

Alberta Transportation Bi-Annual GRMP Meeting

North Central Region – NC76, NC82, and NC57 Overview

Agenda

- 1. Overview
- 2. NC76 Blue Ridge Slide
- 3. NC82 Morinville Slide
- 4. NC57 HWY 624 Embankment Failure
- 5. Questions

Image from http://www.transportation.alberta.ca/Content/docType329/Production/2015_TRANSPORTATION_REGIONS_DISTRICTS.pdf

Edson and Stony Plain Districts

Overview

NC76 – Blue Ridge Slide

NC76 – Blue Ridge Slide

Background

- Fill embankment through valley of Bull Creek (12 m to 15 m high)
- Side slopes at 3.5H:1V
- Slope failures during culvert replacement in 2009
- Call-out in October 2011 and subsequently included in inspection list
- Instruments installed in 2012

PIEZOMETER DATA

HWY 658:02 km 7.5 Blue Ridge Slide, Inclinometer SI12-3

Alberta Transportation

HWY 658:02 km 7.5 Blue Ridge Slide, Inclinometer SI12-3

Alberta Transportation

Photo 2 – Looking northeast at slide

Photo 3 – Looking southeast at culvert

2011 – Thurber Inspection Report

2014 – Golder Inspection Report

1 Ludi

2016 – Stantec Inspection

2017 – Stantec Inspection

Challenges

- Limited space due to creek
 - Pile wall Cantilevered pile alone inadequate for support. Needed anchors.
 - Large number of anchors required became costly went with berm solution (additional ROW needed for construction access)
- Relatively weak clay till
 - Concerns with constructability of a shear key due to poor soil and groundwater conditions built a larger berm instead
- High groundwater table and springs
 - Drainage blanket with interceptor drains

Figure E4

Overall slope of ~4.5H:1V

Distance (m)

NC82 Morinville Slide

NC82 – Morinville Slide

Background

- Two slides
 - North 55 m x 20 m
 - South 30 m x 15 m
- 4 m to 5 m high embankment, 3H:1V
- Standing water in east ditch – No grade
- Test pits showed soft soils, possible high water table, and uncontrolled fill
- No instrumentation

Photo 2 – Looking west from north slide

Photo 1 – Looking north at north slide

Challenges

- Excavations in soft soil
 - Limit construction widths to 5 m sections if shear key to be constructed
 - Must backfill shear key the same day it's excavated
- Construction in winter
 - Control the material going into the site for compaction
 - Benefit of winter shutdown touch up in spring.
- Working with a brand new contractor
 - Work closely during development of work plan
 - Keep them informed on "why"

NC57 – HWY 624 Embankment Failure

NC57 – Highway 624 Embankm ent Failure

Background

- 2 m embankment with 6H:1V to 7H:1V side slopes
- Settlement and lateral spreading of highway
- First embankment failure in 2006
- Repaired in 2007 with granular sub-drains installed.
- Highway 624 performed well until 2014

Photo 1 – Looking west gentle slope

Photo 2 – Looking east, wet ground

Photo 3 – Looking southeast, pavement distress

NC57 – Highway 624 Embankm ent Failure

۰

Challenges

- Very soft to soft clay
 - Need to improve strength. Remove and replace. Cematrix?
- High Groundwater Table
 - Boreholes drilled showed piezometric levels 1 m above highway surface
 - Need free draining material. Not Cematrix.
 - Gravel available nearby
 - Tire derived aggregate (TDA) also available from Alberta recycling

Figure E4 - Section A - Tire Derived Aggregate Option 2

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)	Piezometric Line
	Clay (CH)	Mohr-Coulomb	16.5	0	17	1
	Clay Fill (Imported)	Mohr-Coulomb	18	0	25	1
	Clay Till (CI)	Mohr-Coulomb	19	2	28	2
	Tire Derived Aggregate	Mohr-Coulomb	8	0	21	1

Questions?