead signage is used).

Collision Reduction Measure	Benefit Range	Capital Cost Range	BCR Range
Advance Intersection Warning on Major Road	15% - 30% of all injury collisions	\$150 - \$800	12.9 - 29.1
Conversion of Stop Controlled Intersections to Roundabouts	58% - 70% of all fatal and injury collisions	\$250,000 - \$500,000	2.1 - 4.5
Dedicated Left Turn Lanes on Major Road Approaches	29% - 35% of all fatal and injury collisions	\$10,000 - \$100,000	3.9 - 11.7
Flashing Beacon on Stop Sign	15% - 30% of all injury collisions	\$500 - \$2000	8.8 - 19.4
Removal of Obstructions Within Sight Triangle	20% - 37% of all injury collisions	\$500 - \$500,000	>50
Transverse Rumble Strips	10% - 22% of all injury collisions	\$2,000 - \$6,000	2.7 - 7.6

TARIE 4 3 RENEFITS	AND COSTS OF	ΊΙΝςΙΩΝΛΙ Ι7ΕΝ	INTERSECTION	MEASURES
		UNJIONALIZED		MEASONES

The removal of obstructions at an intersection has the highest BCR. Even the low value (highest cost and lowest benefit) exceeded a BCR of 50. Advance warnings on the major road provided the next highest benefit. All six unsignalized intersection measures are expected to be cost effective.

Collision Reduction Measure	Benefit Range Capital Cost Range		BCR Range
Advance Intersection	20% - 44% of all injury	\$3,000 - \$6,000	E 4 140
Warning Flashers	collisions	JJ,000 - J0,000	J.4 - 14.Z
Conversion of			
Signalized	30% - 62% of all fatal		
Intersections to	and injury collisions	\$275,000 - \$500,000	1.1 - 3.7
Roundabouts			
Dedicated Left-turn	30% - 58% of all injury	\$5,000 - \$100,000	
Lanes With Phasing	collisions	\$3,000 - \$100,000	3.8 - 17.8
Positive Offset Left-	20% - 40% of injury	\$10,000, \$100,000	
turn Lanes	collisions	\$10,000 - \$100,000	2.3 - 11.4
Protected Only Left-	00/ 4/0/ 6::		
turn Phase	8% - 16% of injury	\$300 - \$1,200	3.1 - 6.4
	Considins		
Removal of			
Unwarranted Traffic	25% - 53% of all injury	\$2,000 - \$6,500	20.5 - 49.7
Signals	COULISIONS		
Signal Back Plates	15% - 32% of all injury	\$500 - \$12 000	5 6 20 4
	collisions	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.0 - 20.0
Smart Right-turn	65% - 80% of all injury	\$15,000 - \$50,000	12 0 24 4
Channel	collisions	ŶŦĴ,000 º ŶĴŬ,000	13.0 - 24.0

TABLE 4.4 BENEFITS AND COSTS OF SIGNALIZED INTERSECTION MEASURES

Removing unwarranted traffic signals have the greatest potential for collision reductions among the signalized intersection countermeasures. Although still greater than 1.0, the BCR for conversion of a signalized intersection to a roundabout has the lowest BCR due to the high cost of construction.
Collision Reduction Measure	Benefit Range	Capital Cost Range	BCR Range		
Advance Curve Warning Signs	5% - 13% of all injury collisions	\$450 - \$1,200	4.0 - 11.9		
Cable Barriers	15% - 35% reduction of run-off-road injury collisions (roadside)	\$110/m - \$250/m	2.0 - 7.5 (roadside)		
	36% - 72% reduction of head-on injury collisions (median)	(assume 200m length)	4.8 - 15.3 (median)		
Horizontal and Vertical Realignments	50% - 73% of all injury collisions	\$75,000 - \$1,000,000	1.5 - 20.9		
Impact Attenuators	35% - 75% of injury collisions	\$15,000 - \$30,000	4.1 - 13.6		
Removal of Fixed Objects	15% - 30% of all injury collisions	\$100 - \$1,500,000	0.3 - 15.0		
Shoulder Rumble Strips	10% - 18% of all injury collisions	\$300 - \$600	3.9 - 7.1		
Centreline Rumble Strips	BCR calculations to be determined at a later date				

TABLE 4.5 BENEFITS AND COSTS OF RUN-OFF-ROAD COLLISION COUNTERMEASURES

Although potentially highly expensive, the most promising run off road collision countermeasure is horizontal and vertical realignment. The removal of fixed objects may result in a BCR of less than 1.0 depending on the cost of removing the obstruction. All other run off road collision countermeasures have BCRs of at least 2.0.

All of the roadway link countermeasures have promising BCR values. Due to their inexpensive cost, increased sign retroreflectivity has the greatest potential among them. No documented benefits were found for linear delineation systems. However, due to their significantly low cost (when placed on an existing barrier), any injury reductions higher than a 1.8 percent would result in a BCR greater than one.

Collision Reduction Measure	sion Reduction Sure Benefit Range		BCR Range	
Delineator Posts	5% - 11% of all injury collisions	\$75 /post - \$100 /post	4.2 - 9.6 (assume 10 posts)	
Edgelines and	10% - 19% of all injury	\$850 - \$2,600	5 7 - 12 0	
Centrelines	collisions	(assume 200m length)	5.7 12.0	
High-visibility	10% - 19% of injury	\$1,000 - \$3,000	56 110	
Pavement Markings	collisions	(assume 200m length)	J.0 - 11.7	
Increased Sign Retroreflectivity	25% - 42% of all injury collisions	\$500 - \$1,600	18.9 - 38.2	
Linear Delineation	-	\$15,000 - \$300,000	-	
Systems		(assume 200m length)		
Wider Pavement	10% - 16% of all injury	\$1,000 - \$3,000	5.6 10.0	
Markings	collisions	(assume 200m length)	0.0 - 10.0	

TABLE 4.6 BENEFITS AND COSTS OF ROADWAY (LINK) MEASURES

TABLE 4.7 BENEFITS AND COSTS OF VULNERABLE ROAD USER COLLISION COUNTERMEASURES

Collision Reduction Measure	Benefit Range	Capital Cost Range	BCR Range
New or Upgraded	39% - 78% of all injury	\$1,000 - \$10,000	11.1 - 30.0
Intersection Lighting	collisions		
Pedestrian Countdown	15% - 25% of all		
Signals	pedestrian collisions	\$800 - \$2,000	0.8 - 12.0
Wider Sidewalk or	65% -89% of all	\$110 /m - \$500 /m	1.3 - 6.8
Paved Shoulder	pedestrian collisions	2110 / III - 2200 / III	(assume 1km length)

All three vulnerable road user collision countermeasures have BCRs greater than one. Providing intersection lighting, or upgrading the existing lighting, results in the highest BCR. Although they provide a lower BCR, installing pedestrian countdown signals is a relatively inexpensive countermeasure.

5.0 IMPLEMENTATION STRATEGY

An implementation strategy was developed to facilitate the timely and optimal implementation of the highly effective measures identified in this study. Implementability will depend on numerous factors and is presented as an overall strategy, for the consideration of each agency and for discussion between agencies.

This section first describes the proposed approach to the prioritization of the highly effective measures, and then lists the measures proposed for implementation in each of the three time frames identified at the outset of the study:

- Immediate ("Quick wins");
- 1-7 years; and
- 7-20 years.

TRANS indicated that these time frames do not correspond to any particular planning or budgeting cycles. Opus' approach to these three cycles is described in Section 5.1.

Since education, enforcement, and legislation may be required in order for these measures to be effective, guidance is also provided for these in Section 5.5. Finally, since it will be important to measure the performance of the treatments and justify further collision reduction investments, suggestions regarding effective monitoring and evaluation are provided in Section 5.6.

5.1 Approach

Having a clear implementation strategy will help to ensure that funds are properly targeted using evidence-based (proven) countermeasures. The results of the implementations can be monitored and properly evaluated to justify more widespread application, modifications to current application, or diverting funds to other measures.

The approach adopted for the implementation strategy was based on the following principles:

- Implementing early winners ("quick wins") to gain momentum and start realizing improvements;
- Give higher priority to measures with higher BCRs and lower capital costs;

- Encourage earlier more systematic implementation of traditional proven measures before proceeding to related but novel measures (e.g. provide consistency in static speed limits before exploring variable speed limits);
- To implement as much as possible during the first 7 years;
- Provide options to address each objective area during each of the first two time frames; and,
- Minimize the possible duplication / overlap in benefits of similar measures.

The implementation strategy is no way intended to discourage the application of measures not listed in a particular time frame; rather it is intended to guide road agencies as to where to focus their overall programming efforts since there is research, policy development, education and other resources required for the successful implementation of each measure. Focused implementation can also allow for the more accurate overall evaluation of programs as it is easier to separate treatment effects.

At the micro-level, measures should be implemented such that overlapping benefits are minimized and they can be properly evaluated. For example, if left-turn collisions are a problem at a signalized intersection, the preferred solution may be either dedicated left-turn lanes or phasing - not necessarily both.

Measures that are considered novel may require public education and/or changes to legislation, and therefore may not be able to be implemented effectively right away; these measures have generally been excluded from the "quick wins". For these measures and others for which the application guidance represents a departure from normal practices, the education, pilot and evaluation approach is recommended prior to widespread implementation.

5.2 Quick Wins

"Quick wins" were identified from the list of *highly effective* measures, to assist road agencies to start yielding returns (i.e. reductions in injuries and fatalities) on the ground that can build momentum and justify funding for further initiatives.

For this study, quick wins were defined as measures that:

- Already have good application guidance;
- Can likely be accommodated within regular operating budgets;
- Have a high average BCR (at least 5:1);
- Are already proven in Alberta or Canada (not novelties); and
- Require minimal public education and no changes to legislation to be effective and enforceable.

Up to three quick wins were identified for each objective area, provided they met the above requirements.

The quick wins are as follows, by objective area:

Speed Management:	Consistent Speed Limits			
Signalized Intersections:	Removal of Unwarranted Traffic Signals; Smart Right-Turn			
	Chunnets			
Unsignalized Intersections:	Removal of Sight Obstructions; Advance Intersection Warnin on Major Road; Flashing Beacon on Stop Sign			
Roadways (Links):	Edgelines and Centrelines			
Run-off-Road:	Cable Barriers			
Vulnerable Road Users:	New or Upgraded Intersection Lighting; Pedestrian Countdown Signals			

The following are suggestions and recent developments to assist road agencies to quickly and effectively implement some of these measures:

Consistent Speed Limits: guidelines have been established by the Transportation Association of Canada, and several agencies are adopting them and receiving positive feedback on the results.

Removal of Unwarranted Traffic Signals: This is a relatively inexpensive way to improve both safety, efficiency and reduce cost. There is a prescribed practice for this published by the Institute of Transportation Engineers.

Smart Right-Turn Channels: These have been recently piloted by the City of Edmonton, with increasingly positive results. They are recommended for consideration at any urban intersection with a prevalence of right-turn / rear-end collisions.

Advance Intersection Warning on Major Road: If minor road treatments are proven ineffective, major road treatments can be investigated.

Flashing Beacon on Stop Sign: It is suggested that together with the flashing beacon, the benefits of flashing LED borders be explored.

Cable Barriers: Alberta Transportation has recently prepared a draft design bulletin encouraging the more widespread application of cable barriers. It can be referred to for highway applications, in conjunction with the detailed guidelines prepared as part of this study. There are major projects underway in Alberta involving cable barrier applications on Highway 2, and on Crowchild Trail in Calgary.

Pedestrian Countdown Signals: These are quickly gaining popularity, and should be installed with every new traffic signal. The guidelines prepared in this study provide a method to prioritize retrofit applications.

5.3 1-7 Year Strategies

The measures selected for implementation in the shorter term (1 to 7 year) time frame are those among the remaining measures that:

- are the most effective measures in each objective area;
- may require moderate capital budgets; and
- may require public education or simple changes to legislation.

The 1 - 7 year strategies are as follows, by each objective area:

Speed Management:	Gateway Treatments, Transverse Pavement Markings;			
	Variable Speed Limits			
Unsignalized Intersections:	Dedicated Left-Turn Lanes; Transverse Rumble Strips;			
	Conversion to Roundabouts			
Signalized Intersections:	Signal Back Plates; Advance Warning Flashers; Dedicated Left			
	Turn Lanes and Phasing; Positive Offset Left-Turn Lanes;			
	Protected-only Left-Turn Phasing			
Roadways (Links):	Increased Sign Retro-reflectivity; High Visibility Pavement			
	Markings; Wider Pavement Markings			
Run-off-Road:	Impact Attenuators, Curve Warning Signs; Shoulder Rumble			
	Strips (shoulder/centreline)			
Vulnerable Road Users:	Wider Sidewalks or Paved Shoulders			

Gateway Treatments: Detailed guidelines have been prepared as part of this study. Since there are no municipal, provincial or nationally approved practices for gateway treatments, road agencies will have to endorse a set of guidelines for gateway treatments prior to implementation.

Variable Speed Limits: Since these are not currently enforceable in Alberta (or anywhere in Canada), the laws will have to be revised prior to any implementation. Research is currently being undertaken in Edmonton and considered in Calgary to develop algorithms for applying VSL on freeways. A synthesis of benefits to share with management and legislators was prepared as part of this study. Implementation should be carried out with a single pilot, or handful of pilots, then evaluated prior to modifications or more widespread implementation. *Conversion to Roundabouts*: Guidelines were prepared in this study to encourage the consideration of roundabouts for any stop-controlled location where all-way stops are warranted, due to the superior safety benefits. These should be adopted or incorporated into the roundabout policies that Calgary and Edmonton already have in place.

Increased Sign Retro-Reflectivity: A project is currently underway to develop requirements for retro-reflective sheeting in Canada, further to the newer standards adopted in the United States. Road agencies may wish to revise their practices to meet the new requirements.

Government	
of Alberta 🔳	
Transportation	

Wider Pavement Markings: A study will likely be commissioned by the Transportation Association of Canada to look at standard practices for using wider markings for certain applications, after which agencies can revisit their practices.

5.4 7-20 Year Strategies

The measures identified for implementation in the longer term (7 to 20 years) are as follows:

Speed Management:	none			
Unsignalized Intersections:	none			
Signalized Intersections:	Conversion to Roundabouts			
Roadways (Links):	Linear Delineation Systems, Delineator Posts			
Run-off-Road:	Horizontal and Vertical Realignments; Removal of Fixed Objects			
Vulnerable Road Users:	none			

Linear Delineation Systems: This 3M product has been very recently implemented in Alberta. Although no specific studies are available, agency and public feedback has been positive. It is suggested that if a study becomes available proving its effectiveness, this measure be moved up to the 1-7 year program.

Removal of Fixed Objects: Detailed guidelines were prepared as part of this study to trigger the assessment and removal of roadside hazards.

In summary:

- 10 measures are recommended for immediate implementation;
- 18 measures are recommended for implementation in the 1-7 year time frame; and,
- 5 measures are recommended for implementation in the 7-20 year time frame.

5.5 Legislation, Education and Enforcement

The success of several of the measures will depend on the level of public education about them and the extent of enforcement that is conducted. In particular, the following measures should include an education / enforcement component:

Gateway treatments - These treatments are intended to have an effect at the subconscious level, so minimal education is required. However, any combination of the speed limit with the name of the community will need to be vetted for compliance with the MUTCDC and its intent clarified for the public, to avoid the possible misperceptions raised in the detailed guidelines.

Consistent speed limits - Education and enforcement are critical to any speed management initiatives, since there is a heavy reliance on changes in behaviour. While the application of consistent speed limits is intended to result in greater self-regulation, targeted police enforcement is still recommended, and operational speed data should be collected to ensure that they are compatible with the posted speed limits.

Variable speed limits - Variable speed limits would represent a significant change in the way speed limits are determined, displayed and enforced. Therefore, legislation would need to be prepared and passed. An extensive public campaign would be necessary to make the driving public understand that VSLs are as enforceable as static limits. Consultation with legal professionals may be required.

Pedestrian countdown signals - While these have been in place in Alberta for a few years, they are still considered a novelty to some road users, especially outside of Calgary, Edmonton and Banff. There is still a degree of confusion regarding whether the counter displays the amount of time remaining to start to cross or to complete the crossing movement. As the implementation of PCS's continues to expand and they become standard, public education to address this issue will be necessary.

Conversion to roundabout - Roundabouts are also becoming more common in Alberta, but are still new to much of the public. Materials for public education have been developed by Transport Canada, TRANS and several municipalities to assist drivers, pedestrians and cyclists how to successfully negotiate a roundabout, including right-of-way and lane changing rules.

Partnerships and agreements between the Engineering Committee and other committees operating under the Alberta Traffic Safety Plan, such as those responsible for legislation, education and enforcement will be instrumental in maximizing the potential effectiveness of the engineering measures.

TRANS or the municipalities may wish to program the above education and enforcement campaigns as part of a larger campaign, starting with general messages regarding the traffic safety plan and this study, the importance of reducing collisions in Alberta, and the role the public can play in this endeavour.

5.6 Monitoring and Evaluation

The success of any collision reduction initiatives can only be assessed if a clear and effective monitoring and evaluation plan is put into place. This section presents a suggested set of evaluation criteria and methodology, lists the data requirements, and suggests a frequency of evaluation.

5.6.1 Evaluation Criteria

It is suggested that *collisions* be used as the primary source of data, to measure the success of implementing the measures identified in this study. In particular, for consistency with the study objectives, *injury and fatal collision* data should be used. Since fatal collisions are rare, and the difference between a serious injury and a fatality is often based on characteristics that cannot be controlled by road agencies, it is suggested that they not be used alone, but that they be combined with injury collisions for the purpose of analysis.

The collision reduction factors reported in literature and in the current Alberta Traffic Safety Plan are based in large part on collision frequency. The indicators will have to be selected to be consistent with the Alberta Traffic Safety Plan. It is suggested that the Office of Traffic Safety consider moving towards collision rate (and specifically "injury rate") as the primary indicator of success. Collision rate is defined as the collision frequency per unit traffic volume.

5.6.2 Evaluation Methods

Once safety data is collected via the monitoring program, methods are applied to compare the before and after results. The analytical framework described below represents the state-of-the-practice in evaluation programs:

The evaluation process should note changes in safety performance (collisions, violations) caused by safety improvements instead of other "confounding" factors or causes. Sound conclusions about the effect of the engineering program cannot be made if these other factors contributed to the noted change. The three main factors most relevant to the road safety evaluations are history, maturation, and regression to the mean:

Government	Methods of Reducing Collisions on Alberta Roads
of Alberta 🗖	Phase 2 Final Report
Transportation	· ····································

- History refers to the possibility that factors other than the engineering program caused all or part of the observed change in safety.
- Maturation refers to the process by which safety data measures or changes over time, such as the long-term downward trend in collisions due to improved vehicle safety devices.
- Regression artefacts (or regression to the mean) refer to the tendency of extreme events to be followed by less extreme events, even if no change has occurred in the underlying mechanism which generates the process.

A comparison group should be used to account for the effect of history and maturation. In this method, a group of sites that are somewhat similar to the treated sites are otherwise randomly selected and their safety performance is obtained. The treatment effect is then calculated by comparing the safety performance between the treatment sites and the comparison group. To account for the regression to the mean, a technique known as the Empirical Bayes (EB) technique can be used.

5.6.3 Evaluation Schedule

While activities should be monitored on an ongoing basis, it is recommended that the effectiveness of the enhancements be formally evaluated at pre-determined intervals:

Quick wins:

- After one year. While the focus is on injury and fatal collisions, since this short period, the impact on all collisions might also be reviewed. It should be recognized that for some of the measures, there may be a significant initial increase or decrease in the first few weeks or months due to driver caution or behaviour adjustments, prior to a degree of stabilization. The one year evaluation can be a simple before and after analysis, based on frequency.
- Subsequently: every three years. Three years is expected to provide the minimum required statistical significance. These reviews should apply the history, maturation and regression factors described above.

1-7 Year Strategies:

- Within 3 years: two full years following the implementation of the quick wins. "Before" data can be collected over a one-period prior to implementation. This is expected to provide a preliminary indication of the effectiveness prior to possible expansion or change in direction. If TRANS adopts new targets for 2015, this evaluation will be aligned with this time frame.
- *Within 7 years*: following the first three years, up to one full year can be taken to make adjustments/expansions; then another formal evaluation be conducted after year 7.

7-20 Year Strategies:

• Formal evaluations should be conducted every three years. The first evaluation would coincide with targets set for 2020.

6.0 NEXT STEP AND POSSIBLE FURTHER WORK

6.1 Next Steps

To maximize the value of this study, TRANS and the Engineering Committee can consider the following follow-up actions:

Circulate study deliverables to road agencies

The benefits of the new knowledge provided by this study will be realized through the sharing of the report deliverables to road agencies and within the industry in general. This would include posting it to Alberta Transportation's website. The electronic database will be a particularly valuable and practical tool. The circulation of deliverables to targeted road agencies may include encouragement to adopt the highly effective measures.

Provide training to industry and stakeholders in Alberta

To properly describe the toolbox measures and highly effective measures and the context sensitive applications, training can be arranged for road agencies and the industry. This would include several examples of how to use the deliverables, depending on the purpose and need.

Incorporate methods into existing processes and budgets

Road agencies may consider incorporating MORCOAR into its current processes. Road networks can be screened to find the most appropriate locations for the highly effective measures. For example, it can be referred to as part of all safety studies, or functional planning studies, or for all retrofit projects. Budgets might be secured for the study or implementation of the highly effective measures. Existing programs of highly effective measures, such as TRANS' cable barrier and rumble strips programs, can be expanded to include other applications.

Adapt guidelines to current policies and standards

TRANS and municipal road agencies will need to review the study findings, and in particular the detailed application guidance, for compatibility with their own practices. Existing policies can refer to the MORCOAR guidelines as supplementary guidance, or they can be adopted in whole or in part into existing practices. "Next steps" are described for each of the Priority 1 measures in the detailed application guidance. For example, lawyers will need to be consulted for further advancement of Variable Speed Limits.

Set up evaluation and monitoring program

As described in Section 5.6, the effectiveness of implemented measures can only be established through active monitoring and scientific evaluation. This may require the collection of "before" data, which should be extracted or collected prior to implementation.

6.2 Possible Further Work

Subsequent to (or in parallel with) the above "next steps", TRANS or the Engineering Committee may consider the following work items, internally or through engaging a qualified consultant:

Conduct another agency survey to prioritize the need for detailed guidance for other 25 Highly Effective Measures

Application guidance is required for several of the highly effective measures other than the 8 for which guidance was developed in this study. The survey that was conducted at the outset of Phase 2 included a relatively small sub-set of road agencies in Alberta. It was focused on agencies that have more guidance (larger municipalities). It is suggested that a wider survey be conducted, particularly with the focus on agencies that need more guidance (smaller municipalities).

Develop application guidance for other HEMs

After the survey establishes where additional guidance is required, this guidance can be developed. For example, if there are 10 more measures that require application guidance, TRANS may decide to develop 5 per year over the next two years.

Initiate the development of national guidance

To encourage effective and consistent use of the concepts and guidelines developed in the study, forums such as the Transportation Association of Canada can be explored, particularly for measures that are relatively new to Canada. In particular, jurisdictions across Canada will benefit from national guidance on the application of Gateway Treatments and Variable Speed Limits.

Provide updates as important new guidance gets released

The information in the MORCOAR report (both CMFs and applications guidance) will only be as good as it is recent. The electronic database can be updated to include new CMFs. New

application guidance is always being prepared by TAC, FHWA and other industry leaders. In particular, several new documents are expected in the next several months that relate to the highly effective measures: these include the 2010 update to the FHWA Roundabout informational Guide, and the TAC project on Reflective Sign Sheeting Requirements. Application guidance in the MORCOAR has been dated so that new references and application guidance can be provided as required. TRANS can assign someone to monitor industry developments and lead these updates. Alternatively, an annual focused scan of the industry can be conducted.

Prepare supporting implementation guidance

While implementation considerations were presented in this study, the focus was on application guidance. Implementation guidance can be developed to ensure measures are installed in a way that maximizes their effectiveness. Implementation guidance would include details such as content (e.g. sign content), placement (e.g. cable barrier placement), installation method (e.g. type of rumble strips), dimensions (of pavement markings), display (e.g. countdown signals) and operations (protected-only left-turn phasing).

Incorporate new HSM information and new Canadian CMFs

Although this study included some of the accessible HSM unpublished content, it was essentially complete before the HSM was released. Several but not all of the CMFs in the HSM/Clearinghouse were taken from the FHWA Desktop Reference. It may be worthwhile to review how the content of the new HSM can be incorporated into the MORCOAR deliverables, and in particular the CMFs. Also, more "Canadianized" CMFs are currently being developed at Ryerson University and elsewhere, and should be considered for adoption of modification for Alberta. This will be best conducted when the major portion is complete: expected within one year.

Prepare Alberta-specific collision prediction models

Collision prediction models are developed by some jurisdictions within Alberta. While not directly related to this study, these models help to establish and quantify the problems that MORCOAR attempts to solve. Better problem definition would most certainly lead to more favourable countermeasure development.

Conduct another comprehensive study within 5 years, to capture new national and provincial priorities and 2020 targets

Finally, it is suggested that a study of similar scope to this be conducted every five years. The next iteration would be well timed to reflect new goals established after 2015, depending on the achievement of the 2015 goals, the new priorities, and the 3 year evaluation suggested of the MORCOAR measures recommended for immediate implementation.

APPENDIX A

ROAD AGENCY SURVEY

THIS PAGE WAS INTENTIONALLY LEFT BLANK

Methods of Reducing Collisions on Alberta Roads Current Agency Status in Alberta for Shortlisted Measures

Agency: <u>City of Edmonton, City of Calgary,</u> <u>Province of Alberta, Strathcona County</u>

#	MEASURE	GUIDELINES YOU ARE USING?	SUFFICIENCY OF EXISTING APPLICATION GUIDELINES	EXTENT OF USE OF MEASURE IN YOUR JURISDICTION	OBSERVED SAFETY EFFECTIVENESS	COMMENTS
1	Road Narrowings – Physical	None (AT) Local (Cal) Provincial TAC (SC) Other: multiple (Ed)	Don't use any (Ed, AT, Cal) Insufficient Sufficient (SC)	Limited but systematic (Ed, AT, SC) Experimental / Piloting Widespread but systematic Ad-hoc / out of control	Highly successful Successful (SC) Moderate Hit and miss (Cal) Mostly unsuccessful (Ed)	 Have had limited to no benefit in application related to speed reduction (Ed) Generally not used (AT) Anecdotally effective, some positive feedback, not speed control (Cal) Snow removal operations are sometimes slow in avoiding them (SC)
2	Road Narrowings – perceptual – e.g. hatching	None (Ed, AT, Cal) Local Provincial TAC Other:	Don't use any (Ed, AT, Cal) Insufficient Sufficient	Limited but systematic (AT) Experimental / Piloting Widespread but systematic (AT) Ad-hoc / out of control	Highly successful Successful Moderate Hit and miss Mostly unsuccessful	 May have limited benefit especially in winter city conditions (Ed) Generally not used (AT) Not used (Cal) Not generally used (SC)

#	MEASURE	GUIDELINES YOU ARE USING?	SUFFICIENCY OF EXISTING APPLICATION GUIDELINES	EXTENT OF USE OF MEASURE IN YOUR JURISDICTION	OBSERVED SAFETY EFFECTIVENESS	COMMENTS
3	Consistent Application of Speed Limits	None Local (Ed, Cal) Provincial (Ed, AT, SC) TAC (Ed, AT, Cal) Other:	Don't use any Insufficient Sufficient (Ed, AT, Cal, SC)	Limited but systematic Experimental / Piloting (Ed) Widespread but systematic (Cal) Ad-hoc / out of control	Highly successful (AT) Successful Moderate (Cal) Hit and miss Mostly unsuccessful	 Testing new TAC guideline along with existing City guidelines as new changes/reviews require. (Ed) Based on design speed and policy (AT) Speeds based on design speed and road classification (Cal) Enforcement tolerance is the real issue (SC)
4	Variable Speed Limits	None Local (Ed, AT) Provincial (SC) TAC Other:	Don't use any (Ed, AT) Insufficient Sufficient (SC)	Limited but systematic (Ed) Experimental / Piloting Widespread but systematic (SC) Ad-hoc / out of control	Highly successful Successful Moderate Hit and miss Mostly unsuccessful	 Building this capability in at major river crossings (Quesnell and Capilano); not operation yet (Ed) Traffic Safety Act does not permit its use (AT) Not permitted under current legislation (Cal) High levels of enforcement required (SC)

#	MEASURE	GUIDELINES YOU ARE USING?	SUFFICIENCY OF EXISTING APPLICATION GUIDELINES	EXTENT OF USE OF MEASURE IN YOUR JURISDICTION	OBSERVED SAFETY EFFECTIVENESS	COMMENTS
5	Speed Reader Boards*	None (AT) Local (Ed, Cal) Provincial TAC Other:	Don't use any (AT, SC) Insufficient (Ed) Sufficient (Cal)	Limited but systematic (AT) Experimental / Piloting (Ed) Widespread but systematic (Cal) Ad-hoc / out of control	Highly successful Successful (AT) Moderate (Cal) Hit and miss Mostly unsuccessful	 Developing and piloting applicability/technology in a few neighbourhoods for more wide scale application in the future. (Ed) Mainly for construction zones (AT) Popular with residents & politicians, effect on speeds is limited, untested. (Cal) Politically seen as a good thing (SC)
6	Transverse Pavement Markings	None (Ed, AT) Local Provincial TAC (SC) Other:	Don't use any (Ed, AT) Insufficient (Cal) Sufficient	Limited but systematic (AT) Experimental / Piloting (AT) Widespread but systematic Ad-hoc / out of control	Highly successful Successful (Ed) Moderate Hit and miss Mostly unsuccessful	 A few sites for stop conditions (AT) Not currently used but is being contemplated, application guidelines would be helpful, previous use on Deerfoot not successful (1980s) (Cal) Used as required (SC)
7	Gateway Treatments	None (Ed, AT) Local (Cal) Provincial TAC Other:	Don't use any (Ed, AT, Cal) Insufficient Sufficient	Limited but systematic Experimental / Piloting (Ed) Widespread but systematic (Cal) Ad-hoc / out of control	Highly successful Successful Moderate Hit and miss Mostly unsuccessful	 None, mainly due to development, lighting (AT) Developers use as entry features, untested safety. (Cal) Not used for collision reduction (SC)

#	MEASURE	GUIDELINES YOU ARE USING?	SUFFICIENCY OF EXISTING APPLICATION GUIDELINES	EXTENT OF USE OF MEASURE IN YOUR JURISDICTION	OBSERVED SAFETY EFFECTIVENESS	COMMENTS
8	Convert Stop control intersection to Roundabout	None (Ed) Local (Cal) Provincial TAC (AT, Cal) Other: AASHTO (AT), FHA (SC)	Don't use any Insufficient (Ed) Sufficient (AT, Cal, SC)	Limited but systematic (AT) Experimental / Piloting (Cal) Widespread but systematic Ad-hoc / out of control	Highly successful Successful (AT, Cal, SC) Moderate Hit and miss Mostly unsuccessful	 Replaced one large intersection 4-way stop with non-compliance to a single lane Roundabout to reduce violations of the stop condition. (Ed) Soon to be a design practice, being promoted (AT) Converted one 4-way stop and one 2-way stop, preliminary results show reduction in collision frequency and severity, complaints from pedestrians downstream. (Cal) Roundabouts were first used in new areas then as a retrofit (SC)
9	Intersection illumination (full or delineation)	None Local (Cal) Provincial TAC (AT, SC) Other: IESNA (Cal)	Don't use any Insufficient Sufficient (AT, Cal, SC)	Limited but systematic Experimental / Piloting Widespread but systematic (AT, Cal) Ad-hoc / out of control	Highly successful (AT) Successful Moderate (SC) Hit and miss Mostly unsuccessful	 Success is undetermined (Cal) TAC guidelines are used on arterials and collector roads (SC)
10	Warning signs on major approaches	None Local (Ed, Cal) Provincial (Ed, AT) TAC (Ed, Cal, SC) Other:	Don't use any Insufficient Sufficient (Ed, SC)	Limited but systematic (SC) Experimental / Piloting Widespread but systematic (Ed, AT, Cal) Ad-hoc / out of control	Highly successful Successful (AT, Cal) Moderate (SC) Hit and miss Mostly unsuccessful	 Recent updates to City manual based on recent TAC work (Ed) Based on department recommended practices (AT) Used where conditions limit sight distance. (Cal)

#	MEASURE	GUIDELINES YOU ARE USING?	SUFFICIENCY OF EXISTING APPLICATION GUIDELINES	EXTENT OF USE OF MEASURE IN YOUR JURISDICTION	OBSERVED SAFETY EFFECTIVENESS	COMMENTS
11	Remove sight obstructions near intersections	None Local (Ed, AT) Provincial (Ed, AT) TAC (Ed, SC) Other:	Don't use any Insufficient Sufficient (Ed, AT, Cal, SC)	Limited but systematic Experimental / Piloting Widespread but systematic (AT, Cal) Ad-hoc / out of control	Highly successful Successful (AT, Cal) Moderate (SC) Hit and miss Mostly unsuccessful	 Completed on an inquiry basis mostly concerns of foliage growth trimming requests. (Ed) Based on geometric criteria and manual (AT) Bylaw restrictions, standard practice. (Cal)
12	Convert traffic signal to roundabout	None (Ed, AT) Local Provincial TAC Other:	Don't use any (AT) Insufficient (Ed) Sufficient	Limited but systematic (AT) Experimental / Piloting Widespread but systematic Ad-hoc / out of control	Highly successful Successful (AT) Moderate Hit and miss Mostly unsuccessful	 Not applicable to urban environment where signals are primarily triggered by capacity constraints and high volumes. (Ed) Would recommend a policy or practice (AT) No conversions yet (Cal) Not happened to date (SC)

#	MEASURE	GUIDELINES YOU ARE USING?	SUFFICIENCY OF EXISTING APPLICATION GUIDELINES	EXTENT OF USE OF MEASURE IN YOUR JURISDICTION	OBSERVED SAFETY EFFECTIVENESS	COMMENTS
13	"Smart" Right-Turn Channel	None Local (Ed, AT, Cal) Provincial TAC Other: Austroads (Cal)	Don't use any (AT) Insufficient (Ed, Cal) Sufficient (SC)	Limited but systematic (Ed, AT) Experimental / Piloting Widespread but systematic Ad-hoc / out of control	Highly successful Successful (Ed, AT, SC) Moderate Hit and miss Mostly unsuccessful	 Starting to apply Aussie design or "simple" radius to reduce FTC collisions at existing right turn channels City wide. Should start seeing collision change results in the next 1 to 2 years. (Ed) Would recommend a policy or practice (AT) Proposed but not yet implemented, guidelines for retrofit applications would be helpful. (Cal) Applying the new standard (SC)
14	Advance Warning Flashers	None Local (Ed) Provincial (Ed) TAC (Ed, AT, Cal, SC) Other:	Don't use any Insufficient Sufficient (Ed, AT, Cal, SC)	Limited but systematic (Ed) Experimental / Piloting Widespread but systematic (AT, Cal) Ad-hoc / out of control	Highly successful (AT) Successful (Cal) Moderate (SC) Hit and miss Mostly unsuccessful	 Local guidelines inline with TAC for application in Edmonton. (Ed) Considered successful but not specifically measured (Cal)

#	MEASURE	GUIDELINES YOU ARE USING?	SUFFICIENCY OF EXISTING APPLICATION GUIDELINES	EXTENT OF USE OF MEASURE IN YOUR JURISDICTION	OBSERVED SAFETY EFFECTIVENESS	COMMENTS
15	Offset Left-Turn Lanes	None Local (Ed) Provincial (Ed, AT) TAC (Ed, AT, SC) Other: Slightly modified TAC (Cal)	Don't use any (Cal) Insufficient (Ed) Sufficient (AT, SC)	Limited but systematic (AT) Experimental / Piloting Widespread but systematic (Cal) Ad-hoc / out of control	Highly successful Successful (AT, Cal, SC) Moderate Hit and miss Mostly unsuccessful	 No set guideline on this application (Ed) Based on provincial practices (geometric manual) (AT) Used based on road class and available ROW, Also allows for simultaneous dual left turns (Cal) Need to include left turns at signals in the Alberta Operators Manual (SC)
16	Protected-only left- turn phases	None Local (Ed) Provincial (Ed, AT) TAC (Ed. Cal, SC) Other:	Don't use any Insufficient (Ed) Sufficient (AT, Cal, SC)	Limited but systematic (Ed) Experimental / Piloting Widespread but systematic (AT, Cal) Ad-hoc / out of control	Highly successful (Cal) Successful (Ed, AT, SC) Moderate Hit and miss Mostly unsuccessful	 Follow city established guidelines for this application and will be reviewing updating. (Ed) Generally considered based on volume (AT) Considered successful but not specifically measured. (Cal) Requires more asphalt for vehicle storage (SC)
17	Consistent placement of traffic signal displays	None Local (Ed, SC) Provincial (Ed, AT, SC) TAC (Ed, AT, Cal, SC) Other:	Don't use any Insufficient (Ed) Sufficient (AT, Cal, SC)	Limited but systematic Experimental / Piloting Widespread but systematic (Ed, AT, Cal) Ad-hoc / out of control	Highly successful (AT) Successful (Cal, SC) Moderate Hit and miss Mostly unsuccessful	 Have general city consistency however would like to see more work on conspicuity from the latest TAC work. (Ed) Provincial practice (AT) Considered successful but not specifically measured. (Cal)

#	MEASURE	GUIDELINES YOU ARE USING?	SUFFICIENCY OF EXISTING APPLICATION GUIDELINES	EXTENT OF USE OF MEASURE IN YOUR JURISDICTION	OBSERVED SAFETY EFFECTIVENESS	COMMENTS
18	Vegetation removal	None Local Provincial (AT) TAC Other:	Don't use any Insufficient Sufficient (Ed, AT, SC)	Limited but systematic Experimental / Piloting Widespread but systematic (AT) Ad-hoc / out of control	Highly successful Successful (AT) Moderate (SC) Hit and miss Mostly unsuccessful	 Complete on an as requested basis (Ed) Based on maintenance practices (AT) N/A for wildlife control purpose (Cal)
19	Seasonal wildlife warning signs	None Local (Ed) Provincial (AT) TAC (AT) Other:	Don't use any Insufficient (SC) Sufficient (AT)	Limited but systematic Experimental / Piloting Widespread but systematic (AT) Ad-hoc / out of control	Highly successful Successful Moderate Hit and miss (AT) Mostly unsuccessful (SC)	 OTS completed recent work in connection with U of A. (Ed) Not used (Cal) Try not to install any new wildlife signs as wildlife is everywhere (SC)
20	Wildlife fencing and overpasses	None (Ed) Local Provincial (AT) TAC Other:	Don't use any (Ed) Insufficient Sufficient (AT)	Limited but systematic (AT) Experimental / Piloting Widespread but systematic Ad-hoc / out of control	Highly successful (AT) Successful Moderate Hit and miss Mostly unsuccessful	 More rural application (Ed) Based on funding (AT) Not used (Cal) Non to date(SC)
21	Advance curve warning	None Local Provincial TAC (AT, Cal, SC) Other:	Don't use any Insufficient Sufficient (AT, Cal)	Limited but systematic Experimental / Piloting Widespread but systematic (AT, Cal) Ad-hoc / out of control	Highly successful Successful (AT, SC) Moderate Hit and miss (Cal) Mostly unsuccessful	• Tends to form part of the urban sign clutter. (Cal)

#	MEASURE	GUIDELINES YOU ARE USING?	SUFFICIENCY OF EXISTING APPLICATION GUIDELINES	EXTENT OF USE OF MEASURE IN YOUR JURISDICTION	OBSERVED SAFETY EFFECTIVENESS	COMMENTS
22	Chevron signs	None Local (Ed) Provincial (Ed, AT) TAC (Ed, AT, Cal, SC) Other:	Don't use any Insufficient (Cal) Sufficient (Ed, AT, SC)	Limited but systematic Experimental / Piloting Widespread but systematic (AT, Cal) Ad-hoc / out of control	Highly successful Successful (SC) Moderate (AT, Cal) Hit and miss Mostly unsuccessful	 Follow current guidelines (Ed) Based on recommended practices (AT) Field placement guidelines may be useful e.g. spacing around curves, flexibility to use oversized sign as first sign in series (Cal)
23	Shoulder and centreline rumble strips	None (Ed) Local Provincial (AT) TAC Other:	Don't use any (Ed) Insufficient Sufficient (AT, SC)	Limited but systematic Experimental / Piloting Widespread but systematic (AT) Ad-hoc / out of control	Highly successful (AT) Successful Moderate Hit and miss Mostly unsuccessful	 Primarily rural application (Ed) Based on recommended practices & policy (AT) Not Used (Cal) None to date (SC)
24	Cable barrier systems	None (Ed) Local Provincial (AT) TAC (AT) Other:	Don't use any (Ed) Insufficient Sufficient (AT, SC)	Limited but systematic (AT) Experimental / Piloting Widespread but systematic Ad-hoc / out of control	Highly successful (AT) Successful Moderate Hit and miss Mostly unsuccessful	 Would like to see more work on this to potential urban application (Ed) Would recommend a policy and practice (AT) Not used, would support use Not Used (Cal) None to date (SC)
25	Linear Delineation Systems	None (Ed, AT) Local Provincial TAC (SC) Other: 3M (Cal)	Don't use any (Ed, AT, Cal) Insufficient (SC) Sufficient	Limited but systematic Experimental / Piloting (Cal) Widespread but systematic Ad-hoc / out of control	Highly successful Successful Moderate (SC) Hit and miss Mostly unsuccessful	 Joint project with AT on Deerfoot at the Calf Robe bridge curves, installation on- going, success to be determined (Cal) Needs to define what is a line and the legality of a line (SC)

#	MEASURE	GUIDELINES YOU ARE USING?	SUFFICIENCY OF EXISTING APPLICATION GUIDELINES	EXTENT OF USE OF MEASURE IN YOUR JURISDICTION	OBSERVED SAFETY EFFECTIVENESS	COMMENTS
26	Increase Sign Reflectivity	None Local (Ed) Provincial (Ed, AT) TAC (Ed, SC) Other:3M (Cal)	Don't use any (Cal) Insufficient Sufficient (AT, SC)	Limited but systematic Experimental / Piloting Widespread but systematic (AT, Cal) Ad-hoc / out of control	Highly successful Successful (AT, Cal, SC) Moderate Hit and miss Mostly unsuccessful	 Ongoing work/progress on this at TAC etc. should continue (Ed) Based on policy and practice (AT) Use of DG³ is standard practice based on sign type, cost savings where need for lighting is reduced (Cal)
27	Painted Edgelines	None Local Provincial (AT) TAC (Cal, SC) Other:	Don't use any Insufficient Sufficient (AT, Cal, SC)	Limited but systematic Experimental / Piloting Widespread but systematic (AT, Cal) Ad-hoc / out of control	Highly successful Successful (AT, Cal, SC) Moderate Hit and miss Mostly unsuccessful	 Primarily rural safety application (Ed) Based on practice (AT) Considered successful but not specifically measured (Cal)
28	Painted Centrelines	None Local Provincial (AT) TAC (AT, Cal, SC) Other:	Don't use any Insufficient (SC) Sufficient (AT, Cal)	Limited but systematic Experimental / Piloting Widespread but systematic (AT, Cal) Ad-hoc / out of control	Highly successful (AT) Successful (Cal, SC) Moderate Hit and miss Mostly unsuccessful	 Primarily rural safety application (Ed) Based on policy and practice (AT) Used based on road classification, considered successful but not specifically measured (Cal) Need more information on narrow rural roads (SC)
29	Delineator posts	None Local Provincial (AT) TAC (SC) Other:	Don't use any Insufficient Sufficient (AT, SC)	Limited but systematic Experimental / Piloting Widespread but systematic (AT) Ad-hoc / out of control	Highly successful Successful (AT, (SC)) Moderate Hit and miss Mostly unsuccessful	 Apply as required (Ed) Based on recommended practice (AT) Not used (Cal) Snow ploughs remove them,(SC).

#	MEASURE	GUIDELINES YOU ARE USING?	SUFFICIENCY OF EXISTING APPLICATION GUIDELINES	EXTENT OF USE OF MEASURE IN YOUR JURISDICTION	OBSERVED SAFETY EFFECTIVENESS	COMMENTS
30	Removal of fixed objects	None Local (Cal) Provincial (AT) TAC (Cal, SC) Other:	Don't use any Insufficient (Cal) Sufficient (AT)	Limited but systematic Experimental / Piloting Widespread but systematic (AT) Ad-hoc / out of control (Cal)	Highly successful Successful (AT) Moderate (Cal) Hit and miss Mostly unsuccessful	 Completed as required based on requests. (Ed) Based on Roadside Design Guide (AT) Guideline for establishing urban clear zones may be helpful (Cal)
31	Pedestrian countdown signals	None Local (Ed) Provincial (Ed) TAC (Ed, AT, Cal) (SC)) Other:	Don't use any Insufficient (AT, SC) Sufficient (Ed, Cal)	Limited but systematic (Ed, AT, Cal) Experimental / Piloting Widespread but systematic Ad-hoc / out of control	Highly successful Successful (Cal) Moderate (AT) Hit and miss Mostly unsuccessful	 Becoming more widely used for all new signal installations and generally follow TAC for retrofit applications. (Ed) Would recommend a practice be developed (AT) May become standard on all new installs (Cal) Unknown (SC)
32	Accessible Pedestrian Signals	None Local (Ed, Cal) Provincial (Ed) TAC (Ed, AT) Other:	Don't use any Insufficient Sufficient (Ed, AT, Cal)	Limited but systematic (AT, Cal) Experimental / Piloting Widespread but systematic Ad-hoc / out of control	Highly successful (Cal) Successful Moderate (AT) Hit and miss Mostly unsuccessful	 Have City guideline for consistency in application (Ed) We use audible not tactile at this time, based on requests from CNIB (Cal)
33	Illumination at pedestrian crossings*	None Local (Cal) Provincial TAC (AT, SC) Other: IESNA (Cal)	Don't use any Insufficient Sufficient (AT, Cal, SC)	Limited but systematic Experimental / Piloting Widespread but systematic (AT, Cal) Ad-hoc / out of control	Highly successful Successful (A, (SC) Moderate Hit and miss Mostly unsuccessful	 Review this as per City / TAC guidelines as part of new designs and retro-fit/rehabs. (Ed) Based on TAC lighting design guide (AT) Measure of success not yet quantified, metrics to be established (Cal)

#	MEASURE	GUIDELINES YOU ARE USING?	SUFFICIENCY OF EXISTING APPLICATION GUIDELINES	EXTENT OF USE OF MEASURE IN YOUR JURISDICTION	OBSERVED SAFETY EFFECTIVENESS	COMMENTS
34	Bicycle Lanes*	None (AT) Local (Ed, Cal, SC) Provincial (Ed) TAC (Ed, Cal) Other:	Don't use any (AT) Insufficient (Ed) Sufficient (SC)	Limited but systematic (Ed) Experimental / Piloting (Cal) Widespread but systematic Ad-hoc / out of control	Highly successful Successful (SC) Moderate Hit and miss Mostly unsuccessful	 Edmonton just beginning to look at city wide application and currently establishing City guidelines based on TAC work etc. (Ed) Measure of success not yet quantified, metrics to be established (Cal) On road bike tons are one safe at speeds greater than 50 km/h (SC)

*Measures Added by the Steering Committee at Meeting #6. These will be kept on the list in the final report if we find supporting evidence or strong potential, through this survey or our other sources.

APPENDIX B

BENEFIT AND COST CALCULATIONS

NOTE: countermeasures are grouped within each objective area, and ranked based on their average BCR within each area.

SPEED RELATED (4)

	# of Doc.Ben.	Туре	Severity	% Reduction					
Variable Speed Limits	2	All	Injury	20					
Benefits	Benefit Range	Annual Cost Savings per Injury							
Low	0.1	. 10000		Cost					
High	0.16	16000		Supply and In	istall Sign	Panels - Ex	xtruded Al	uminum	
				Side		Overhead			
Capital Cost		Annual Capital Cost		1000	New	300000			
Low	1000	100		1200	Retrofit	(assume \$2	00 to remo	ove old)	
High	300000	30000							
		Annual Cost							
Life Span (years)	10	2600							
Annual M&O Costs	2500	32500							
Lowest Benefit/Highest Cost	0.307692308	,	Average	3.2					
Highest Benefit/Lowest Cost	6.153846154	/	Rank	4					

Consistant Speed Limits	0		Assume sa	me as Variable	Speed L	imits (20%)			
Benefits	Benefit Range	Annual Cost Savings per Injury							
Low	0.1	10000							
High	0.16	16000		Retrofit					
				568.36	Supply a	nd Install S	Sign Panels	s - Extrude	d Aluminum
Capital Cost		Annual Capital Cost		0.45	sq.m				
Low	250	50		255.762	\$/sign				
High	500	100							
		Annual Cost							
Life Span (years)	5	1050							
Annual M&O Costs	1000	1100							
Lowest Benefit/Highest Cost	9.090909091		Average	12.2					
Highest Benefit/Lowest Cost	15.23809524		Rank	1					

Gateway Treatments	2	All	Ser. Inj/Fat	50					
Benefits	Benefit Range	Annual Cost Savings per Injury							
Low	0.25	25000							
High	0.5	50000		Lower Cost					
				568.36	Supply a	nd Install S	Sign Panels	s - Extruded	d Aluminum
Capital Cost		Annual Capital Cost		1.5	sq.m				
Low	2000	200		852.54	\$/sign				
High	500000	50000		170.92	Supply a	Supply and Install Post (100mm X 150mm)			
		Annual Cost		2046.92	2 signs a	nd posts			
Life Span (years)	10	2700							
Annual M&O Costs	2500	52500		High cost ass	ume at le	ast \$500,00	00		
				New/Retrofit	ew/Retrofit assumed to be same costs				
Lowest Benefit/Highest Cost	0.476190476		Average	9.5					
Highest Benefit/Lowest Cost	18.51851852		Rank	2					

Transverse Pavement Markings	2	All	Inj+Fat	55					
Benefits	Benefit Range	Annual Cost Savings per Injury							
Low	0.2	20000							
High	0.44	44000		Lower Cost					
				2	\$/m/side	2			
Capital Cost		Annual Capital Cost		4000	\$/km	Assumed	treatment	is both sid	es and for 1km,
Low	4000	2000				but likely	less per tr	eatment (h	igh estimate)
High	10000	5000		Higher Cost					
		Annual Cost		5	\$/m/side	2			
Life Span (years)	2	4000		10000	\$/km	Assumed	treatment	is both sid	es and for 1km,
Annual M&O Costs	2000	7000				but likely	less per tr	eatment (h	igh estimate)
				New/Retrofi	t assume	d to be san	ne costs		
Lowest Benefit/Highest Cost	2.857142857		Average	6.9					
Highest Benefit/Lowest Cost	11		Rank	3					

UNSIGNALIZED INTERSECTIONS (6)

	# of Doc.Ben.	Туре	Severity	% Reduction	
Advance Intersection Warning on Major Road	1	All	All	30	
Benefits	Benefit Range	Annual Cost Sa	vings per l	njury	
Low	0.15	15000			
High	0.3	30000			
				249.68	Supply of Signs, Aluminum - 3M Diamond Grade (VIP)
Capital Cost		Annual Capital	Cost	0.36	sq.m (sign)
Low	150	30		0.18	sq.m (tab)
High	800	160		170.92	Supply and Install Post (100mm X 150mm)
		Annual Cost		64.67	Install Sign - Less than 1 m2
Life Span (years)	5	1030			
Annual M&O Costs	1000	1160		109.6124	\$ Retrofit (assume just tab)
				435.0872	\$ New (assume sign and tab with post)
Lowest Benefit/Highest Cost	12.93103448		Average	21	
Highest Benefit/Lowest Cost	29.12621359		Rank	2	

Conversion of Stop Controlled Intersection to Roundabout	2	All	Inj+Fat	72% to 87%			
Benefits	Benefit Range	Annual Cost Sav	vings per li	njury			
Low	0.576	57600					
High	0.696	69600					
Capital Cost		Annual Capital	Cost				
Low	250000	12500		LS Costs			
High	500000	25000		Low	250000		
		Annual Cost		High	500000		
Life Span (years)	20	15500					
Annual M&O Costs	3000	28000					
Lowest Benefit/Highest Cost	2.057142857		Average	3.3			
Highest Benefit/Lowest Cost	4.490322581		Rank	6			

Dedicated Left-turn Lane on Major Road Approaches	2	All	Inj+Fat	35				
Benefits	Benefit Range	Annual Cost Sav	ings per Ir	njury				
Low	0.29	29000						
High	0.35	35000						
				Cost				
Capital Cost		Annual Capital	Cost	4.99	Removal of Existing Painte	d Lines		
Low	10000	500		252.86	Durable Pavement Messages - Turn or Straight Arrows (Singl			
High	100000	5000		4.32	Roadway Lines - Supplying	Paint and Pai	inting (La	ane Dividing L
		Annual Cost		Total costs				
Life Span (years)	20	3000		Low	High			
Annual M&O Costs	2500	7500		10000	25000	New		
				15000	100000	Retrofit		
Lowest Benefit/Highest Cost	3.866666667		Average	7.8	Low costs assume no islan	d (just painteo	d markin	gs)
Highest Benefit/Lowest Cost	11.66666667		Rank	4	High costs assume island			

Government of Alberta **=**

Methods of Reducing Collisions on Alberta Roads Phase 2 Final Report

Flashing Beacon on Stop Sign	1	Failure to Stop	All	30			
Benefits	Benefit Range	Annual Cost Sav	ings per l	njury			
Low	0.15	15000					
High	0.3	30000		Cost			
				249.68	Supply of Signs, Aluminum - 3M Diamond Grade (VIP)		
Capital Cost		Annual Capital	Cost	0.67	sq.m (sign)		
Low	500	50		170.92	Supply and Install Post (100mm X 150mm)		
High	2000	200		64.67	Install Sign - Less than 1 m2		
		Annual Cost		500	\$/Beacon		
Life Span (years)	10	1550					
Annual M&O Costs	1500	1700		500	\$ Retrofit (assume just bea	con)	
				902.8756	\$ New (assume beacon & sign with post)		
Lowest Benefit/Highest Cost	8.823529412		Average	14.1			
Highest Benefit/Lowest Cost	19.35483871		Rank	3			

Removal of Obstructions Within Sight Triangle	2	All	INJ	37				
Benefits	Benefit Range	Annual Cost Sav	vings per Ir	njury				
Low	20	200000						
High	37	3700000						
Capital Cost		Annual Capital	Cost					
Low	500	16.66666667		Cost				
High	500000	16666.66667		Low (LS)	500			
		Annual Cost		High (LS)	500000			
Life Span (years)	30	2516.666667		Can range fro	m low cost (tree removal, p	oarking res	trictions)	
Annual M&O Costs	2500	19166.66667		to high cost (road realignment).			
Lowest Benefit/Highest Cost	104.3478261		Average	787.3				
Highest Benefit/Lowest Cost	1470.198675		Rank	1				

Transverse Rumble Strips	1	Failure to Stop	All	28			
Benefits	Benefit Range	Annual Cost Sav	/ings per Ir	njury			
Low	0.1	10000					
High	0.22	22000					
Capital Cost		Annual Capital	Cost	Cost			
Low	2000	400		2234.45	Milled Rumble Strips for Stop Conditions		
High	6000	1200					
		Annual Cost					
Life Span (years)	5	2900					
Annual M&O Costs	2500	3700					
Lowest Benefit/Highest Cost	2.702702703		Average	5.1			
Highest Benefit/Lowest Cost	7.586206897		Rank	5			

SIGNALIZED INTERSECTIONS (8)

	# of Doc.Ben.	Туре	Severity	% Reduction				
Advance Intersection Warning Flashers	2	All	Inj+Fat	44				
Benefits	Benefit Range	Annual Cost Sa	vings per	Injury				
Low	0.2	20000						
High	0.44	44000						
				568.36	Supply and Install Sign Par	nels - Extru	ded Alumii	num
Capital Cost		Annual Capital	Cost	2	sq.m			
Low	3000	600		1136.72	\$/sign			
High	6000	1200		170.92	Supply and Install Post (10	0mm X 150	mm)	
		Annual Cost						
Life Span (years)	5	3100		1478.56	Sign and 2 posts			
Annual M&O Costs	2500	3700		3000	Assume 2 signs needed			
Lowest Benefit/Highest Cost	5.405405405		Average	9.8				
Highest Benefit/Lowest Cost	14.19354839		Rank	5				

Conversion of Signalized Intersection to Roundabout	2	All	Inj+Fat	78			
Benefits	Benefit Range	Annual Cost Sa	vings per l	Injury			
Low	0.3	30000					
High	0.624	62400					
Capital Cost		Annual Capital	Cost				
Low	275000	13750		LS Costs			
High	500000	25000		Low	275000		
		Annual Cost		High	500000		
Life Span (years)	20	16750		Assume sligh	tly higher than UnSig to RAI	B due to	
Annual M&O Costs	3000	28000		higher cost of	f removing signals		
Lowest Benefit/Highest Cost	1.071428571		Average	2.4			
Highest Benefit/Lowest Cost	3.725373134		Rank	8			

Dedicated Left-turn Lanes with Phasing	1	All	All	58				
Benefits	Benefit Range	Annual Cost Sa	vings per	Injury				
Low	0.3	30000						
High	0.58	58000						
Capital Cost		Annual Capital	Cost					
Low	5000	250		LS Costs	Construction	Widening	Retrofit	
High	100000	5000		Low	15000	5000	20000	
		Annual Cost		High	30000	70000	100000	
Life Span (years)	20	3250						
Annual M&O Costs	3000	8000		Retrofit invo	lves both construction and	widening o	osts	
Lowest Benefit/Highest Cost	3.75		Average	10.8				
Highest Benefit/Lowest Cost	17.84615385		Rank	4				
Government of Alberta <mark>=</mark>

Transportation

Positive Offset Left-turn Lanes	1	LT across path	Inj+Fat	20% to 40%			
Benefits	Benefit Range	Annual Cost Sa	vings per l	njury			
Low	0.2	20000					
High	0.4	40000					
Capital Cost		Annual Capital	Cost	LS Costs	Construction		
Low	10000	500		Low	10000		
High	100000	5000		High	25000		
		Annual Cost		Retrofit assu	mes lights are in place		
Life Span (years)	20	3500		(new assume	s lights are installed as well)	
Annual M&O Costs	3000	8000					
Lowest Benefit/Highest Cost	2.5		Average	7			
Highest Benefit/Lowest Cost	11.42857143		Rank	6			

Protected Only Left-turn Phase	3	LT across path	Inj+Fat	16			
Benefits	Benefit Range	Annual Cost Sa	vings per	Injury			
Low	0.08	8000					
High	0.16	16000					
Capital Cost		Annual Capital	Cost	LS Costs	New	Retrofit	
Low	300	15		Low	300	400	
High	1200	60		High	800	1200	
		Annual Cost					
Life Span (years)	20	2515		Costs are onl	y cost to change or		
Annual M&O Costs	2500	2560		implement p	rotected only phasing		
Lowest Benefit/Highest Cost	3.125		Average	4.7			
Highest Benefit/Lowest Cost	6.361829026		Rank	7			

Removal of Unwarranted Traffic Signals	2	All	Inj+Fat	53				
Benefits	Benefit Range	Annual Cost Sa	vings per	Injury				
Low	0.25	25000						
High	0.53	53000						
				474.65	Removal&Disposal of Exist	ting Light Fixu	ures (ass	ume same)
Capital Cost		Annual Capita	Cost	249.68	Supply of Signs, Aluminum	n - 3M Diamor	nd Grade	(VIP)
Low	2000	66.66666667		0.67	sq.m (sign)			
High	6500	216.6666667		170.92	Supply and Install Post (10	0mm X 150mr	m)	
		Annual Cost		64.67	Install Sign - Less than 1 m	2		
Life Span (years)	30	1066.666667		1826.8256	3 way INT with 1 signal eac	h and 1 Stop	sign	
Annual M&O Costs	1000	1216.666667		6265.9612	4 way INT with 3 signals ea	ch and 2 Stop	o signs	
Lowest Benefit/Highest Cost	20.54794521		Average	35.1				
Highest Benefit/Lowest Cost	49.6875	i -	Rank	1				

Government of Alberta <mark>=</mark>

Transportation

Signal Backboards	1	Right angle	All	32			
Benefits	Benefit Range	Annual Cost Sa	vings per l	njury			
Low	0.15	15000					
High	0.32	32000					
				500	Back plate		
Capital Cost		Annual Capital	Cost	500	Added cost for installing o	ignals	
Low	500	50					
High	12000	1200			New	Retrofit	
		Annual Cost		MIN 2	500	1000	
Life Span (years)	10	1550		MAX 12	6000	12000	
Annual M&O Costs	1500	2700					
Lowest Benefit/Highest Cost	5.55555556		Average	13.1			
Highest Benefit/Lowest Cost	20.64516129		Rank	3			

Smart Right-turn Channel	0		All	65 to 80	Based on experiences from	n Edmontor	n	
Benefits	Benefit Range	Annual Cost Sa	vings per l	njury				
Low	0.65	65000						
High	0.8	80000						
Capital Cost		Annual Capital	Cost	Per channel				
Low	15000	750		LS Costs	New	Retrofit		
High	50000	2500		Low	15000	15000		
		Annual Cost		High	25000	50000		
Life Span (years)	20	3250						
Annual M&O Costs	2500	5000						
Lowest Benefit/Highest Cost	13		Average	18.8				
Highest Benefit/Lowest Cost	24.61538462		Rank	2				

RUN OFF ROAD COLLISIONS (7) Note: cable barriers separated into roadside and median

	# of Doc.Ben.	Туре	Severity	% Reduction	
Advance Curve Warning Signs	5	All	Injury	13	
Benefits	Benefit Range	Annual Cost S	avings per	Injury	
Low	0.05	5000		Cost	
High	0.13	13000		249.68	Supply of Signs, Aluminum - 3M Diamond Grade (VIP)
				0.36	Sign and tab buth 600x600
Capital Cost		Annual Capita	l Cost	64.67	Install Sign - Less than 1 m2
Low	450	90		170.92	Supply and Install Post (100mm X 150mm)
High	1200	240		415.3596	For sign, tab, post
		Annual Cost		830.7192	Assume 1 each direction
Life Span (years)	5	1090			
Annual M&O Costs	1000	1240			
Lowest Benefit/Highest Cost	4.032258065		Average	8	
Highest Benefit/Lowest Cost	11.9266055		Rank	4	

Cable Barriers	3	Run off Road	Fatal	44	roadside barrier
		Head-on	Injury	90	median barrier
ROADSIDE					
Benefits	Benefit Range	Annual Cost S	avings per	Injury	
Low	0.15	15000			
High	0.352	35200			
Capital Cost		Annual Capita	l Cost		
Low	22000	2200		Costs (/m)	
High	50000	5000		110	From AT RDG (base rate)
		Annual Cost		220	From AT RDG
Life Span (years)	10	4700		Assume 200m	(base rate+rocky+short+remote)
Annual M&O Costs	2500	7500			
Lowest Benefit/Highest Cost	2		Average	4.7	
Highest Benefit/Lowest Cost	7.489361702		Rank	7	
MEDIAN					
Benefits	Benefit Range	Annual Cost S	avings per	Injury	
Low	0.36	36000			
High	0.72	72000			
Lowest Benefit/Highest Cost	4.8		Average	10.1	
Highest Benefit/Lowest Cost	15.31914894		Rank	2	

Horizontal and Vertical Realignments	2	All	All	50% to 73%	
Benefits	Benefit Range	Annual Cost S	avings per	Injury	
Low	0.5	50000			
High	0.73	73000			
Capital Cost		Annual Capita	l Cost		
Low	75000	2500		LS Costs	
High	1000000	33333.33333		Low	75000
		Annual Cost		High	100000
Life Span (years)	30	3500			
Annual M&O Costs	1000	34333.33333			
Lowest Benefit/Highest Cost	1.45631068		Average	11.2	
Highest Benefit/Lowest Cost	20.85714286		Rank	1	

Impact Attenuators	1	Fixed objects	Fatal	75	
Benefits	Benefit Range	Annual Cost Sa	avings per	Injury	
Low	0.35	35000			
High	0.75	75000			
Capital Cost		Annual Capita	l Cost		
Low	30000	3000		Costs (each)	
High	60000	6000		Low	15000
		Annual Cost		High	30000
Life Span (years)	10	5500			Assume 2 needed
Annual M&O Costs	2500	8500			
Lowest Benefit/Highest Cost	4.117647059		Average	8.9	
Highest Benefit/Lowest Cost	13.63636364		Rank	3	

Removal of Fixed Objects	3	All	Injury	30	
Benefits	Benefit Range	Annual Cost S	avings per	Injury	
Low	0.15	15000			
High	0.3	30000			
Capital Cost		Annual Capita	l Cost		
Low	100	3.333333333		LS Costs	New
High	1500000	50000		Low	100
		Annual Cost		High	1000000
Life Span (years)	30	2003.333333			
Annual M&O Costs	2000	52000			Retrofit
					500
Lowest Benefit/Highest Cost	0.288461538		Average	7.6	1500000
Highest Benefit/Lowest Cost	14.9750416		Rank	5	

Shoulder Rumble Strips	2	All	Injury	18	
Benefits	Benefit Range	Annual Cost S	avings per	Injury	
Low	0.1	10000			
High	0.18	18000			
Capital Cost		Annual Capita	l Cost		
Low	300	30		Costs	
High	600	60		701	Milled Rumble Strips (/km)
		Annual Cost		280.4	Assume 200m on each side of road
Life Span (years)	10	2530			
Annual M&O Costs	2500	2560			
Lowest Benefit/Highest Cost	3.90625		Average	5.5	
Highest Benefit/Lowest Cost	7.114624506		Rank	6	

Note: Benefits and Life-Cycle Costs for Centreline Rumble Strips to be determined at a later date

ROADWAY LINKS (6)

	# of Doc.Ben.	Туре	Severity	% Reduction		
Delineator Posts	5	All	All	11		
Benefits	Benefit Range	Annual Co	Annual Cost Savings per Injury			
Low	0.05	5000				
High	0.11	11000				
				10	posts	Assume 200m curve with 20m spacing
Capital Cost		Annual Ca	pital Cost			
Low	750	150		71.59	each	Flexible Guide Post/Delineators - Round - Supply and Install
High	1000	200		750	Round to \$75/post for lo	ow cost
		Annual Co	st	1000	Use \$100/post for High o	cost
Life Span (years)	5	1150				
Annual M&O Costs	1000	1200				
Lowest Benefit/Highest Cost	4.166666667		Average	6.9		
Highest Benefit/Lowest Cost	9.565217391		Rank	5		

Edgelines and Centrelines	1	All	Injury	24		
Benefits	Benefit Range	Annual Co	ost Savings	per Injury		
Low	0.1	10000				
High	0.19	19000		868.34	/km	Roadway Lines - Supplying Paint and Painting (Lane Dividing a
				843.93	/km	Roadway Lines - Supplying Paint and Painting (Directional Divid
Capital Cost		Annual Ca	pital Cost			
Low	168.79	84.395				
High	516.12	258.06		843.93	/km	Assume 1 centreline for low cost
		Annual Co	ost	168.786		Assume 200m length
Life Span (years)	2	1584.395		2580.61	/km	Assume 2 edgelines and 1 centreline for high cost
Annual M&O Costs	1500	1758.06		516.122		Assume 200m length
Lowest Benefit/Highest Cost	5.688088006		Average	8.8		
Highest Benefit/Lowest Cost	11.99195908		Rank	2		

High-visibility Pavement Markings	0	All	Injury	24	*	
Benefits	Benefit Range	Annual Co	ost Savings	per Injury		
Low	0.1	10000				
High	0.19	19000		1000	/km per line	
Capital Cost		Annual Ca	pital Cost			
Low	200	100				
High	600	300		1000	/km	Assume 1 centreline for low cost
		Annual Co	st	200		Assume 200m length
Life Span (years)	2	1600		3000	/km	Assume 2 edgelines and 1 centreline for high cost
Annual M&O Costs	1500	1800		600		Assume 200m length
Lowest Benefit/Highest Cost	5.55555556		Average	8.7		
Highest Benefit/Lowest Cost	11.875		Rank	3		

Government of Alberta **=**

Methods of Reducing Collisions on Alberta Roads Phase 2 Final Report

Increased Sign Retroreflectivity	1	All	All	25% to 42%		
Benefits	Benefit Range	Annual Co	ost Savings	per Injury		
Low	0.25	25000				
High	0.42	42000				
				249.68	/sq.m	Supply of Signs, Aluminum - 3M Diamond Grade (VIP)
Capital Cost		Annual Ca	apital Cost	0.67	sq.m	
Low	500	100		64.67	each	Install Sign - Less than 1 m2
High	1600	320		231.9556	\$/installed sign	
		Annual Co	ost	170.92	post	Supply and Install Post (100mm X 150mm)
Life Span (years)	5	1100		463.9112	Retrofit (sign only, assu	me 2 needed)
Annual M&O Costs	1000	1320		805.7512	New (sign and post, ass	ume 2 each needed)
Lowest Benefit/Highest Cost	18.93939394		Average	28.6		
Highest Benefit/Lowest Cost	38.18181818		Rank	1		

Linear Delineation Systems	0					
Benefits	Benefit Range	Annual Co	st Savings	per Injury		
Low	0.81	81000				
High	0.018	1800		Values enter	ed to determine minimu	n values to get BCR=1
Capital Cost		Annual Ca	pital Cost			
Low	3000	300		Costs (based	on Deerfoot Trail)	
High	800000	80000		Retrofit	15000	/km
		Annual Co	st	(LDS only)	3000	/200m
Life Span (years)	10	1800		New	300000	/km
Annual M&O Costs	1500	81500		(LDS+barrier)	60000	/200m
Lowest Benefit/Highest Cost	0.993865031		Average	1		
Highest Benefit/Lowest Cost	1		Rank	n/a		

Wider Pavement Markings	1	All	Inj+Fat	20		
Benefits	Benefit Range	Annual Co	st Savings	per Injury		
Low	0.1	10000				
High	0.16	16000			1000	/km per line
Capital Cost		Annual Ca	pital Cost			
Low	200	100		LS Costs (/km)	
High	600	300		Low	1000	Assume 1 centreline for low cost
		Annual Co	st	High	200	Assume 200m length
Life Span (years)	2	1600			3000	Assume 2 edgelines and 1 centreline for high cost
Annual M&O Costs	1500	1800			600	Assume 200m length
Lowest Benefit/Highest Cost	5.55555556		Average	7.8		
Highest Benefit/Lowest Cost	10		Rank	4		

VUNERABLE ROAD USERS (3)

	# of Doc.Ben.	Туре	Severity	% Reduction		
New or Upgraded Intersection Lighting	2	Ped	Inj	78		
Benefits	Benefit Range	Annual Co	st Savings	per Injury		
Low	0.39	39000				
High	0.78	78000				
Capital Cost		Annual Ca	pital Cost	1962.1	each	Street Light Bases - Supply and Install
Low	1000	100		2856.71	each	Street Light Standard - Supply and Install
High	10000	1000		4818.81	each	Total New Cost
		Annual Co	st	Retrofit costs	are low for	minor adjustments (\$1000) to high for remove and replace (\$10,000)
Life Span (years)	10	2600				
Annual M&O Costs	2500	3500		Assume \$200/	/yr for light	ing and \$300/year other maintenance
Lowest Benefit/Highest Cost	11.14285714		Average	20.6		
Highest Benefit/Lowest Cost	30		Rank	1		

Pedestrian Countdown Signals	1	Ped	All	25	Assume al	l Injury
Benefits	Benefit Range	Annual Co	ost Savings	per Injury		
Low	0.15	15000				
High	0.25	25000				
Capital Cost		Annual Ca	pital Cost		Cost (assur	me 2 needed)
Low	800	80			400	/signal head
High	2000	200			100	/signal removal
		Annual Co	st			
Life Span (years)	10	2080			800	New
Annual M&O Costs	2000	2200			1000	Retrofit (double for high cost)
Lowest Benefit/Highest Cost	6.818181818		Average	9.4		
Highest Benefit/Lowest Cost	12.01923077		Rank	2		

Wider Sidewalk or Paved Shoulder	1	Ped	All	65% to 89%	*	Assume all Injury
Benefits	Benefit Range	Annual Co	ost Savings	per Injury		
Low	0.65	65000				
High	0.89	89000				
Capital Cost		Annual Ca	pital Cost			Assume 1km long
Low	110000	11000		109.69	/m	Concrete Sidewalk (all widths)
High	500000	50000		16.34	/sq.m	Removing Concrete Surface
		Annual Co	st			
Life Span (years)	10	13000			158710	Retrofit (assume 3m wide sidewalk to be replaced with 4m wide)
Annual M&O Costs	2000	52000			109690	New sidewalk
Lowest Benefit/Highest Cost	1.25		Average	4		
Highest Benefit/Lowest Cost	6.846153846		Rank	3		

APPENDIX C

BCR CALCULATIONS

Consistent Speed Limits

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions. Unknown CRF, so assume same as variable speed limits, as both aim to provide consistent speeds.
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

20% of all injuries

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

16% of all injuries (medium) Stated as 'high' but reduced to 'medium' based on method of using VSL CRF.

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

10% - 16% of all injuries

Capital Costs

\$250 (Retrofit) - \$500 (Retrofit)

BCR

9.1 – 15.2

Gateway Treatments

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions.
 25% all injury collisions
 50% all serious injury/fatal collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

50% of all serious injury/fatal collisions

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

50% of all serious injury/fatal collisions (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

25% - 50% of all serious injury/fatal collisions

Capital Costs

\$2,000 (New/Retrofit) - \$500,000 (New/Retrofit)

BCR

0.5 – 18.5

Transverse Pavement Markings

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions. 55% of all fatal and injury
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

55% of all fatal and injury

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

44% of all fatal and injury (moderate)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

20% - 44% of all fatal and injury

Capital Costs

\$800 (New) - \$300,000 (New/Retrofit)

BCR

2.9 – 11.0

Variable Speed Limits

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions. 20% of all injuries
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

20% of all injuries

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

16% of all injuries (moderate*)

*will require legislative change to be enforceable. Unenforceable VSLs expected to be less effective.

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

10% - 16% of all injuries

Capital Costs

\$1,000 (New) - \$300,000 (New/Retrofit)

BCR

0.3 - 6.2

Advance Intersection Warning on Major Road

Benefits

Step 1: Select average collision reduction factor or range

- e) Identify documented CRFs for injury / fatality collisions. 30% all rural intersection collisions
- f) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- g) If Alberta-based or Canada-based, select it.
- h) Otherwise, select most reliable CRF.

Assume 30% of all injury collisions

Step 2: Adjust average collision reduction factor

- c) If "Alberta applicability rating" is *high*, no adjustment is required.
- d) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

30% of all injury collisions (high)

Step 3: Establish collision reduction range

- c) If a reasonable range is provided in literature, use it as a starting point.
- d) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

15% - 30% of all injury collisions

Capital Costs

\$150 (Retrofit) - \$800 (New)

BCR

12.9 – 29.1

Conversion of Stop Controlled Intersection to a Roundabout

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions.
 18% 72% of all collisions
 - 72% 87% of all fatal and injury collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

72% - 87% of all injury collisions

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

57.6% - 69.6% of all fatal and injury collisions (moderate)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

58% - 70% of all fatal and injury collisions

Capital Costs

\$250,000 (Retrofit) - \$500,000 (Retrofit)

BCR

2.1 – 4.5

Dedicated Left-turn Lanes on Major Road Approaches

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions.
 35% of rural fatal and injury intersection collisions
 29% of urban fatal and injury intersection collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

29% - 35% of all fatal and injury

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

29% - 35% of all fatal and injury (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

29% - 35% of all fatal and injury

Capital Costs

\$10,000 (New/Rural) - \$100,000 (Retrofit/Urban)

BCR

3.9 – 11.7

Flashing Beacon on Stop Sign

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions.
 30% of failure to stop collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

Assume 30% of all injury collisions

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

30% of all injury collisions (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

15% - 30% of all injury collisions

Capital Costs

\$500 (Retrofit) - \$2000 (Retrofit)

BCR

8.8 – 19.4

Removal of Obstructions within Sight Triangle

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions.
 37% of injuries
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

37% of all injuries

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

37% of all injuries (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

20% - 37% of all injuries

Capital Costs

\$500 (New) - \$500,000 (New/Retrofit)

BCR

>50

Transverse Rumble Strips

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions.
 28% of failure to stop collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

Assume 28% of all injury collisions

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

22% of all injury collisions (moderate)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

10% - 22% of all injury collisions

Capital Costs

\$2,000 (New/Retrofit) - \$6,000 (Retrofit)

BCR

2.7 – 7.6

Advance Intersection Warning Flashers

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions.
 18% of total collisions
 44% of all fatal and injury collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

44% of all injuries

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

44% of all injuries (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

20% - 44% of all injuries

Capital Costs

\$1,500 (New/Retrofit) - \$3,000 (New/Retrofit)

BCR

5.4 – 14.2

Conversion of Signalized Intersection to a Roundabout

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions.
 40% 48% of all collisions
 78% of all fatal and injury collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

78% injury collisions

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

62.4% of all injury collisions (moderate)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

30% - 62% of all fatal and injury collisions

Capital Costs

\$275,000 (Retrofit) - \$500,000 (Retrofit)

BCR

1.1 – 3.7

Dedicated Left-turn Lanes with Phasing

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions. 58% all collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

Assume 58% of all injury collisions

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

58% of all injury collisions (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

30% - 58% of all injury collisions

Capital Costs

\$15,000 (New) - \$100,000 (Retrofit)

BCR

3.8 – 17.8

Positive Offset Left-turn Lanes

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions. 20%-40% of left-turn across path injury/fatal collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

20% - 40% of injuries

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

20% - 40% of injuries (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

20% - 40% of injuries

Capital Costs

\$10,000 (Retrofit) - \$100,000 (New/Retrofit)

BCR

2.5 – 11.4

Protected Only Left-turn Phase

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions.
 - 30% 36% of all collisions
 - 16% of urban fatal and injury left-turn across path collisions
 - 19% of urban fatal and injury angle collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

16% of injuries

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

16% of injuries (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

8% - 16% of injuries

Capital Costs

\$300 (New) - \$1,200 (Retrofit)

BCR

3.1 – 6.4

Removal of Unwarranted Traffic Signals

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions.
 53% of urban fatal and injury collisions
 25% of all urban collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

53% of all injuries

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

53% of all injuries (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

25% - 53% of all injuries

Capital Costs

\$2,000 (Retrofit) - \$6,500 (Retrofit)

BCR

20.5 - 49.7

Signal Backboards

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions. 32% of right-angle collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

Assume 32% of all injury collisions

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

32% of all injury collisions (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

15% - 32% of all injury collisions

Capital Costs

\$500 (New/Retrofit) - \$5,000 (Retrofit)

BCR

5.6 – 20.6

Smart Right-turn Channel

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions.
 65% 80% of all collisions
 No documented CRF, values based on recent Edmonton experience.
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

65% - 80% of all injury collisions

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

65% - 80% of all injury collisions (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

65% - 80% of all injury collisions

Capital Costs

\$15,000 (New/Retrofit) - \$50,000 (Retrofit)

BCR

13.0 – 24.6

Advance Curve Warning Signs

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions.
 - 10% reduction (all fatal and injury collisions, sign only)
 - 29% reduction (all head-on collisions, sign only)
 - 30% (all ROR collisions, sign only)
 - 13% reduction (all injury collisions, sign with advisory speed tab)
 - 30% reduction (all collisions, sign with advisory speed tab or flashing beacon)
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

13% all injuries collisions (sign with advisory speed tab)

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

13% of all injuries (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

5% - 13% of all injuries

Capital Costs

\$425 (New/Retrofit) - \$600 (New/Retrofit)

BCR

4.0 - 11.9

Cable Barriers

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions.
 44% reduction of run-off-road fatal collisions (roadside guardrail)
 90% reduction of head-on injury collisions (median barrier)
 - 91% reduction of head-on fatal collisions (median barrier)
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

44% reduction of run-off-road fatal collisions (roadside guardrail) *assume fatal is injury 90% reduction of head-on injury collisions (median barrier)

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

35.2% reduction of run-off-road injury collisions (roadside) 72% reduction of head-on injury collisions (median) (moderate)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

15% - 35% reduction of run-off-road injury collisions (roadside) 36% - 72% reduction of head-on injury collisions (median)

Capital Costs

\$110/m (New/Retrofit) - \$250/m (Retrofit)

BCR

2.0 - 7.5 (roadside)

4.8 – 15.3 (median)

Horizontal and Vertical Realignments

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions.
 73% all collisions along curve
 50% all collisions along curve
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

Assume 50% - 73% of all collisions

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

50% - 73% of all injury collisions (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

50% - 73% of all injury collisions

Capital Costs

\$75,000 (Retrofit) - \$1,000,000 (Retrofit)

BCR

1.5 – 20.9

Impact Attenuators

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions. 75% of fatal collisions with fixed object
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

75% of fatal collisions with fixed object *assume fatal is injury

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

75% of injury collisions with fixed object (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

35% - 75% of injury collisions with fixed object

Capital Costs

\$15,000 (New/Retrofit) - \$30,000 (Retrofit)

BCR

4.1 – 13.6

Removal of Fixed Objects

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions.
 50% of all fatal collisions
 30% of all injury collisions
 88% of fixed object collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

30% of all injuries

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

30% of all injuries (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

15% - 30% of all injuries

Capital Costs

\$100 (New) - \$1,500,000 (Retrofit)

BCR

0.3 – 15.0

Shoulder Rumble Strips

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions.
 18% of all injury collisions
 26% reduction (Off road right collisions)
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

18% of all injuries

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

18% of all injuries (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

10% - 18% of all injuries

Capital Costs

\$1,500 (New) - \$3,000 (Retrofit)

BCR

3.9 – 7.1

Delineator Posts

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions.
 - 11% of all collisions 67% of head-on collisions
 - 67% of sideswipe collisions
 - 34% of ROR collisions
 - 25% of night-time collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

Assume 11% of all injuries

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%. 11% of all injuries (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

5% - 11% of all injuries

Capital Costs

\$75 (New/Retrofit) - \$100 (New/Retrofit)

BCR (assuming 10 posts required)

4.2 – 9.6

Edgelines and Centrelines

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions. 24% of all injury collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

24% of all injury collisions

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

19% of all injury collisions (moderate)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

10% - 19% of all injury collisions

Capital Costs (assuming 200m length)

\$850 (New/Retrofit) - \$2,600 (New/Retrofit)

BCR

5.7 – 12.0

High-visibility Pavement Markings

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions. 24% of injury collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

24% of injury collisions

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

19% of injury (moderate)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

10% - 19% of injury

Capital Costs (assuming 200m length)

\$1,000 (New/Retrofit) - \$3,000 (New/Retrofit)

BCR

5.6 - 11.9

Increased Sign Retroreflectivity

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions. 25% - 42% of all collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

Assume 25% - 42% of all injuries

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

25% - 42% of all injuries (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

25% - 42% of all injuries

Capital Costs (per sign, assume 2 required)

\$250 (Retrofit) - \$800 (New)

BCR

18.9 – 38.2

Linear Delineation Systems

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions. No documented injury collision reductions found.
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

Alberta applicability rated as "high."

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

Capital Costs

\$15,000 (Retrofit) - \$300,000 (New-includes barrier installation)

BCR

BCR=1.0 for installations on existing barriers if injury reduction is 1.8% (assumed to be much higher) BCR=1.0 for installations on new barriers if injury reduction is 81%

Wider Pavement Markings

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions. 20% of all injury and fatal collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

20% of all injuries

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

16% of all injuries (moderate)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

10% - 16% of all injuries

Capital Costs

\$1,000 (New/Retrofit) - \$3,000 (New/Retrofit)

BCR

5.6 – 10.0

New or Upgraded Intersection Lighting

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions. 78% of pedestrian injury collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM.
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

78% of pedestrian injury collisions

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

78% of pedestrian injury collisions (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

39% - 78% of all injuries

Capital Costs

\$5,000 (Retrofit) - \$7,000 (Retrofit)

BCR

11.1 – 30.0

Pedestrian Countdown Signals

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions. 25% of all pedestrian collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types). If injury unavailable, refer to new HSM. Assume all pedestrian collisions are injury collisions
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

25% of all pedestrian collisions

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

25% of all pedestrian collisions (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

15% - 25% of all pedestrian collisions

Capital Costs

\$800 (New) - \$2,000 (Retrofit)

BCR

6.8 – 12.0

Wider Sidewalk or Paved Shoulder

Benefits

Step 1: Select average collision reduction factor or range

- a) Identify documented CRFs for injury / fatality collisions. 65% -89% of all pedestrian collisions
- b) Where available, focus on the CRFs for all injuries (as opposed to the specific collision types).
 If injury unavailable, refer to new HSM.
 Assume all pedestrian collisions are injury collisions
- c) If Alberta-based or Canada-based, select it.
- d) Otherwise, select most reliable CRF.

65% -89% of all pedestrian collisions

Step 2: Adjust average collision reduction factor

- a) If "Alberta applicability rating" is *high*, no adjustment is required.
- b) If "Alberta applicability rating" is *moderate*, reduce the value by 20%.

65% -89% of all pedestrian collisions (high)

Step 3: Establish collision reduction range

- a) If a reasonable range is provided in literature, use it as a starting point.
- b) Otherwise, establish range based on land use and speed context, as follows:

The quoted CRF will represent the high end of the range, under the assumption that it represents proper context-sensitive application.

Divide the CRF by 2 to get the low end of the range, to reflect randomness, uncertainty and application in less appropriate conditions. Round to the nearest 5%.

The upper end of the range represents the likely collision reduction within the applicable land use and speed categories.

65% -89% of all pedestrian collisions

Capital Costs

\$110 (New/metre) - \$500 (Retrofit/metre)

BCR (based on length of 1km)

1.3 – 6.8

- Traffic Operations
- Transportation Planning
- Road Safety Engineering
- Transit and Sustainability
- Asset Management
- Project Management